// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(OS_LINUX) #include #include #endif #if defined(LEVELDB_PLATFORM_ANDROID) #include #endif #include "rocksdb/env.h" #include "rocksdb/slice.h" #include "port/port.h" #include "util/coding.h" #include "util/logging.h" #include "util/posix_logger.h" #include "util/random.h" #include #if !defined(TMPFS_MAGIC) #define TMPFS_MAGIC 0x01021994 #endif #if !defined(XFS_SUPER_MAGIC) #define XFS_SUPER_MAGIC 0x58465342 #endif #if !defined(EXT4_SUPER_MAGIC) #define EXT4_SUPER_MAGIC 0xEF53 #endif // This is only set from db_stress.cc and for testing only. // If non-zero, kill at various points in source code with probability 1/this int leveldb_kill_odds = 0; namespace leveldb { namespace { // list of pathnames that are locked static std::set lockedFiles; static port::Mutex mutex_lockedFiles; static Status IOError(const std::string& context, int err_number) { return Status::IOError(context, strerror(err_number)); } #ifdef NDEBUG // empty in release build #define TEST_KILL_RANDOM(leveldb_kill_odds) #else // Kill the process with probablity 1/odds for testing. static void TestKillRandom(int odds, const std::string& srcfile, int srcline) { time_t curtime = time(nullptr); Random r((uint32_t)curtime); assert(odds > 0); bool crash = r.OneIn(odds); if (crash) { fprintf(stdout, "Crashing at %s:%d\n", srcfile.c_str(), srcline); fflush(stdout); kill(getpid(), SIGTERM); } } // To avoid crashing always at some frequently executed codepaths (during // kill random test), use this factor to reduce odds #define REDUCE_ODDS 2 #define REDUCE_ODDS2 4 #define TEST_KILL_RANDOM(leveldb_kill_odds) { \ if (leveldb_kill_odds > 0) { \ TestKillRandom(leveldb_kill_odds, __FILE__, __LINE__); \ } \ } #endif class PosixSequentialFile: public SequentialFile { private: std::string filename_; FILE* file_; int fd_; bool use_os_buffer_; public: PosixSequentialFile(const std::string& fname, FILE* f, const EnvOptions& options) : filename_(fname), file_(f), fd_(fileno(f)), use_os_buffer_(options.use_os_buffer) { } virtual ~PosixSequentialFile() { fclose(file_); } virtual Status Read(size_t n, Slice* result, char* scratch) { Status s; size_t r = fread_unlocked(scratch, 1, n, file_); *result = Slice(scratch, r); if (r < n) { if (feof(file_)) { // We leave status as ok if we hit the end of the file } else { // A partial read with an error: return a non-ok status s = IOError(filename_, errno); } } if (!use_os_buffer_) { // we need to fadvise away the entire range of pages because // we do not want readahead pages to be cached. posix_fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); // free OS pages } return s; } virtual Status Skip(uint64_t n) { if (fseek(file_, n, SEEK_CUR)) { return IOError(filename_, errno); } return Status::OK(); } virtual Status InvalidateCache(size_t offset, size_t length) { // free OS pages int ret = posix_fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); } }; // pread() based random-access class PosixRandomAccessFile: public RandomAccessFile { private: std::string filename_; int fd_; bool use_os_buffer_; public: PosixRandomAccessFile(const std::string& fname, int fd, const EnvOptions& options) : filename_(fname), fd_(fd), use_os_buffer_(options.use_os_buffer) { assert(!options.use_mmap_reads); } virtual ~PosixRandomAccessFile() { close(fd_); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; ssize_t r = pread(fd_, scratch, n, static_cast(offset)); *result = Slice(scratch, (r < 0) ? 