// Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. #include "db/compaction_iterator.h" #include "table/internal_iterator.h" namespace rocksdb { CompactionIterator::CompactionIterator( InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper, SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots, SequenceNumber earliest_write_conflict_snapshot, Env* env, bool expect_valid_internal_key, const Compaction* compaction, const CompactionFilter* compaction_filter, LogBuffer* log_buffer) : input_(input), cmp_(cmp), merge_helper_(merge_helper), snapshots_(snapshots), earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot), env_(env), expect_valid_internal_key_(expect_valid_internal_key), compaction_(compaction), compaction_filter_(compaction_filter), log_buffer_(log_buffer), merge_out_iter_(merge_helper_) { assert(compaction_filter_ == nullptr || compaction_ != nullptr); bottommost_level_ = compaction_ == nullptr ? false : compaction_->bottommost_level(); if (compaction_ != nullptr) { level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0); } if (snapshots_->size() == 0) { // optimize for fast path if there are no snapshots visible_at_tip_ = last_sequence; earliest_snapshot_ = visible_at_tip_; latest_snapshot_ = 0; } else { visible_at_tip_ = 0; earliest_snapshot_ = snapshots_->at(0); latest_snapshot_ = snapshots_->back(); } if (compaction_filter_ != nullptr && compaction_filter_->IgnoreSnapshots()) { ignore_snapshots_ = true; } else { ignore_snapshots_ = false; } } void CompactionIterator::ResetRecordCounts() { iter_stats_.num_record_drop_user = 0; iter_stats_.num_record_drop_hidden = 0; iter_stats_.num_record_drop_obsolete = 0; } void CompactionIterator::SeekToFirst() { NextFromInput(); PrepareOutput(); } void CompactionIterator::Next() { // If there is a merge output, return it before continuing to process the // input. if (merge_out_iter_.Valid()) { merge_out_iter_.Next(); // Check if we returned all records of the merge output. if (merge_out_iter_.Valid()) { key_ = merge_out_iter_.key(); value_ = merge_out_iter_.value(); bool valid_key __attribute__((__unused__)) = ParseInternalKey(key_, &ikey_); // MergeUntil stops when it encounters a corrupt key and does not // include them in the result, so we expect the keys here to be valid. assert(valid_key); // Keep current_key_ in sync. current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type); key_ = current_key_.GetKey(); ikey_.user_key = current_key_.GetUserKey(); valid_ = true; } else { // MergeHelper moves the iterator to the first record after the merged // records, so even though we reached the end of the merge output, we do // not want to advance the iterator. NextFromInput(); } } else { // Only advance the input iterator if there is no merge output and the // iterator is not already at the next record. if (!at_next_) { input_->Next(); } NextFromInput(); } if (valid_) { // Record that we've ouputted a record for the current key. has_outputted_key_ = true; } PrepareOutput(); } void CompactionIterator::NextFromInput() { at_next_ = false; valid_ = false; while (!valid_ && input_->Valid()) { key_ = input_->key(); value_ = input_->value(); iter_stats_.num_input_records++; if (!ParseInternalKey(key_, &ikey_)) { // If `expect_valid_internal_key_` is false, return the corrupted key // and let the caller decide what to do with it. // TODO(noetzli): We should have a more elegant solution for this. if (expect_valid_internal_key_) { assert(!"Corrupted internal key not expected."); status_ = Status::Corruption("Corrupted internal key not expected."); break; } key_ = current_key_.SetKey(key_); has_current_user_key_ = false; current_user_key_sequence_ = kMaxSequenceNumber; current_user_key_snapshot_ = 0; iter_stats_.num_input_corrupt_records++; valid_ = true; break; } // Update input statistics if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion) { iter_stats_.num_input_deletion_records++; } iter_stats_.total_input_raw_key_bytes += key_.size(); iter_stats_.total_input_raw_value_bytes += value_.size(); // Check whether the user key changed. After this if statement current_key_ // is a copy of the current input key (maybe converted to a delete by the // compaction filter). ikey_.user_key is pointing to the copy. if (!has_current_user_key_ || !cmp_->Equal(ikey_.user_key, current_user_key_)) { // First occurrence of this user key key_ = current_key_.SetKey(key_, &ikey_); current_user_key_ = ikey_.user_key; has_current_user_key_ = true; has_outputted_key_ = false; current_user_key_sequence_ = kMaxSequenceNumber; current_user_key_snapshot_ = 0; // apply the compaction filter to the first occurrence of the user key if (compaction_filter_ != nullptr && ikey_.type == kTypeValue && (visible_at_tip_ || ikey_.sequence > latest_snapshot_ || ignore_snapshots_)) { // If the user has specified a compaction filter and the sequence // number is greater than any external snapshot, then invoke the // filter. If the return value of the compaction filter is true, // replace the entry with a deletion marker. bool value_changed = false; bool to_delete = false; compaction_filter_value_.clear(); { StopWatchNano timer(env_, true); to_delete = compaction_filter_->Filter( compaction_->level(), ikey_.user_key, value_, &compaction_filter_value_, &value_changed); iter_stats_.total_filter_time += env_ != nullptr ? timer.ElapsedNanos() : 0; } if (to_delete) { // convert the current key to a delete ikey_.type = kTypeDeletion; current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion); // no value associated with delete value_.clear(); iter_stats_.num_record_drop_user++; } else if (value_changed) { value_ = compaction_filter_value_; } } } else { // Update the current key to reflect the new sequence number/type without // copying the user key. // TODO(rven): Compaction filter does not process keys in this path // Need to have the compaction filter process multiple versions // if we have versions on both sides of a snapshot current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type); key_ = current_key_.GetKey(); ikey_.user_key = current_key_.GetUserKey(); } // If there are no snapshots, then this kv affect visibility at tip. // Otherwise, search though all existing snapshots to find the earliest // snapshot that is affected by this kv. SequenceNumber last_sequence __attribute__((__unused__)) = current_user_key_sequence_; current_user_key_sequence_ = ikey_.sequence; SequenceNumber last_snapshot = current_user_key_snapshot_; SequenceNumber prev_snapshot = 0; // 0 means no previous snapshot current_user_key_snapshot_ = visible_at_tip_ ? visible_at_tip_ : findEarliestVisibleSnapshot( ikey_.sequence, &prev_snapshot); if (clear_and_output_next_key_) { // In the previous iteration we encountered a single delete that we could // not compact out. We will keep this Put, but can drop it's data. // (See Optimization 3, below.) assert(ikey_.type == kTypeValue); assert(current_user_key_snapshot_ == last_snapshot); value_.clear(); valid_ = true; clear_and_output_next_key_ = false; } else if (ikey_.type == kTypeSingleDeletion) { // We can compact out a SingleDelete if: // 1) We encounter the corresponding PUT -OR- we know that this key // doesn't appear past this output level // =AND= // 2) We've already returned a record in this snapshot -OR- // there are no earlier earliest_write_conflict_snapshot. // // Rule 1 is needed for SingleDelete correctness. Rule 2 is needed to // allow Transactions to do write-conflict checking (if we compacted away // all keys, then we wouldn't know that a write happened in this // snapshot). If there is no earlier snapshot, then we know that there // are no active transactions that need to know about any writes. // // Optimization 3: // If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT // true, then we must output a SingleDelete. In this case, we will decide // to also output the PUT. While we are compacting less by outputting the // PUT now, hopefully this will lead to better compaction in the future // when Rule 2 is later true (Ie, We are hoping we can later compact out // both the SingleDelete and the Put, while we couldn't if we only // outputted the SingleDelete now). // In this case, we can save space by removing the PUT's value as it will // never be read. // // Deletes and Merges are not supported on the same key that has a // SingleDelete as it is not possible to correctly do any partial // compaction of such a combination of operations. The result of mixing // those operations for a given key is documented as being undefined. So // we can choose how to handle such a combinations of operations. We will // try to compact out as much as we can in these cases. // The easiest way to process a SingleDelete during iteration is to peek // ahead at the next key. ParsedInternalKey next_ikey; input_->Next(); // Check whether the next key exists, is not corrupt, and is the same key // as the single delete. if (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) && cmp_->Equal(ikey_.user_key, next_ikey.user_key)) { // Check whether the next key belongs to the same snapshot as the // SingleDelete. if (prev_snapshot == 0 || next_ikey.sequence > prev_snapshot) { if (next_ikey.type == kTypeSingleDeletion) { // We encountered two SingleDeletes in a row. This could be due to // unexpected user input. // Skip the first SingleDelete and let the next iteration decide how // to handle the second SingleDelete // First SingleDelete has been skipped since we already called // input_->Next(). ++iter_stats_.num_record_drop_obsolete; } else if ((ikey_.sequence <= earliest_write_conflict_snapshot_) || has_outputted_key_) { // Found a matching value, we can drop the single delete and the // value. It is safe to drop both records since we've already // outputted a key in this snapshot, or there is no earlier // snapshot (Rule 2 above). // Note: it doesn't matter whether the second key is a Put or if it // is an unexpected Merge or Delete. We will compact it out // either way. ++iter_stats_.num_record_drop_hidden; ++iter_stats_.num_record_drop_obsolete; // Already called input_->Next() once. Call it a second time to // skip past the second key. input_->Next(); } else { // Found a matching value, but we cannot drop both keys since // there is an earlier snapshot and we need to leave behind a record // to know that a write happened in this snapshot (Rule 2 above). // Clear the value and output the SingleDelete. (The value will be // outputted on the next iteration.) ++iter_stats_.num_record_drop_hidden; // Setting valid_ to true will output the current SingleDelete