// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_test_util.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/concurrent_task_limiter.h" #include "rocksdb/experimental.h" #include "rocksdb/utilities/convenience.h" #include "test_util/fault_injection_test_env.h" #include "test_util/sync_point.h" #include "util/concurrent_task_limiter_impl.h" namespace rocksdb { // SYNC_POINT is not supported in released Windows mode. #if !defined(ROCKSDB_LITE) class DBCompactionTest : public DBTestBase { public: DBCompactionTest() : DBTestBase("/db_compaction_test") {} }; class DBCompactionTestWithParam : public DBTestBase, public testing::WithParamInterface> { public: DBCompactionTestWithParam() : DBTestBase("/db_compaction_test") { max_subcompactions_ = std::get<0>(GetParam()); exclusive_manual_compaction_ = std::get<1>(GetParam()); } // Required if inheriting from testing::WithParamInterface<> static void SetUpTestCase() {} static void TearDownTestCase() {} uint32_t max_subcompactions_; bool exclusive_manual_compaction_; }; class DBCompactionDirectIOTest : public DBCompactionTest, public ::testing::WithParamInterface { public: DBCompactionDirectIOTest() : DBCompactionTest() {} }; namespace { class FlushedFileCollector : public EventListener { public: FlushedFileCollector() {} ~FlushedFileCollector() override {} void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override { std::lock_guard lock(mutex_); flushed_files_.push_back(info.file_path); } std::vector GetFlushedFiles() { std::lock_guard lock(mutex_); std::vector result; for (auto fname : flushed_files_) { result.push_back(fname); } return result; } void ClearFlushedFiles() { flushed_files_.clear(); } private: std::vector flushed_files_; std::mutex mutex_; }; class CompactionStatsCollector : public EventListener { public: CompactionStatsCollector() : compaction_completed_(static_cast(CompactionReason::kNumOfReasons)) { for (auto& v : compaction_completed_) { v.store(0); } } ~CompactionStatsCollector() override {} void OnCompactionCompleted(DB* /* db */, const CompactionJobInfo& info) override { int k = static_cast(info.compaction_reason); int num_of_reasons = static_cast(CompactionReason::kNumOfReasons); assert(k >= 0 && k < num_of_reasons); compaction_completed_[k]++; } void OnExternalFileIngested( DB* /* db */, const ExternalFileIngestionInfo& /* info */) override { int k = static_cast(CompactionReason::kExternalSstIngestion); compaction_completed_[k]++; } void OnFlushCompleted(DB* /* db */, const FlushJobInfo& /* info */) override { int k = static_cast(CompactionReason::kFlush); compaction_completed_[k]++; } int NumberOfCompactions(CompactionReason reason) const { int num_of_reasons = static_cast(CompactionReason::kNumOfReasons); int k = static_cast(reason); assert(k >= 0 && k < num_of_reasons); return compaction_completed_.at(k).load(); } private: std::vector> compaction_completed_; }; class SstStatsCollector : public EventListener { public: SstStatsCollector() : num_ssts_creation_started_(0) {} void OnTableFileCreationStarted( const TableFileCreationBriefInfo& /* info */) override { ++num_ssts_creation_started_; } int num_ssts_creation_started() { return num_ssts_creation_started_; } private: std::atomic num_ssts_creation_started_; }; static const int kCDTValueSize = 1000; static const int kCDTKeysPerBuffer = 4; static const int kCDTNumLevels = 8; Options DeletionTriggerOptions(Options options) { options.compression = kNoCompression; options.write_buffer_size = kCDTKeysPerBuffer * (kCDTValueSize + 24); options.min_write_buffer_number_to_merge = 1; options.max_write_buffer_number_to_maintain = 0; options.num_levels = kCDTNumLevels; options.level0_file_num_compaction_trigger = 1; options.target_file_size_base = options.write_buffer_size * 2; options.target_file_size_multiplier = 2; options.max_bytes_for_level_base = options.target_file_size_base * options.target_file_size_multiplier; options.max_bytes_for_level_multiplier = 2; options.disable_auto_compactions = false; return options; } bool HaveOverlappingKeyRanges( const Comparator* c, const SstFileMetaData& a, const SstFileMetaData& b) { if (c->Compare(a.smallestkey, b.smallestkey) >= 0) { if (c->Compare(a.smallestkey, b.largestkey) <= 0) { // b.smallestkey <= a.smallestkey <= b.largestkey return true; } } else if (c->Compare(a.largestkey, b.smallestkey) >= 0) { // a.smallestkey < b.smallestkey <= a.largestkey return true; } if (c->Compare(a.largestkey, b.largestkey) <= 0) { if (c->Compare(a.largestkey, b.smallestkey) >= 0) { // b.smallestkey <= a.largestkey <= b.largestkey return true; } } else if (c->Compare(a.smallestkey, b.largestkey) <= 0) { // a.smallestkey <= b.largestkey < a.largestkey return true; } return false; } // Identifies all files between level "min_level" and "max_level" // which has overlapping key range with "input_file_meta". void GetOverlappingFileNumbersForLevelCompaction( const ColumnFamilyMetaData& cf_meta, const Comparator* comparator, int min_level, int max_level, const SstFileMetaData* input_file_meta, std::set* overlapping_file_names) { std::set overlapping_files; overlapping_files.insert(input_file_meta); for (int m = min_level; m <= max_level; ++m) { for (auto& file : cf_meta.levels[m].files) { for (auto* included_file : overlapping_files) { if (HaveOverlappingKeyRanges( comparator, *included_file, file)) { overlapping_files.insert(&file); overlapping_file_names->insert(file.name); break; } } } } } void VerifyCompactionResult( const ColumnFamilyMetaData& cf_meta, const std::set& overlapping_file_numbers) { #ifndef NDEBUG for (auto& level : cf_meta.levels) { for (auto& file : level.files) { assert(overlapping_file_numbers.find(file.name) == overlapping_file_numbers.end()); } } #endif } /* * Verifies compaction stats of cfd are valid. * * For each level of cfd, its compaction stats are valid if * 1) sum(stat.counts) == stat.count, and * 2) stat.counts[i] == collector.NumberOfCompactions(i) */ void VerifyCompactionStats(ColumnFamilyData& cfd, const CompactionStatsCollector& collector) { #ifndef NDEBUG InternalStats* internal_stats_ptr = cfd.internal_stats(); ASSERT_TRUE(internal_stats_ptr != nullptr); const std::vector& comp_stats = internal_stats_ptr->TEST_GetCompactionStats(); const int num_of_reasons = static_cast(CompactionReason::kNumOfReasons); std::vector counts(num_of_reasons, 0); // Count the number of compactions caused by each CompactionReason across // all levels. for (const auto& stat : comp_stats) { int sum = 0; for (int i = 0; i < num_of_reasons; i++) { counts[i] += stat.counts[i]; sum += stat.counts[i]; } ASSERT_EQ(sum, stat.count); } // Verify InternalStats bookkeeping matches that of CompactionStatsCollector, // assuming that all compactions complete. for (int i = 0; i < num_of_reasons; i++) { ASSERT_EQ(collector.NumberOfCompactions(static_cast(i)), counts[i]); } #endif /* NDEBUG */ } const SstFileMetaData* PickFileRandomly( const ColumnFamilyMetaData& cf_meta, Random* rand, int* level = nullptr) { auto file_id = rand->Uniform(static_cast( cf_meta.file_count)) + 1; for (auto& level_meta : cf_meta.levels) { if (file_id <= level_meta.files.size()) { if (level != nullptr) { *level = level_meta.level; } auto result = rand->Uniform(file_id); return &(level_meta.files[result]); } file_id -= static_cast(level_meta.files.size()); } assert(false); return nullptr; } } // anonymous namespace #ifndef ROCKSDB_VALGRIND_RUN // All the TEST_P tests run once with sub_compactions disabled (i.e. // options.max_subcompactions = 1) and once with it enabled TEST_P(DBCompactionTestWithParam, CompactionDeletionTrigger) { for (int tid = 0; tid < 3; ++tid) { uint64_t db_size[2]; Options options = DeletionTriggerOptions(CurrentOptions()); options.max_subcompactions = max_subcompactions_; if (tid == 1) { // the following only disable stats update in DB::Open() // and should not affect the result of this test. options.skip_stats_update_on_db_open = true; } else if (tid == 2) { // third pass with universal compaction options.compaction_style = kCompactionStyleUniversal; options.num_levels = 1; } DestroyAndReopen(options); Random rnd(301); const int kTestSize = kCDTKeysPerBuffer * 1024; std::vector values; for (int k = 0; k < kTestSize; ++k) { values.push_back(RandomString(&rnd, kCDTValueSize)); ASSERT_OK(Put(Key(k), values[k])); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[0] = Size(Key(0), Key(kTestSize - 1)); for (int k = 0; k < kTestSize; ++k) { ASSERT_OK(Delete(Key(k))); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[1] = Size(Key(0), Key(kTestSize - 1)); // must have much smaller db size. ASSERT_GT(db_size[0] / 3, db_size[1]); } } #endif // ROCKSDB_VALGRIND_RUN TEST_P(DBCompactionTestWithParam, CompactionsPreserveDeletes) { // For each options type we test following // - Enable preserve_deletes // - write bunch of keys and deletes // - Set start_seqnum to the beginning; compact; check that keys are present // - rewind start_seqnum way forward; compact; check that keys are gone for (int tid = 0; tid < 3; ++tid) { Options options = DeletionTriggerOptions(CurrentOptions()); options.max_subcompactions = max_subcompactions_; options.preserve_deletes=true; options.num_levels = 2; if (tid == 1) { options.skip_stats_update_on_db_open = true; } else if (tid == 2) { // third pass with universal compaction options.compaction_style = kCompactionStyleUniversal; } DestroyAndReopen(options); Random rnd(301); // highlight the default; all deletes should be preserved SetPreserveDeletesSequenceNumber(0); const int kTestSize = kCDTKeysPerBuffer; std::vector values; for (int k = 0; k < kTestSize; ++k) { values.push_back(RandomString(&rnd, kCDTValueSize)); ASSERT_OK(Put(Key(k), values[k])); } for (int k = 0; k < kTestSize; ++k) { ASSERT_OK(Delete(Key(k))); } // to ensure we tackle all tombstones CompactRangeOptions cro; cro.change_level = true; cro.target_level = 2; cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; dbfull()->TEST_WaitForFlushMemTable(); dbfull()->CompactRange(cro, nullptr, nullptr); // check that normal user iterator doesn't see anything Iterator* db_iter = dbfull()->NewIterator(ReadOptions()); int i = 0; for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) { i++; } ASSERT_EQ(i, 0); delete db_iter; // check that iterator that sees internal keys sees tombstones ReadOptions ro; ro.iter_start_seqnum=1; db_iter = dbfull()->NewIterator(ro); i = 0; for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) { i++; } ASSERT_EQ(i, 4); delete db_iter; // now all deletes should be gone SetPreserveDeletesSequenceNumber(100000000); dbfull()->CompactRange(cro, nullptr, nullptr); db_iter = dbfull()->NewIterator(ro); i = 0; for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) { i++; } ASSERT_EQ(i, 0); delete db_iter; } } TEST_F(DBCompactionTest, SkipStatsUpdateTest) { // This test verify UpdateAccumulatedStats is not on // if options.skip_stats_update_on_db_open = true // The test will need to be updated if the internal behavior changes. Options options = DeletionTriggerOptions(CurrentOptions()); options.env = env_; DestroyAndReopen(options); Random rnd(301); const int kTestSize = kCDTKeysPerBuffer * 512; std::vector values; for (int k = 0; k < kTestSize; ++k) { values.push_back(RandomString(&rnd, kCDTValueSize)); ASSERT_OK(Put(Key(k), values[k])); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); // Reopen the DB with stats-update disabled options.skip_stats_update_on_db_open = true; options.max_open_files = 20; env_->random_file_open_counter_.store(0); Reopen(options); // As stats-update is disabled, we expect a very low number of // random file open. // Note that this number must be changed accordingly if we change // the number of files needed to be opened in the DB::Open process. const int kMaxFileOpenCount = 10; ASSERT_LT(env_->random_file_open_counter_.load(), kMaxFileOpenCount); // Repeat the reopen process, but this time we enable // stats-update. options.skip_stats_update_on_db_open = false; env_->random_file_open_counter_.store(0); Reopen(options); // Since we do a normal stats update on db-open, there // will be more random open files. ASSERT_GT(env_->random_file_open_counter_.load(), kMaxFileOpenCount); } TEST_F(DBCompactionTest, TestTableReaderForCompaction) { Options options = CurrentOptions(); options.env = env_; options.new_table_reader_for_compaction_inputs = true; options.max_open_files = 20; options.level0_file_num_compaction_trigger = 3; DestroyAndReopen(options); Random rnd(301); int num_table_cache_lookup = 0; int num_new_table_reader = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "TableCache::FindTable:0", [&](void* arg) { assert(arg != nullptr); bool no_io = *(reinterpret_cast(arg)); if (!no_io) { // filter out cases for table properties queries. num_table_cache_lookup++; } }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "TableCache::GetTableReader:0", [&](void* /*arg*/) { num_new_table_reader++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); for (int k = 0; k < options.level0_file_num_compaction_trigger; ++k) { ASSERT_OK(Put(Key(k), Key(k))); ASSERT_OK(Put(Key(10 - k), "bar")); if (k < options.level0_file_num_compaction_trigger - 1) { num_table_cache_lookup = 0; Flush(); dbfull()->TEST_WaitForCompact(); // preloading iterator issues one table cache lookup and create // a new table reader, if not preloaded. int old_num_table_cache_lookup = num_table_cache_lookup; ASSERT_GE(num_table_cache_lookup, 1); ASSERT_EQ(num_new_table_reader, 1); num_table_cache_lookup = 0; num_new_table_reader = 0; ASSERT_EQ(Key(k), Get(Key(k))); // lookup iterator from table cache and no need to create a new one. ASSERT_EQ(old_num_table_cache_lookup + num_table_cache_lookup, 2); ASSERT_EQ(num_new_table_reader, 0); } } num_table_cache_lookup = 0; num_new_table_reader = 0; Flush(); dbfull()->TEST_WaitForCompact(); // Preloading iterator issues one table cache lookup and creates // a new table reader. One file is created for flush and one for compaction. // Compaction inputs make no table cache look-up for data/range deletion // iterators // May preload table cache too. ASSERT_GE(num_table_cache_lookup, 2); int old_num_table_cache_lookup2 = num_table_cache_lookup; // Create new iterator for: // (1) 1 for verifying flush results // (2) 3 for compaction input files // (3) 1 for verifying compaction results. ASSERT_EQ(num_new_table_reader, 5); num_table_cache_lookup = 0; num_new_table_reader = 0; ASSERT_EQ(Key(1), Get(Key(1))); ASSERT_EQ(num_table_cache_lookup + old_num_table_cache_lookup2, 3); ASSERT_EQ(num_new_table_reader, 0); num_table_cache_lookup = 0; num_new_table_reader = 0; CompactRangeOptions cro; cro.change_level = true; cro.target_level = 2; cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; db_->CompactRange(cro, nullptr, nullptr); // Only