0 : r); if (r < 0) { // An error: return a non-ok status s = IOError(filename_, errno); } if (!use_os_buffer_) { // we need to fadvise away the entire range of pages because // we do not want readahead pages to be cached. posix_fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); // free OS pages } return s; } #if defined(OS_LINUX) virtual size_t GetUniqueId(char* id, size_t max_size) const { // TODO: possibly allow this function to handle tighter bounds. if (max_size < kMaxVarint64Length*3) { return 0; } struct stat buf; int result = fstat(fd_, &buf); if (result == -1) { return 0; } long version = 0; result = ioctl(fd_, FS_IOC_GETVERSION, &version); if (result == -1) { return 0; } uint64_t uversion = (uint64_t)version; char* rid = id; rid = EncodeVarint64(rid, buf.st_dev); rid = EncodeVarint64(rid, buf.st_ino); rid = EncodeVarint64(rid, uversion); assert(rid >= id); return static_cast(rid-id); } #endif virtual void Hint(AccessPattern pattern) { switch(pattern) { case NORMAL: posix_fadvise(fd_, 0, 0, POSIX_FADV_NORMAL); break; case RANDOM: posix_fadvise(fd_, 0, 0, POSIX_FADV_RANDOM); break; case SEQUENTIAL: posix_fadvise(fd_, 0, 0, POSIX_FADV_SEQUENTIAL); break; case WILLNEED: posix_fadvise(fd_, 0, 0, POSIX_FADV_WILLNEED); break; case DONTNEED: posix_fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); break; default: assert(false); break; } } virtual Status InvalidateCache(size_t offset, size_t length) { // free OS pages int ret = posix_fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); } }; // mmap() based random-access class PosixMmapReadableFile: public RandomAccessFile { private: int fd_; std::string filename_; void* mmapped_region_; size_t length_; public: // base[0,length-1] contains the mmapped contents of the file. PosixMmapReadableFile(const int fd, const std::string& fname, void* base, size_t length, const EnvOptions& options) : fd_(fd), filename_(fname), mmapped_region_(base), length_(length) { assert(options.use_mmap_reads); assert(options.use_os_buffer); } virtual ~PosixMmapReadableFile() { munmap(mmapped_region_, length_); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; if (offset + n > length_) { *result = Slice(); s = IOError(filename_, EINVAL); } else { *result = Slice(reinterpret_cast(mmapped_region_) + offset, n); } return s; } virtual Status InvalidateCache(size_t offset, size_t length) { // free OS pages int ret = posix_fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); } }; // We preallocate up to an extra megabyte and use memcpy to append new // data to the file. This is safe since we either properly close the // file before reading from it, or for log files, the reading code // knows enough to skip zero suffixes. class PosixMmapFile : public WritableFile { private: std::string filename_; int fd_; size_t page_size_; size_t map_size_; // How much extra memory to map at a time char* base_; // The mapped region char* limit_; // Limit of the mapped region char* dst_; // Where to write next (in range [base_,limit_]) char* last_sync_; // Where have we synced up to uint64_t file_offset_; // Offset of base_ in file // Have we done an munmap of unsynced data? bool pending_sync_; // Roundup x to a multiple of y static size_t Roundup(size_t x, size_t y) { return ((x + y - 1) / y) * y; } size_t TruncateToPageBoundary(size_t s) { s -= (s & (page_size_ - 1)); assert((s % page_size_) == 0); return s; } bool UnmapCurrentRegion() { bool result = true; TEST_KILL_RANDOM(leveldb_kill_odds); if (base_ != nullptr) { if (last_sync_ < limit_) { // Defer syncing this data until next Sync() call, if any pending_sync_ = true; } if (munmap(base_, limit_ - base_) != 0) { result = false; } file_offset_ += limit_ - base_; base_ = nullptr; limit_ = nullptr; last_sync_ = nullptr; dst_ = nullptr; // Increase the amount we map the next time, but capped at 1MB if (map_size_ < (1<<20)) { map_size_ *= 2; } } return result; } Status MapNewRegion() { assert(base_ == nullptr); TEST_KILL_RANDOM(leveldb_kill_odds); int alloc_status = posix_fallocate(fd_, file_offset_, map_size_); if (alloc_status != 0) { return Status::IOError("Error allocating space to file : " + filename_ + "Error : " + strerror(alloc_status)); } TEST_KILL_RANDOM(leveldb_kill_odds); void* ptr = mmap(nullptr, map_size_, PROT_READ | PROT_WRITE, MAP_SHARED, fd_, file_offset_); if (ptr == MAP_FAILED) { return Status::IOError("MMap failed on " + filename_); } TEST_KILL_RANDOM(leveldb_kill_odds); base_ = reinterpret_cast(ptr); limit_ = base_ + map_size_; dst_ = base_; last_sync_ = base_; return Status::OK(); } public: PosixMmapFile(const std::string& fname, int fd, size_t page_size, const EnvOptions& options) : filename_(fname), fd_(fd), page_size_(page_size), map_size_(Roundup(65536, page_size)), base_(nullptr), limit_(nullptr), dst_(nullptr), last_sync_(nullptr), file_offset_(0), pending_sync_(false) { assert((page_size & (page_size - 1)) == 0); assert(options.use_mmap_writes); } ~PosixMmapFile() { if (fd_ >= 0) { PosixMmapFile::Close(); } } virtual Status Append(const Slice& data) { const char* src = data.data(); size_t left = data.size(); TEST_KILL_RANDOM(leveldb_kill_odds * REDUCE_ODDS); PrepareWrite(GetFileSize(), left); while (left > 0) { assert(base_ <= dst_); assert(dst_ <= limit_); size_t avail = limit_ - dst_; if (avail == 0) { if (UnmapCurrentRegion()) { Status s = MapNewRegion(); if (!s.ok()) { return s; } TEST_KILL_RANDOM(leveldb_kill_odds); } } size_t n = (left <= avail) ? left : avail; memcpy(dst_, src, n); dst_ += n; src += n; left -= n; } TEST_KILL_RANDOM(leveldb_kill_odds); return Status::OK(); } virtual Status Close() { Status s; size_t unused = limit_ - dst_; TEST_KILL_RANDOM(leveldb_kill_odds); if (!UnmapCurrentRegion()) { s = IOError(filename_, errno); } else if (unused > 0) { // Trim the extra space at the end of the file if (ftruncate(fd_, file_offset_ - unused) < 0) { s = IOError(filename_, errno); } } TEST_KILL_RANDOM(leveldb_kill_odds); if (close(fd_) < 0) { if (s.ok()) { s = IOError(filename_, errno); } } fd_ = -1; base_ = nullptr; limit_ = nullptr; return s; } virtual Status Flush() { TEST_KILL_RANDOM(leveldb_kill_odds); return Status::OK(); } virtual Status Sync() { Status s; if (pending_sync_) { // Some unmapped data was not synced TEST_KILL_RANDOM(leveldb_kill_odds); pending_sync_ = false; if (fdatasync(fd_) < 0) { s = IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds * REDUCE_ODDS); } if (dst_ > last_sync_) { // Find the beginnings of the pages that contain the first and last // bytes to be synced. size_t p1 = TruncateToPageBoundary(last_sync_ - base_); size_t p2 = TruncateToPageBoundary(dst_ - base_ - 1); last_sync_ = dst_; TEST_KILL_RANDOM(leveldb_kill_odds); if (msync(base_ + p1, p2 - p1 + page_size_, MS_SYNC) < 0) { s = IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds); } return s; } /** * Flush data as well as metadata to stable storage. */ virtual Status Fsync() { if (pending_sync_) { // Some unmapped data was not synced TEST_KILL_RANDOM(leveldb_kill_odds); pending_sync_ = false; if (fsync(fd_) < 0) { return IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds); } // This invocation to Sync will not issue the call to // fdatasync because pending_sync_ has already been cleared. return Sync(); } /** * Get the size of valid data in the file. This will not match the * size that is returned from the filesystem because we use mmap * to extend file by map_size every time. */ virtual uint64_t GetFileSize() { size_t used = dst_ - base_; return file_offset_ + used; } virtual Status InvalidateCache(size_t offset, size_t length) { // free OS pages int ret = posix_fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); } #ifdef OS_LINUX virtual Status Allocate(off_t offset, off_t len) { TEST_KILL_RANDOM(leveldb_kill_odds); if (!fallocate(fd_, FALLOC_FL_KEEP_SIZE, offset, len)) { return Status::OK(); } else { return IOError(filename_, errno); } } #endif }; // Use posix write to write data to a file. class PosixWritableFile : public WritableFile { private: const std::string filename_; int fd_; size_t cursize_; // current size of cached data in buf_ size_t capacity_; // max size of buf_ unique_ptr buf_; // a buffer to cache writes uint64_t filesize_; bool pending_sync_; bool pending_fsync_; uint64_t last_sync_size_; uint64_t bytes_per_sync_; public: PosixWritableFile(const std::string& fname, int fd, size_t capacity, const EnvOptions& options) : filename_(fname), fd_(fd), cursize_(0), capacity_(capacity), buf_(new char[capacity]), filesize_(0), pending_sync_(false), pending_fsync_(false), last_sync_size_(0), bytes_per_sync_(options.bytes_per_sync) { assert(!options.use_mmap_writes); } ~PosixWritableFile() { if (fd_ >= 0) { PosixWritableFile::Close(); } } virtual Status Append(const Slice& data) { char* src = (char *)data.data(); size_t left = data.size(); Status s; pending_sync_ = true; pending_fsync_ = true; TEST_KILL_RANDOM(leveldb_kill_odds * REDUCE_ODDS2); PrepareWrite(GetFileSize(), left); // if there is no space in the cache, then flush if (cursize_ + left > capacity_) { s = Flush(); if (!s.ok()) { return s; } // Increase the buffer size, but capped at 1MB if (capacity_ < (1<<20)) { capacity_ *= 2; buf_.reset(new char[capacity_]); } assert(cursize_ == 0); } // if the write fits into the cache, then write to cache // otherwise do a write() syscall to write to OS buffers. if (cursize_ + left <= capacity_) { memcpy(buf_.get()+cursize_, src, left); cursize_ += left; } else { while (left != 0) { ssize_t done = write(fd_, src, left); if (done < 0) { return IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds); left -= done; src += done; } } filesize_ += data.size(); return Status::OK(); } virtual Status Close() { Status s; s = Flush(); // flush cache to OS if (!s.ok()) { } TEST_KILL_RANDOM(leveldb_kill_odds); if (close(fd_) < 0) { if (s.ok()) { s = IOError(filename_, errno); } } fd_ = -1; return s; } // write out the cached data to the OS cache virtual Status Flush() { TEST_KILL_RANDOM(leveldb_kill_odds * REDUCE_ODDS2); size_t left = cursize_; char* src = buf_.get(); while (left != 0) { ssize_t done = write(fd_, src, left); if (done < 0) { return IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds * REDUCE_ODDS2); left -= done; src += done; } cursize_ = 0; // sync OS cache to disk for every bytes_per_sync_ // TODO: give log file and sst file different options (log // files could be potentially cached in OS for their whole // life time, thus we might not want to flush at all). if (bytes_per_sync_ && filesize_ - last_sync_size_ >= bytes_per_sync_) { RangeSync(last_sync_size_, filesize_ - last_sync_size_); last_sync_size_ = filesize_; } return Status::OK(); } virtual Status Sync() { TEST_KILL_RANDOM(leveldb_kill_odds); if (pending_sync_ && fdatasync(fd_) < 0) { return IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds); pending_sync_ = false; return Status::OK(); } virtual Status Fsync() { TEST_KILL_RANDOM(leveldb_kill_odds); if (pending_fsync_ && fsync(fd_) < 0) { return IOError(filename_, errno); } TEST_KILL_RANDOM(leveldb_kill_odds); pending_fsync_ = false; pending_sync_ = false; return Status::OK(); } virtual uint64_t GetFileSize() { return filesize_; } virtual Status InvalidateCache(size_t offset, size_t length) { // free OS pages int ret = posix_fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); } #ifdef OS_LINUX virtual Status Allocate(off_t offset, off_t len) { TEST_KILL_RANDOM(leveldb_kill_odds); if (!fallocate(fd_, FALLOC_FL_KEEP_SIZE, offset, len)) { return Status::OK(); } else { return IOError(filename_, errno); } } virtual Status RangeSync(off64_t offset, off64_t nbytes) { if (sync_file_range(fd_, offset, nbytes, SYNC_FILE_RANGE_WRITE) == 0) { return Status::OK(); } else { return IOError(filename_, errno); } } #endif }; static int LockOrUnlock(const std::string& fname, int fd, bool lock) { mutex_lockedFiles.Lock(); if (lock) { // If it already exists in the lockedFiles set, then it is already locked, // and fail this lock attempt. Otherwise, insert it into lockedFiles. // This check is needed because fcntl() does not detect lock conflict // if the fcntl is issued by the same thread that earlier acquired // this lock. if (lockedFiles.insert(fname).second == false) { mutex_lockedFiles.Unlock(); errno = ENOLCK; return -1; } } else { // If we are unlocking, then verify that we had locked it earlier, // it should already exist in lockedFiles. Remove it from lockedFiles. if (lockedFiles.erase(fname) != 1) { mutex_lockedFiles.Unlock(); errno = ENOLCK; return -1; } } errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file int value = fcntl(fd, F_SETLK, &f); if (value == -1 && lock) { // if there is an error in locking, then remove the pathname from lockedfiles lockedFiles.erase(fname); } mutex_lockedFiles.Unlock(); return value; } class PosixFileLock : public FileLock { public: int fd_; std::string filename; }; namespace { void PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); exit(1); } } } class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv(){ for (const auto tid : threads_to_join_) { pthread_join(tid, nullptr); } } void SetFD_CLOEXEC(int fd, const EnvOptions* options) { if ((options == nullptr || options->set_fd_cloexec) && fd > 0) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } } virtual Status NewSequentialFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) { result->reset(); FILE* f = fopen(fname.c_str(), "r"); if (f == nullptr) { *result = nullptr; return IOError(fname, errno); } else { int fd = fileno(f); SetFD_CLOEXEC(fd, &options); result->reset(new PosixSequentialFile(fname, f, options)); return Status::OK(); } } virtual Status NewRandomAccessFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) { result->reset(); Status s; int fd = open(fname.c_str(), O_RDONLY); SetFD_CLOEXEC(fd, &options); if (fd < 0) { s = IOError(fname, errno); } else if (options.use_mmap_reads && sizeof(void*) >= 8) { // Use of mmap for random reads has been removed because it // kills performance when storage is fast. // Use mmap when virtual address-space is plentiful. uint64_t size; s = GetFileSize(fname, &size); if (s.ok()) { void* base = mmap(nullptr, size, PROT_READ, MAP_SHARED, fd, 0); if (base != MAP_FAILED) { result->reset(new PosixMmapReadableFile(fd, fname, base, size, options)); } else { s = IOError(fname, errno); } } close(fd); } else { result->reset(new PosixRandomAccessFile(fname, fd, options)); } return s; } virtual Status NewWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) { result->reset(); Status s; const int fd = open(fname.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); if (fd < 0) { s = IOError(fname, errno); } else { SetFD_CLOEXEC(fd, &options); if (options.use_mmap_writes) { if (!checkedDiskForMmap_) { // this will be executed once in the program's lifetime. // do not use mmapWrite on non ext-3/xfs/tmpfs systems. if (!SupportsFastAllocate(fname)) { forceMmapOff = true; } checkedDiskForMmap_ = true; } } if (options.use_mmap_writes && !forceMmapOff) { result->reset(new PosixMmapFile(fname, fd, page_size_, options)); } else { result->reset(new PosixWritableFile(fname, fd, 65536, options)); } } return s; } virtual bool FileExists(const std::string& fname) { return access(fname.c_str(), F_OK) == 0; } virtual Status GetChildren(const std::string& dir, std::vector* result) { result->clear(); DIR* d = opendir(dir.c_str()); if (d == nullptr) { return IOError(dir, errno); } struct dirent* entry; while ((entry = readdir(d)) != nullptr) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) { Status result; if (unlink(fname.c_str()) != 0) { result = IOError(fname, errno); } return result; }; virtual Status CreateDir(const std::string& name) { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = IOError(name, errno); } return result; }; virtual Status CreateDirIfMissing(const std::string& name) { Status result; if (mkdir(name.c_str(), 0755) != 0) { if (errno != EEXIST) { result = IOError(name, errno); } else if (!DirExists(name)) { // Check that name is actually a // directory. // Message is taken from mkdir result = Status::IOError("`"+name+"' exists but is not a directory"); } } return result; }; virtual Status DeleteDir(const std::string& name) { Status result; if (rmdir(name.c_str()) != 0) { result = IOError(name, errno); } return result; }; virtual Status GetFileSize(const std::string& fname, uint64_t* size) { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = IOError(fname, errno); } else { *size = sbuf.st_size; } return s; } virtual Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) { struct stat s; if (stat(fname.c_str(), &s) !=0) { return IOError(fname, errno); } *file_mtime = static_cast(s.st_mtime); return Status::OK(); } virtual Status RenameFile(const std::string& src, const std::string& target) { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = IOError(src, errno); } return result; } virtual Status LockFile(const std::string& fname, FileLock** lock) { *lock = nullptr; Status result; int fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); if (fd < 0) { result = IOError(fname, errno); } else if (LockOrUnlock(fname, fd, true) == -1) { result = IOError("lock " + fname, errno); close(fd); } else { SetFD_CLOEXEC(fd, nullptr); PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; my_lock->filename = fname; *lock = my_lock; } return result; } virtual Status UnlockFile(FileLock* lock) { PosixFileLock* my_lock = reinterpret_cast(lock); Status result; if (LockOrUnlock(my_lock->filename, my_lock->fd_, false) == -1) { result = IOError("unlock", errno); } close(my_lock->fd_); delete my_lock; return result; } virtual void Schedule(void (*function)(void*), void* arg, Priority pri = LOW); virtual void StartThread(void (*function)(void* arg), void* arg); virtual Status GetTestDirectory(std::string* result) { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } static uint64_t gettid() { pthread_t tid = pthread_self(); uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); return thread_id; } virtual Status NewLogger(const std::string& fname, shared_ptr* result) { FILE* f = fopen(fname.c_str(), "w"); if (f == nullptr) { result->reset(); return IOError(fname, errno); } else { int fd = fileno(f); SetFD_CLOEXEC(fd, nullptr); result->reset(new PosixLogger(f, &PosixEnv::gettid)); return Status::OK(); } } virtual uint64_t NowMicros() { struct timeval tv; gettimeofday(&tv, nullptr); return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual uint64_t NowNanos() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return static_cast(ts.tv_sec) * 1000000000 + ts.tv_nsec; } virtual void SleepForMicroseconds(int micros) { usleep(micros); } virtual Status GetHostName(char* name, uint64_t len) { int ret = gethostname(name, len); if (ret < 0) { if (errno == EFAULT || errno == EINVAL) return Status::InvalidArgument(strerror(errno)); else return IOError("GetHostName", errno); } return Status::OK(); } virtual Status GetCurrentTime(int64_t* unix_time) { time_t ret = time(nullptr); if (ret == (time_t) -1) { return IOError("GetCurrentTime", errno); } *unix_time = (int64_t) ret; return Status::OK(); } virtual Status GetAbsolutePath(const std::string& db_path, std::string* output_path) { if (db_path.find('/') == 0) { *output_path = db_path; return Status::OK(); } char the_path[256]; char* ret = getcwd(the_path, 256); if (ret == nullptr) { return Status::IOError(strerror(errno)); } *output_path = ret; return Status::OK(); } // Allow increasing the number of worker threads. virtual void SetBackgroundThreads(int num, Priority pri) { assert(pri >= Priority::LOW && pri <= Priority::HIGH); thread_pools_[pri].SetBackgroundThreads(num); } virtual std::string TimeToString(uint64_t secondsSince1970) { const time_t seconds = (time_t)secondsSince1970; struct tm t; int maxsize = 64; std::string dummy; dummy.reserve(maxsize); dummy.resize(maxsize); char* p = &dummy[0]; localtime_r(&seconds, &t); snprintf(p, maxsize, "%04d/%02d/%02d-%02d:%02d:%02d ", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec); return dummy; } private: bool checkedDiskForMmap_; bool forceMmapOff; // do we override Env options? // Returns true iff the named directory exists and is a directory. virtual bool DirExists(const std::string& dname) { struct stat statbuf; if (stat(dname.c_str(), &statbuf) == 0) { return S_ISDIR(statbuf.st_mode); } return false; // stat() failed return false } bool SupportsFastAllocate(const std::string& path) { struct statfs s; if (statfs(path.c_str(), &s)){ return false; } switch (s.f_type) { case EXT4_SUPER_MAGIC: return true; case XFS_SUPER_MAGIC: return true; case TMPFS_MAGIC: return true; default: return false; } } size_t page_size_; class ThreadPool { public: ThreadPool() : total_threads_limit_(1), bgthreads_(0), queue_(), exit_all_threads_(false) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr)); PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, nullptr)); } ~ThreadPool() { PthreadCall("lock", pthread_mutex_lock(&mu_)); assert(!exit_all_threads_); exit_all_threads_ = true; PthreadCall("signalall", pthread_cond_broadcast(&bgsignal_)); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); for (const auto tid : bgthreads_) { pthread_join(tid, nullptr); } } void BGThread() { while (true) { // Wait until there is an item that is ready to run PthreadCall("lock", pthread_mutex_lock(&mu_)); while (queue_.empty() && !exit_all_threads_) { PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_)); } if (exit_all_threads_) { // mechanism to let BG threads exit safely PthreadCall("unlock", pthread_mutex_unlock(&mu_)); break; } void (*function)(void*) = queue_.front().function; void* arg = queue_.front().arg; queue_.pop_front(); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); (*function)(arg); } } static void* BGThreadWrapper(void* arg) { reinterpret_cast(arg)->BGThread(); return nullptr; } void SetBackgroundThreads(int num) { PthreadCall("lock", pthread_mutex_lock(&mu_)); if (num > total_threads_limit_) { total_threads_limit_ = num; } assert(total_threads_limit_ > 0); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void Schedule(void (*function)(void*), void* arg) { PthreadCall("lock", pthread_mutex_lock(&mu_)); if (exit_all_threads_) { PthreadCall("unlock", pthread_mutex_unlock(&mu_)); return; } // Start background thread if necessary while ((int)bgthreads_.size() < total_threads_limit_) { pthread_t t; PthreadCall( "create thread", pthread_create(&t, nullptr, &ThreadPool::BGThreadWrapper, this)); fprintf(stdout, "Created bg thread 0x%lx\n", t); bgthreads_.push_back(t); } // Add to priority queue queue_.push_back(BGItem()); queue_.back().function = function; queue_.back().arg = arg; // always wake up at least one waiting thread. PthreadCall("signal", pthread_cond_signal(&bgsignal_)); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } private: // Entry per Schedule() call struct BGItem { void* arg; void (*function)(void*); }; typedef std::deque BGQueue; pthread_mutex_t mu_; pthread_cond_t bgsignal_; int total_threads_limit_; std::vector bgthreads_; BGQueue queue_; bool exit_all_threads_; }; std::vector thread_pools_; pthread_mutex_t mu_; std::vector threads_to_join_; }; PosixEnv::PosixEnv() : checkedDiskForMmap_(false), forceMmapOff(false), page_size_(getpagesize()), thread_pools_(Priority::TOTAL) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr)); } void PosixEnv::Schedule(void (*function)(void*), void* arg, Priority pri) { assert(pri >= Priority::LOW && pri <= Priority::HIGH); thread_pools_[pri].Schedule(function, arg); } namespace { struct StartThreadState { void (*user_function)(void*); void* arg; }; } static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast(arg); state->user_function(state->arg); delete state; return nullptr; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; PthreadCall("start thread", pthread_create(&t, nullptr, &StartThreadWrapper, state)); PthreadCall("lock", pthread_mutex_lock(&mu_)); threads_to_join_.push_back(t); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } } // namespace Env* Env::Default() { static PosixEnv default_env; return &default_env; } } // namespace leveldb