valid_ = true; // Set up the Put to be outputted in the next iteration. // (Optimization 3). clear_and_output_next_key_ = true; } } else { // We hit the next snapshot without hitting a put, so the iterator // returns the single delete. valid_ = true; } } else { // We are at the end of the input, could not parse the next key, or hit // the next key. The iterator returns the single delete if the key // possibly exists beyond the current output level. We set // has_current_user_key to false so that if the iterator is at the next // key, we do not compare it again against the previous key at the next // iteration. If the next key is corrupt, we return before the // comparison, so the value of has_current_user_key does not matter. has_current_user_key_ = false; if (compaction_ != nullptr && ikey_.sequence <= earliest_snapshot_ && compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key, &level_ptrs_)) { // Key doesn't exist outside of this range. // Can compact out this SingleDelete. ++iter_stats_.num_record_drop_obsolete; } else { // Output SingleDelete valid_ = true; } } if (valid_) { at_next_ = true; } } else if (last_snapshot == current_user_key_snapshot_) { // If the earliest snapshot is which this key is visible in // is the same as the visibility of a previous instance of the // same key, then this kv is not visible in any snapshot. // Hidden by an newer entry for same user key // TODO: why not > ? // // Note: Dropping this key will not affect TransactionDB write-conflict // checking since there has already been a record returned for this key // in this snapshot. assert(last_sequence >= current_user_key_sequence_); ++iter_stats_.num_record_drop_hidden; // (A) input_->Next(); } else if (compaction_ != nullptr && ikey_.type == kTypeDeletion && ikey_.sequence <= earliest_snapshot_ && compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key, &level_ptrs_)) { // TODO(noetzli): This is the only place where we use compaction_ // (besides the constructor). We should probably get rid of this // dependency and find a way to do similar filtering during flushes. // // For this user key: // (1) there is no data in higher levels // (2) data in lower levels will have larger sequence numbers // (3) data in layers that are being compacted here and have // smaller sequence numbers will be dropped in the next // few iterations of this loop (by rule (A) above). // Therefore this deletion marker is obsolete and can be dropped. // // Note: Dropping this Delete will not affect TransactionDB // write-conflict checking since it is earlier than any snapshot. ++iter_stats_.num_record_drop_obsolete; input_->Next(); } else if (ikey_.type == kTypeMerge) { if (!merge_helper_->HasOperator()) { LogToBuffer(log_buffer_, "Options::merge_operator is null."); status_ = Status::InvalidArgument( "merge_operator is not properly initialized."); return; } // We know the merge type entry is not hidden, otherwise we would // have hit (A) // We encapsulate the merge related state machine in a different // object to minimize change to the existing flow. merge_helper_->MergeUntil(input_, prev_snapshot, bottommost_level_); merge_out_iter_.SeekToFirst(); if (merge_out_iter_.Valid()) { // NOTE: key, value, and ikey_ refer to old entries. // These will be correctly set below. key_ = merge_out_iter_.key(); value_ = merge_out_iter_.value(); bool valid_key __attribute__((__unused__)) = ParseInternalKey(key_, &ikey_); // MergeUntil stops when it encounters a corrupt key and does not // include them in the result, so we expect the keys here to valid. assert(valid_key); // Keep current_key_ in sync. current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type); key_ = current_key_.GetKey(); ikey_.user_key = current_key_.GetUserKey(); valid_ = true; } else { // all merge operands were filtered out. reset the user key, since the // batch consumed by the merge operator should not shadow any keys // coming after the merges has_current_user_key_ = false; } } else { valid_ = true; } } } void CompactionIterator::PrepareOutput() { // Zeroing out the sequence number leads to better compression. // If this is the bottommost level (no files in lower levels) // and the earliest snapshot is larger than this seqno // and the userkey differs from the last userkey in compaction // then we can squash the seqno to zero. // This is safe for TransactionDB write-conflict checking since transactions // only care about sequence number larger than any active snapshots. if (bottommost_level_ && valid_ && ikey_.sequence < earliest_snapshot_ && ikey_.type != kTypeMerge && !cmp_->Equal(compaction_->GetLargestUserKey(), ikey_.user_key)) { assert(ikey_.type != kTypeDeletion && ikey_.type != kTypeSingleDeletion); ikey_.sequence = 0; current_key_.UpdateInternalKey(0, ikey_.type); } } inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot( SequenceNumber in, SequenceNumber* prev_snapshot) { assert(snapshots_->size()); SequenceNumber prev __attribute__((__unused__)) = kMaxSequenceNumber; for (const auto cur : *snapshots_) { assert(prev == kMaxSequenceNumber || prev <= cur); if (cur >= in) { *prev_snapshot = prev == kMaxSequenceNumber ? 0 : prev; return cur; } prev = cur; assert(prev < kMaxSequenceNumber); } *prev_snapshot = prev; return kMaxSequenceNumber; } } // namespace rocksdb