// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/write_buffer_manager.h" #include "test_util/testharness.h" namespace ROCKSDB_NAMESPACE { class WriteBufferManagerTest : public testing::Test {}; #ifndef ROCKSDB_LITE const size_t kSizeDummyEntry = 256 * 1024; TEST_F(WriteBufferManagerTest, ShouldFlush) { // A write buffer manager of size 10MB std::unique_ptr wbf( new WriteBufferManager(10 * 1024 * 1024)); wbf->ReserveMem(8 * 1024 * 1024); ASSERT_FALSE(wbf->ShouldFlush()); // 90% of the hard limit will hit the condition wbf->ReserveMem(1 * 1024 * 1024); ASSERT_TRUE(wbf->ShouldFlush()); // Scheduling for freeing will release the condition wbf->ScheduleFreeMem(1 * 1024 * 1024); ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(2 * 1024 * 1024); ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(4 * 1024 * 1024); // 11MB total, 6MB mutable. hard limit still hit ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(2 * 1024 * 1024); // 11MB total, 4MB mutable. hard limit stills but won't flush because more // than half data is already being flushed. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(4 * 1024 * 1024); // 15 MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->FreeMem(7 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); // change size: 8M limit, 7M mutable limit wbf->SetBufferSize(8 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(2 * 1024 * 1024); // 8MB total, 6MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->FreeMem(2 * 1024 * 1024); // 6MB total, 6MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(1 * 1024 * 1024); // 7MB total, 7MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(1 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(1 * 1024 * 1024); wbf->FreeMem(1 * 1024 * 1024); // 7MB total, 7MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); } TEST_F(WriteBufferManagerTest, CacheCost) { LRUCacheOptions co; // 1GB cache co.capacity = 1024 * 1024 * 1024; co.num_shard_bits = 4; co.metadata_charge_policy = kDontChargeCacheMetadata; std::shared_ptr cache = NewLRUCache(co); // A write buffer manager of size 50MB std::unique_ptr wbf( new WriteBufferManager(50 * 1024 * 1024, cache)); // Allocate 333KB will allocate 512KB wbf->ReserveMem(333 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 2 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 2 * 256 * 1024 + 10000); // 2 dummy entries are added for size 333 kb. ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 2 * kSizeDummyEntry); // Allocate another 512KB wbf->ReserveMem(512 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + 10000); // 2 more dummy entries are added for size 512. ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry); // Allocate another 10MB wbf->ReserveMem(10 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 11 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 11 * 1024 * 1024 + 10000); // 40 more entries are added for size 10 * 1024 * 1024. ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); // Free 1MB will not cause any change in cache cost wbf->FreeMem(1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 11 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 11 * 1024 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_FALSE(wbf->ShouldFlush()); // Allocate another 41MB wbf->ReserveMem(41 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry); ASSERT_TRUE(wbf->ShouldFlush()); ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(20 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry); // Still need flush as the hard limit hits ASSERT_TRUE(wbf->ShouldFlush()); // Free 20MB will releae 256KB from cache wbf->FreeMem(20 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 256 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 203 * kSizeDummyEntry); ASSERT_FALSE(wbf->ShouldFlush()); // Every free will release 256KB if still not hit 3/4 wbf->FreeMem(16 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 2 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 2 * 256 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 202 * kSizeDummyEntry); wbf->FreeMem(16 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 201 * kSizeDummyEntry); // Reserve 512KB will not cause any change in cache cost wbf->ReserveMem(512 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 201 * kSizeDummyEntry); wbf->FreeMem(16 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 4 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 4 * 256 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 200 * kSizeDummyEntry); // Destory write buffer manger should free everything wbf.reset(); ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024); } TEST_F(WriteBufferManagerTest, NoCapCacheCost) { // 1GB cache std::shared_ptr cache = NewLRUCache(1024 * 1024 * 1024, 4); // A write buffer manager of size 256MB std::unique_ptr wbf(new WriteBufferManager(0, cache)); // Allocate 1.5MB will allocate 2MB wbf->ReserveMem(10 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 10 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 10 * 1024 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry); ASSERT_FALSE(wbf->ShouldFlush()); wbf->FreeMem(9 * 1024 * 1024); for (int i = 0; i < 40; i++) { wbf->FreeMem(4 * 1024); } ASSERT_GE(cache->GetPinnedUsage(), 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024 + 10000); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry); } TEST_F(WriteBufferManagerTest, CacheFull) { // 15MB cache size with strict capacity LRUCacheOptions lo; lo.capacity = 12 * 1024 * 1024; lo.num_shard_bits = 0; lo.strict_capacity_limit = true; std::shared_ptr cache = NewLRUCache(lo); std::unique_ptr wbf(new WriteBufferManager(0, cache)); wbf->ReserveMem(10 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry); size_t prev_pinned = cache->GetPinnedUsage(); ASSERT_GE(prev_pinned, 10 * 1024 * 1024); // Some insert will fail wbf->ReserveMem(10 * 1024 * 1024); ASSERT_LE(cache->GetPinnedUsage(), 12 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 80 * kSizeDummyEntry); // Increase capacity so next insert will succeed cache->SetCapacity(30 * 1024 * 1024); wbf->ReserveMem(10 * 1024 * 1024); ASSERT_GT(cache->GetPinnedUsage(), 20 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 120 * kSizeDummyEntry); // Gradually release 20 MB for (int i = 0; i < 40; i++) { wbf->FreeMem(512 * 1024); } ASSERT_GE(cache->GetPinnedUsage(), 10 * 1024 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 20 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 95 * kSizeDummyEntry); } #endif // ROCKSDB_LITE } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }