// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include "db/dbformat.h" #include "rocksdb/statistics.h" #include "util/statistics.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "rocksdb/cache.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "rocksdb/slice_transform.h" #include "rocksdb/memtablerep.h" #include "table/block.h" #include "table/meta_blocks.h" #include "table/block_based_table_builder.h" #include "table/block_based_table_factory.h" #include "table/block_based_table_reader.h" #include "table/block_builder.h" #include "table/format.h" #include "table/meta_blocks.h" #include "table/plain_table_factory.h" #include "util/random.h" #include "util/testharness.h" #include "util/testutil.h" namespace rocksdb { namespace { // Return reverse of "key". // Used to test non-lexicographic comparators. std::string Reverse(const Slice& key) { auto rev = key.ToString(); std::reverse(rev.begin(), rev.end()); return rev; } class ReverseKeyComparator : public Comparator { public: virtual const char* Name() const { return "rocksdb.ReverseBytewiseComparator"; } virtual int Compare(const Slice& a, const Slice& b) const { return BytewiseComparator()->Compare(Reverse(a), Reverse(b)); } virtual void FindShortestSeparator( std::string* start, const Slice& limit) const { std::string s = Reverse(*start); std::string l = Reverse(limit); BytewiseComparator()->FindShortestSeparator(&s, l); *start = Reverse(s); } virtual void FindShortSuccessor(std::string* key) const { std::string s = Reverse(*key); BytewiseComparator()->FindShortSuccessor(&s); *key = Reverse(s); } }; ReverseKeyComparator reverse_key_comparator; void Increment(const Comparator* cmp, std::string* key) { if (cmp == BytewiseComparator()) { key->push_back('\0'); } else { assert(cmp == &reverse_key_comparator); std::string rev = Reverse(*key); rev.push_back('\0'); *key = Reverse(rev); } } // An STL comparator that uses a Comparator struct STLLessThan { const Comparator* cmp; STLLessThan() : cmp(BytewiseComparator()) { } explicit STLLessThan(const Comparator* c) : cmp(c) { } bool operator()(const std::string& a, const std::string& b) const { return cmp->Compare(Slice(a), Slice(b)) < 0; } }; } // namespace class StringSink: public WritableFile { public: ~StringSink() { } const std::string& contents() const { return contents_; } virtual Status Close() { return Status::OK(); } virtual Status Flush() { return Status::OK(); } virtual Status Sync() { return Status::OK(); } virtual Status Append(const Slice& data) { contents_.append(data.data(), data.size()); return Status::OK(); } private: std::string contents_; }; class StringSource: public RandomAccessFile { public: StringSource(const Slice& contents, uint64_t uniq_id, bool mmap) : contents_(contents.data(), contents.size()), uniq_id_(uniq_id), mmap_(mmap) { } virtual ~StringSource() { } uint64_t Size() const { return contents_.size(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { if (offset > contents_.size()) { return Status::InvalidArgument("invalid Read offset"); } if (offset + n > contents_.size()) { n = contents_.size() - offset; } if (!mmap_) { memcpy(scratch, &contents_[offset], n); *result = Slice(scratch, n); } else { *result = Slice(&contents_[offset], n); } return Status::OK(); } virtual size_t GetUniqueId(char* id, size_t max_size) const { if (max_size < 20) { return 0; } char* rid = id; rid = EncodeVarint64(rid, uniq_id_); rid = EncodeVarint64(rid, 0); return static_cast(rid-id); } private: std::string contents_; uint64_t uniq_id_; bool mmap_; }; typedef std::map KVMap; // Helper class for tests to unify the interface between // BlockBuilder/TableBuilder and Block/Table. class Constructor { public: explicit Constructor(const Comparator* cmp) : data_(STLLessThan(cmp)) {} virtual ~Constructor() { } void Add(const std::string& key, const Slice& value) { data_[key] = value.ToString(); } // Finish constructing the data structure with all the keys that have // been added so far. Returns the keys in sorted order in "*keys" // and stores the key/value pairs in "*kvmap" void Finish(const Options& options, const InternalKeyComparator& internal_comparator, std::vector* keys, KVMap* kvmap) { last_internal_key_ = &internal_comparator; *kvmap = data_; keys->clear(); for (KVMap::const_iterator it = data_.begin(); it != data_.end(); ++it) { keys->push_back(it->first); } data_.clear(); Status s = FinishImpl(options, internal_comparator, *kvmap); ASSERT_TRUE(s.ok()) << s.ToString(); } // Construct the data structure from the data in "data" virtual Status FinishImpl(const Options& options, const InternalKeyComparator& internal_comparator, const KVMap& data) = 0; virtual Iterator* NewIterator() const = 0; virtual const KVMap& data() { return data_; } virtual DB* db() const { return nullptr; } // Overridden in DBConstructor protected: const InternalKeyComparator* last_internal_key_; private: KVMap data_; }; class BlockConstructor: public Constructor { public: explicit BlockConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp), block_(nullptr) { } ~BlockConstructor() { delete block_; } virtual Status FinishImpl(const Options& options, const InternalKeyComparator& internal_comparator, const KVMap& data) { delete block_; block_ = nullptr; BlockBuilder builder(options, &internal_comparator); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { builder.Add(it->first, it->second); } // Open the block data_ = builder.Finish().ToString(); BlockContents contents; contents.data = data_; contents.cachable = false; contents.heap_allocated = false; block_ = new Block(contents); return Status::OK(); } virtual Iterator* NewIterator() const { return block_->NewIterator(comparator_); } private: const Comparator* comparator_; std::string data_; Block* block_; BlockConstructor(); }; // A helper class that converts internal format keys into user keys class KeyConvertingIterator: public Iterator { public: explicit KeyConvertingIterator(Iterator* iter) : iter_(iter) { } virtual ~KeyConvertingIterator() { delete iter_; } virtual bool Valid() const { return iter_->Valid(); } virtual void Seek(const Slice& target) { ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); iter_->Seek(encoded); } virtual void SeekToFirst() { iter_->SeekToFirst(); } virtual void SeekToLast() { iter_->SeekToLast(); } virtual void Next() { iter_->Next(); } virtual void Prev() { iter_->Prev(); } virtual Slice key() const { assert(Valid()); ParsedInternalKey key; if (!ParseInternalKey(iter_->key(), &key)) { status_ = Status::Corruption("malformed internal key"); return Slice("corrupted key"); } return key.user_key; } virtual Slice value() const { return iter_->value(); } virtual Status status() const { return status_.ok() ? iter_->status() : status_; } private: mutable Status status_; Iterator* iter_; // No copying allowed KeyConvertingIterator(const KeyConvertingIterator&); void operator=(const KeyConvertingIterator&); }; class TableConstructor: public Constructor { public: explicit TableConstructor(const Comparator* cmp, bool convert_to_internal_key = false) : Constructor(cmp), convert_to_internal_key_(convert_to_internal_key) {} ~TableConstructor() { Reset(); } virtual Status FinishImpl(const Options& options, const InternalKeyComparator& internal_comparator, const KVMap& data) { Reset(); sink_.reset(new StringSink()); unique_ptr builder; builder.reset(options.table_factory->NewTableBuilder( options, internal_comparator, sink_.get(), options.compression)); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { if (convert_to_internal_key_) { ParsedInternalKey ikey(it->first, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); builder->Add(encoded, it->second); } else { builder->Add(it->first, it->second); } ASSERT_TRUE(builder->status().ok()); } Status s = builder->Finish(); ASSERT_TRUE(s.ok()) << s.ToString(); ASSERT_EQ(sink_->contents().size(), builder->FileSize()); // Open the table uniq_id_ = cur_uniq_id_++; source_.reset(new StringSource(sink_->contents(), uniq_id_, options.allow_mmap_reads)); return options.table_factory->NewTableReader( options, soptions, internal_comparator, std::move(source_), sink_->contents().size(), &table_reader_); } virtual Iterator* NewIterator() const { Iterator* iter = table_reader_->NewIterator(ReadOptions()); if (convert_to_internal_key_) { return new KeyConvertingIterator(iter); } else { return iter; } } uint64_t ApproximateOffsetOf(const Slice& key) const { return table_reader_->ApproximateOffsetOf(key); } virtual Status Reopen(const Options& options) { source_.reset( new StringSource(sink_->contents(), uniq_id_, options.allow_mmap_reads)); return options.table_factory->NewTableReader( options, soptions, *last_internal_key_, std::move(source_), sink_->contents().size(), &table_reader_); } virtual TableReader* table_reader() { return table_reader_.get(); } private: void Reset() { uniq_id_ = 0; table_reader_.reset(); sink_.reset(); source_.reset(); } bool convert_to_internal_key_; uint64_t uniq_id_; unique_ptr sink_; unique_ptr source_; unique_ptr table_reader_; TableConstructor(); static uint64_t cur_uniq_id_; const EnvOptions soptions; }; uint64_t TableConstructor::cur_uniq_id_ = 1; class MemTableConstructor: public Constructor { public: explicit MemTableConstructor(const Comparator* cmp) : Constructor(cmp), internal_comparator_(cmp), table_factory_(new SkipListFactory) { Options options; options.memtable_factory = table_factory_; memtable_ = new MemTable(internal_comparator_, options); memtable_->Ref(); } ~MemTableConstructor() { delete memtable_->Unref(); } virtual Status FinishImpl(const Options& options, const InternalKeyComparator& internal_comparator, const KVMap& data) { delete memtable_->Unref(); Options memtable_options; memtable_options.memtable_factory = table_factory_; memtable_ = new MemTable(internal_comparator_, memtable_options); memtable_->Ref(); int seq = 1; for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { memtable_->Add(seq, kTypeValue, it->first, it->second); seq++; } return Status::OK(); } virtual Iterator* NewIterator() const { return new KeyConvertingIterator(memtable_->NewIterator()); } private: InternalKeyComparator internal_comparator_; MemTable* memtable_; std::shared_ptr table_factory_; }; class DBConstructor: public Constructor { public: explicit DBConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp) { db_ = nullptr; NewDB(); } ~DBConstructor() { delete db_; } virtual Status FinishImpl(const Options& options, const InternalKeyComparator& internal_comparator, const KVMap& data) { delete db_; db_ = nullptr; NewDB(); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { WriteBatch batch; batch.Put(it->first, it->second); ASSERT_TRUE(db_->Write(WriteOptions(), &batch).ok()); } return Status::OK(); } virtual Iterator* NewIterator() const { return db_->NewIterator(ReadOptions()); } virtual DB* db() const { return db_; } private: void NewDB() { std::string name = test::TmpDir() + "/table_testdb"; Options options; options.comparator = comparator_; Status status = DestroyDB(name, options); ASSERT_TRUE(status.ok()) << status.ToString(); options.create_if_missing = true; options.error_if_exists = true; options.write_buffer_size = 10000; // Something small to force merging status = DB::Open(options, name, &db_); ASSERT_TRUE(status.ok()) << status.ToString(); } const Comparator* comparator_; DB* db_; }; static bool SnappyCompressionSupported() { std::string out; Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::Snappy_Compress(Options().compression_opts, in.data(), in.size(), &out); } static bool ZlibCompressionSupported() { std::string out; Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::Zlib_Compress(Options().compression_opts, in.data(), in.size(), &out); } #ifdef BZIP2 static bool BZip2CompressionSupported() { std::string out; Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::BZip2_Compress(Options().compression_opts, in.data(), in.size(), &out); } #endif enum TestType { BLOCK_BASED_TABLE_TEST, PLAIN_TABLE_SEMI_FIXED_PREFIX, PLAIN_TABLE_FULL_STR_PREFIX, BLOCK_TEST, MEMTABLE_TEST, DB_TEST }; struct TestArgs { TestType type; bool reverse_compare; int restart_interval; CompressionType compression; }; static std::vector GenerateArgList() { std::vector test_args; std::vector test_types = { BLOCK_BASED_TABLE_TEST, PLAIN_TABLE_SEMI_FIXED_PREFIX, PLAIN_TABLE_FULL_STR_PREFIX, BLOCK_TEST, MEMTABLE_TEST, DB_TEST}; std::vector reverse_compare_types = {false, true}; std::vector restart_intervals = {16, 1, 1024}; // Only add compression if it is supported std::vector compression_types = {kNoCompression}; #ifdef SNAPPY if (SnappyCompressionSupported()) { compression_types.push_back(kSnappyCompression); } #endif #ifdef ZLIB if (ZlibCompressionSupported()) { compression_types.push_back(kZlibCompression); } #endif #ifdef BZIP2 if (BZip2CompressionSupported()) { compression_types.push_back(kBZip2Compression); } #endif for (auto test_type : test_types) { for (auto reverse_compare : reverse_compare_types) { if (test_type == PLAIN_TABLE_SEMI_FIXED_PREFIX || test_type == PLAIN_TABLE_FULL_STR_PREFIX) { // Plain table doesn't use restart index or compression. TestArgs one_arg; one_arg.type = test_type; one_arg.reverse_compare = reverse_compare; one_arg.restart_interval = restart_intervals[0]; one_arg.compression = compression_types[0]; test_args.push_back(one_arg); continue; } for (auto restart_interval : restart_intervals) { for (auto compression_type : compression_types) { TestArgs one_arg; one_arg.type = test_type; one_arg.reverse_compare = reverse_compare; one_arg.restart_interval = restart_interval; one_arg.compression = compression_type; test_args.push_back(one_arg); } } } } return test_args; } // In order to make all tests run for plain table format, including // those operating on empty keys, create a new prefix transformer which // return fixed prefix if the slice is not shorter than the prefix length, // and the full slice if it is shorter. class FixedOrLessPrefixTransform : public SliceTransform { private: const size_t prefix_len_; public: explicit FixedOrLessPrefixTransform(size_t prefix_len) : prefix_len_(prefix_len) { } virtual const char* Name() const { return "rocksdb.FixedPrefix"; } virtual Slice Transform(const Slice& src) const { assert(InDomain(src)); if (src.size() < prefix_len_) { return src; } return Slice(src.data(), prefix_len_); } virtual bool InDomain(const Slice& src) const { return true; } virtual bool InRange(const Slice& dst) const { return (dst.size() <= prefix_len_); } }; class Harness { public: Harness() : constructor_(nullptr) { } void Init(const TestArgs& args) { delete constructor_; constructor_ = nullptr; options_ = Options(); options_.block_restart_interval = args.restart_interval; options_.compression = args.compression; // Use shorter block size for tests to exercise block boundary // conditions more. options_.block_size = 256; if (args.reverse_compare) { options_.comparator = &reverse_key_comparator; } internal_comparator_.reset( new test::PlainInternalKeyComparator(options_.comparator)); support_prev_ = true; only_support_prefix_seek_ = false; BlockBasedTableOptions table_options; switch (args.type) { case BLOCK_BASED_TABLE_TEST: table_options.flush_block_policy_factory.reset( new FlushBlockBySizePolicyFactory(options_.block_size, options_.block_size_deviation)); options_.table_factory.reset(new BlockBasedTableFactory(table_options)); constructor_ = new TableConstructor(options_.comparator); break; case PLAIN_TABLE_SEMI_FIXED_PREFIX: support_prev_ = false; only_support_prefix_seek_ = true; options_.prefix_extractor = prefix_transform.get(); options_.allow_mmap_reads = true; options_.table_factory.reset(new PlainTableFactory()); constructor_ = new TableConstructor(options_.comparator, true); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case PLAIN_TABLE_FULL_STR_PREFIX: support_prev_ = false; only_support_prefix_seek_ = true; options_.prefix_extractor = noop_transform.get(); options_.allow_mmap_reads = true; options_.table_factory.reset(new PlainTableFactory()); constructor_ = new TableConstructor(options_.comparator, true); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case BLOCK_TEST: constructor_ = new BlockConstructor(options_.comparator); break; case MEMTABLE_TEST: constructor_ = new MemTableConstructor(options_.comparator); break; case DB_TEST: constructor_ = new DBConstructor(options_.comparator); break; } } ~Harness() { delete constructor_; } void Add(const std::string& key, const std::string& value) { constructor_->Add(key, value); } void Test(Random* rnd) { std::vector keys; KVMap data; constructor_->Finish(options_, *internal_comparator_, &keys, &data); TestForwardScan(keys, data); if (support_prev_) { TestBackwardScan(keys, data); } TestRandomAccess(rnd, keys, data); } void TestForwardScan(const std::vector& keys, const KVMap& data) { Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToFirst(); for (KVMap::const_iterator model_iter = data.begin(); model_iter != data.end(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Next(); } ASSERT_TRUE(!iter->Valid()); delete iter; } void TestBackwardScan(const std::vector& keys, const KVMap& data) { Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToLast(); for (KVMap::const_reverse_iterator model_iter = data.rbegin(); model_iter != data.rend(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Prev(); } ASSERT_TRUE(!iter->Valid()); delete iter; } void TestRandomAccess(Random* rnd, const std::vector& keys, const KVMap& data) { static const bool kVerbose = false; Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); KVMap::const_iterator model_iter = data.begin(); if (kVerbose) fprintf(stderr, "---\n"); for (int i = 0; i < 200; i++) { const int toss = rnd->Uniform(support_prev_ ? 5 : 3); switch (toss) { case 0: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Next\n"); iter->Next(); ++model_iter; ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 1: { if (kVerbose) fprintf(stderr, "SeekToFirst\n"); iter->SeekToFirst(); model_iter = data.begin(); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 2: { std::string key = PickRandomKey(rnd, keys); model_iter = data.lower_bound(key); if (kVerbose) fprintf(stderr, "Seek '%s'\n", EscapeString(key).c_str()); iter->Seek(Slice(key)); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 3: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Prev\n"); iter->Prev(); if (model_iter == data.begin()) { model_iter = data.end(); // Wrap around to invalid value } else { --model_iter; } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 4: { if (kVerbose) fprintf(stderr, "SeekToLast\n"); iter->SeekToLast(); if (keys.empty()) { model_iter = data.end(); } else { std::string last = data.rbegin()->first; model_iter = data.lower_bound(last); } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } } } delete iter; } std::string ToString(const KVMap& data, const KVMap::const_iterator& it) { if (it == data.end()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const KVMap& data, const KVMap::const_reverse_iterator& it) { if (it == data.rend()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const Iterator* it) { if (!it->Valid()) { return "END"; } else { return "'" + it->key().ToString() + "->" + it->value().ToString() + "'"; } } std::string PickRandomKey(Random* rnd, const std::vector& keys) { if (keys.empty()) { return "foo"; } else { const int index = rnd->Uniform(keys.size()); std::string result = keys[index]; switch (rnd->Uniform(support_prev_ ? 3 : 1)) { case 0: // Return an existing key break; case 1: { // Attempt to return something smaller than an existing key if (result.size() > 0 && result[result.size() - 1] > '\0' && (!only_support_prefix_seek_ || options_.prefix_extractor->Transform(result).size() < result.size())) { result[result.size() - 1]--; } break; } case 2: { // Return something larger than an existing key Increment(options_.comparator, &result); break; } } return result; } } // Returns nullptr if not running against a DB DB* db() const { return constructor_->db(); } private: Options options_ = Options(); Constructor* constructor_; bool support_prev_; bool only_support_prefix_seek_; shared_ptr internal_comparator_; static std::unique_ptr noop_transform; static std::unique_ptr prefix_transform; }; std::unique_ptr Harness::noop_transform( NewNoopTransform()); std::unique_ptr Harness::prefix_transform( new FixedOrLessPrefixTransform(2)); static bool Between(uint64_t val, uint64_t low, uint64_t high) { bool result = (val >= low) && (val <= high); if (!result) { fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n", (unsigned long long)(val), (unsigned long long)(low), (unsigned long long)(high)); } return result; } // Tests against all kinds of tables class TableTest { public: const InternalKeyComparator& GetPlainInternalComparator( const Comparator* comp) { if (!plain_internal_comparator) { plain_internal_comparator.reset( new test::PlainInternalKeyComparator(comp)); } return *plain_internal_comparator; } private: std::unique_ptr plain_internal_comparator; }; class GeneralTableTest : public TableTest {}; class BlockBasedTableTest : public TableTest {}; class PlainTableTest : public TableTest {}; // This test include all the basic checks except those for index size and block // size, which will be conducted in separated unit tests. TEST(BlockBasedTableTest, BasicBlockBasedTableProperties) { TableConstructor c(BytewiseComparator()); c.Add("a1", "val1"); c.Add("b2", "val2"); c.Add("c3", "val3"); c.Add("d4", "val4"); c.Add("e5", "val5"); c.Add("f6", "val6"); c.Add("g7", "val7"); c.Add("h8", "val8"); c.Add("j9", "val9"); std::vector keys; KVMap kvmap; Options options; options.compression = kNoCompression; options.block_restart_interval = 1; c.Finish(options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto& props = *c.table_reader()->GetTableProperties(); ASSERT_EQ(kvmap.size(), props.num_entries); auto raw_key_size = kvmap.size() * 2ul; auto raw_value_size = kvmap.size() * 4ul; ASSERT_EQ(raw_key_size, props.raw_key_size); ASSERT_EQ(raw_value_size, props.raw_value_size); ASSERT_EQ(1ul, props.num_data_blocks); ASSERT_EQ("", props.filter_policy_name); // no filter policy is used // Verify data size. BlockBuilder block_builder(options, options.comparator); for (const auto& item : kvmap) { block_builder.Add(item.first, item.second); } Slice content = block_builder.Finish(); ASSERT_EQ(content.size() + kBlockTrailerSize, props.data_size); } TEST(BlockBasedTableTest, FilterPolicyNameProperties) { TableConstructor c(BytewiseComparator()); c.Add("a1", "val1"); std::vector keys; KVMap kvmap; Options options; std::unique_ptr filter_policy(NewBloomFilterPolicy(10)); options.filter_policy = filter_policy.get(); c.Finish(options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto& props = *c.table_reader()->GetTableProperties(); ASSERT_EQ("rocksdb.BuiltinBloomFilter", props.filter_policy_name); } static std::string RandomString(Random* rnd, int len) { std::string r; test::RandomString(rnd, len, &r); return r; } // It's very hard to figure out the index block size of a block accurately. // To make sure we get the index size, we just make sure as key number // grows, the filter block size also grows. TEST(BlockBasedTableTest, IndexSizeStat) { uint64_t last_index_size = 0; // we need to use random keys since the pure human readable texts // may be well compressed, resulting insignifcant change of index // block size. Random rnd(test::RandomSeed()); std::vector keys; for (int i = 0; i < 100; ++i) { keys.push_back(RandomString(&rnd, 10000)); } // Each time we load one more key to the table. the table index block // size is expected to be larger than last time's. for (size_t i = 1; i < keys.size(); ++i) { TableConstructor c(BytewiseComparator()); for (size_t j = 0; j < i; ++j) { c.Add(keys[j], "val"); } std::vector ks; KVMap kvmap; Options options; options.compression = kNoCompression; options.block_restart_interval = 1; c.Finish(options, GetPlainInternalComparator(options.comparator), &ks, &kvmap); auto index_size = c.table_reader()->GetTableProperties()->index_size; ASSERT_GT(index_size, last_index_size); last_index_size = index_size; } } TEST(BlockBasedTableTest, NumBlockStat) { Random rnd(test::RandomSeed()); TableConstructor c(BytewiseComparator()); Options options; options.compression = kNoCompression; options.block_restart_interval = 1; options.block_size = 1000; for (int i = 0; i < 10; ++i) { // the key/val are slightly smaller than block size, so that each block // holds roughly one key/value pair. c.Add(RandomString(&rnd, 900), "val"); } std::vector ks; KVMap kvmap; c.Finish(options, GetPlainInternalComparator(options.comparator), &ks, &kvmap); ASSERT_EQ(kvmap.size(), c.table_reader()->GetTableProperties()->num_data_blocks); } class BlockCacheProperties { public: explicit BlockCacheProperties(Statistics* statistics) { block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_MISS); block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_HIT); index_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS); index_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT); data_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_DATA_MISS); data_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_DATA_HIT); } // Check if the fetched props matches the expected ones. void AssertEqual(int64_t index_block_cache_miss, int64_t index_block_cache_hit, int64_t data_block_cache_miss, int64_t data_block_cache_hit) const { ASSERT_EQ(index_block_cache_miss, this->index_block_cache_miss); ASSERT_EQ(index_block_cache_hit, this->index_block_cache_hit); ASSERT_EQ(data_block_cache_miss, this->data_block_cache_miss); ASSERT_EQ(data_block_cache_hit, this->data_block_cache_hit); ASSERT_EQ(index_block_cache_miss + data_block_cache_miss, this->block_cache_miss); ASSERT_EQ(index_block_cache_hit + data_block_cache_hit, this->block_cache_hit); } private: int64_t block_cache_miss = 0; int64_t block_cache_hit = 0; int64_t index_block_cache_miss = 0; int64_t index_block_cache_hit = 0; int64_t data_block_cache_miss = 0; int64_t data_block_cache_hit = 0; }; TEST(BlockBasedTableTest, BlockCacheTest) { // -- Table construction Options options; options.create_if_missing = true; options.statistics = CreateDBStatistics(); options.block_cache = NewLRUCache(1024); // Enable the cache for index/filter blocks BlockBasedTableOptions table_options; table_options.cache_index_and_filter_blocks = true; options.table_factory.reset(new BlockBasedTableFactory(table_options)); std::vector keys; KVMap kvmap; TableConstructor c(BytewiseComparator()); c.Add("key", "value"); c.Finish(options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); // -- PART 1: Open with regular block cache. // Since block_cache is disabled, no cache activities will be involved. unique_ptr iter; // At first, no block will be accessed. { BlockCacheProperties props(options.statistics.get()); // index will be added to block cache. props.AssertEqual(1, // index block miss 0, 0, 0); } // Only index block will be accessed { iter.reset(c.NewIterator()); BlockCacheProperties props(options.statistics.get()); // NOTE: to help better highlight the "detla" of each ticker, I use // + to indicate the increment of changed // value; other numbers remain the same. props.AssertEqual(1, 0 + 1, // index block hit 0, 0); } // Only data block will be accessed { iter->SeekToFirst(); BlockCacheProperties props(options.statistics.get()); props.AssertEqual(1, 1, 0 + 1, // data block miss 0); } // Data block will be in cache { iter.reset(c.NewIterator()); iter->SeekToFirst(); BlockCacheProperties props(options.statistics.get()); props.AssertEqual(1, 1 + 1, /* index block hit */ 1, 0 + 1 /* data block hit */); } // release the iterator so that the block cache can reset correctly. iter.reset(); // -- PART 2: Open without block cache options.block_cache.reset(); options.statistics = CreateDBStatistics(); // reset the stats c.Reopen(options); { iter.reset(c.NewIterator()); iter->SeekToFirst(); ASSERT_EQ("key", iter->key().ToString()); BlockCacheProperties props(options.statistics.get()); // Nothing is affected at all props.AssertEqual(0, 0, 0, 0); } // -- PART 3: Open with very small block cache // In this test, no block will ever get hit since the block cache is // too small to fit even one entry. options.block_cache = NewLRUCache(1); c.Reopen(options); { BlockCacheProperties props(options.statistics.get()); props.AssertEqual(1, // index block miss 0, 0, 0); } { // Both index and data block get accessed. // It first cache index block then data block. But since the cache size // is only 1, index block will be purged after data block is inserted. iter.reset(c.NewIterator()); BlockCacheProperties props(options.statistics.get()); props.AssertEqual(1 + 1, // index block miss 0, 0, // data block miss 0); } { // SeekToFirst() accesses data block. With similar reason, we expect data // block's cache miss. iter->SeekToFirst(); BlockCacheProperties props(options.statistics.get()); props.AssertEqual(2, 0, 0 + 1, // data block miss 0); } } TEST(BlockBasedTableTest, BlockCacheLeak) { // Check that when we reopen a table we don't lose access to blocks already // in the cache. This test checks whether the Table actually makes use of the // unique ID from the file. Options opt; unique_ptr ikc; ikc.reset(new test::PlainInternalKeyComparator(opt.comparator)); opt.block_size = 1024; opt.compression = kNoCompression; opt.block_cache = NewLRUCache(16 * 1024 * 1024); // big enough so we don't ever // lose cached values. TableConstructor c(BytewiseComparator()); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; KVMap kvmap; c.Finish(opt, *ikc, &keys, &kvmap); unique_ptr iter(c.NewIterator()); iter->SeekToFirst(); while (iter->Valid()) { iter->key(); iter->value(); iter->Next(); } ASSERT_OK(iter->status()); ASSERT_OK(c.Reopen(opt)); auto table_reader = dynamic_cast(c.table_reader()); for (const std::string& key : keys) { ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key)); } } extern const uint64_t kPlainTableMagicNumber; TEST(PlainTableTest, BasicPlainTableProperties) { PlainTableFactory factory(8, 8, 0); StringSink sink; Options options; InternalKeyComparator ikc(options.comparator); std::unique_ptr builder( factory.NewTableBuilder(options, ikc, &sink, kNoCompression)); for (char c = 'a'; c <= 'z'; ++c) { std::string key(8, c); key.append("\1 "); // PlainTable expects internal key structure std::string value(28, c + 42); builder->Add(key, value); } ASSERT_OK(builder->Finish()); StringSource source(sink.contents(), 72242, true); TableProperties* props = nullptr; std::unique_ptr props_guard; auto s = ReadTableProperties(&source, sink.contents().size(), kPlainTableMagicNumber, Env::Default(), nullptr, &props); ASSERT_OK(s); ASSERT_EQ(0ul, props->index_size); ASSERT_EQ(0ul, props->filter_size); ASSERT_EQ(16ul * 26, props->raw_key_size); ASSERT_EQ(28ul * 26, props->raw_value_size); ASSERT_EQ(26ul, props->num_entries); ASSERT_EQ(1ul, props->num_data_blocks); } TEST(GeneralTableTest, ApproximateOffsetOfPlain) { TableConstructor c(BytewiseComparator()); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; KVMap kvmap; Options options; test::PlainInternalKeyComparator internal_comparator(options.comparator); options.block_size = 1024; options.compression = kNoCompression; c.Finish(options, internal_comparator, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000)); } static void DoCompressionTest(CompressionType comp) { Random rnd(301); TableConstructor c(BytewiseComparator()); std::string tmp; c.Add("k01", "hello"); c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); c.Add("k03", "hello3"); c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); std::vector keys; KVMap kvmap; Options options; test::PlainInternalKeyComparator ikc(options.comparator); options.block_size = 1024; options.compression = comp; c.Finish(options, ikc, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6100)); } TEST(GeneralTableTest, ApproximateOffsetOfCompressed) { CompressionType compression_state[2]; int valid = 0; if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping snappy compression tests\n"); } else { compression_state[valid] = kSnappyCompression; valid++; } if (!ZlibCompressionSupported()) { fprintf(stderr, "skipping zlib compression tests\n"); } else { compression_state[valid] = kZlibCompression; valid++; } for (int i = 0; i < valid; i++) { DoCompressionTest(compression_state[i]); } } TEST(Harness, Randomized) { std::vector args = GenerateArgList(); for (unsigned int i = 0; i < args.size(); i++) { Init(args[i]); Random rnd(test::RandomSeed() + 5); for (int num_entries = 0; num_entries < 2000; num_entries += (num_entries < 50 ? 1 : 200)) { if ((num_entries % 10) == 0) { fprintf(stderr, "case %d of %d: num_entries = %d\n", (i + 1), static_cast(args.size()), num_entries); } for (int e = 0; e < num_entries; e++) { std::string v; Add(test::RandomKey(&rnd, rnd.Skewed(4)), test::RandomString(&rnd, rnd.Skewed(5), &v).ToString()); } Test(&rnd); } } } TEST(Harness, RandomizedLongDB) { Random rnd(test::RandomSeed()); TestArgs args = { DB_TEST, false, 16, kNoCompression }; Init(args); int num_entries = 100000; for (int e = 0; e < num_entries; e++) { std::string v; Add(test::RandomKey(&rnd, rnd.Skewed(4)), test::RandomString(&rnd, rnd.Skewed(5), &v).ToString()); } Test(&rnd); // We must have created enough data to force merging int files = 0; for (int level = 0; level < db()->NumberLevels(); level++) { std::string value; char name[100]; snprintf(name, sizeof(name), "rocksdb.num-files-at-level%d", level); ASSERT_TRUE(db()->GetProperty(name, &value)); files += atoi(value.c_str()); } ASSERT_GT(files, 0); } class MemTableTest { }; TEST(MemTableTest, Simple) { InternalKeyComparator cmp(BytewiseComparator()); auto table_factory = std::make_shared(); Options options; options.memtable_factory = table_factory; MemTable* memtable = new MemTable(cmp, options); memtable->Ref(); WriteBatch batch; WriteBatchInternal::SetSequence(&batch, 100); batch.Put(std::string("k1"), std::string("v1")); batch.Put(std::string("k2"), std::string("v2")); batch.Put(std::string("k3"), std::string("v3")); batch.Put(std::string("largekey"), std::string("vlarge")); ASSERT_TRUE(WriteBatchInternal::InsertInto(&batch, memtable, &options).ok()); Iterator* iter = memtable->NewIterator(); iter->SeekToFirst(); while (iter->Valid()) { fprintf(stderr, "key: '%s' -> '%s'\n", iter->key().ToString().c_str(), iter->value().ToString().c_str()); iter->Next(); } delete iter; delete memtable->Unref(); } // Test the empty key TEST(Harness, SimpleEmptyKey) { auto args = GenerateArgList(); for (const auto& arg : args) { Init(arg); Random rnd(test::RandomSeed() + 1); Add("", "v"); Test(&rnd); } } TEST(Harness, SimpleSingle) { auto args = GenerateArgList(); for (const auto& arg : args) { Init(arg); Random rnd(test::RandomSeed() + 2); Add("abc", "v"); Test(&rnd); } } TEST(Harness, SimpleMulti) { auto args = GenerateArgList(); for (const auto& arg : args) { Init(arg); Random rnd(test::RandomSeed() + 3); Add("abc", "v"); Add("abcd", "v"); Add("ac", "v2"); Test(&rnd); } } TEST(Harness, SimpleSpecialKey) { auto args = GenerateArgList(); for (const auto& arg : args) { Init(arg); Random rnd(test::RandomSeed() + 4); Add("\xff\xff", "v3"); Test(&rnd); } } } // namespace rocksdb int main(int argc, char** argv) { return rocksdb::test::RunAllTests(); }