verifying compaction outputs issues one table cache lookup // for both data block and range deletion block). // May preload table cache too. ASSERT_GE(num_table_cache_lookup, 1); old_num_table_cache_lookup2 = num_table_cache_lookup; // One for compaction input, one for verifying compaction results. ASSERT_EQ(num_new_table_reader, 2); num_table_cache_lookup = 0; num_new_table_reader = 0; ASSERT_EQ(Key(1), Get(Key(1))); ASSERT_EQ(num_table_cache_lookup + old_num_table_cache_lookup2, 2); ASSERT_EQ(num_new_table_reader, 0); rocksdb::SyncPoint::GetInstance()->ClearAllCallBacks(); } TEST_P(DBCompactionTestWithParam, CompactionDeletionTriggerReopen) { for (int tid = 0; tid < 2; ++tid) { uint64_t db_size[3]; Options options = DeletionTriggerOptions(CurrentOptions()); options.max_subcompactions = max_subcompactions_; if (tid == 1) { // second pass with universal compaction options.compaction_style = kCompactionStyleUniversal; options.num_levels = 1; } DestroyAndReopen(options); Random rnd(301); // round 1 --- insert key/value pairs. const int kTestSize = kCDTKeysPerBuffer * 512; std::vector values; for (int k = 0; k < kTestSize; ++k) { values.push_back(RandomString(&rnd, kCDTValueSize)); ASSERT_OK(Put(Key(k), values[k])); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[0] = Size(Key(0), Key(kTestSize - 1)); Close(); // round 2 --- disable auto-compactions and issue deletions. options.create_if_missing = false; options.disable_auto_compactions = true; Reopen(options); for (int k = 0; k < kTestSize; ++k) { ASSERT_OK(Delete(Key(k))); } db_size[1] = Size(Key(0), Key(kTestSize - 1)); Close(); // as auto_compaction is off, we shouldn't see too much reduce // in db size. ASSERT_LT(db_size[0] / 3, db_size[1]); // round 3 --- reopen db with auto_compaction on and see if // deletion compensation still work. options.disable_auto_compactions = false; Reopen(options); // insert relatively small amount of data to trigger auto compaction. for (int k = 0; k < kTestSize / 10; ++k) { ASSERT_OK(Put(Key(k), values[k])); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[2] = Size(Key(0), Key(kTestSize - 1)); // this time we're expecting significant drop in size. ASSERT_GT(db_size[0] / 3, db_size[2]); } } TEST_F(DBCompactionTest, DisableStatsUpdateReopen) { uint64_t db_size[3]; for (int test = 0; test < 2; ++test) { Options options = DeletionTriggerOptions(CurrentOptions()); options.skip_stats_update_on_db_open = (test == 0); env_->random_read_counter_.Reset(); DestroyAndReopen(options); Random rnd(301); // round 1 --- insert key/value pairs. const int kTestSize = kCDTKeysPerBuffer * 512; std::vector values; for (int k = 0; k < kTestSize; ++k) { values.push_back(RandomString(&rnd, kCDTValueSize)); ASSERT_OK(Put(Key(k), values[k])); } dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[0] = Size(Key(0), Key(kTestSize - 1)); Close(); // round 2 --- disable auto-compactions and issue deletions. options.create_if_missing = false; options.disable_auto_compactions = true; env_->random_read_counter_.Reset(); Reopen(options); for (int k = 0; k < kTestSize; ++k) { ASSERT_OK(Delete(Key(k))); } db_size[1] = Size(Key(0), Key(kTestSize - 1)); Close(); // as auto_compaction is off, we shouldn't see too much reduce // in db size. ASSERT_LT(db_size[0] / 3, db_size[1]); // round 3 --- reopen db with auto_compaction on and see if // deletion compensation still work. options.disable_auto_compactions = false; Reopen(options); dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); db_size[2] = Size(Key(0), Key(kTestSize - 1)); if (options.skip_stats_update_on_db_open) { // If update stats on DB::Open is disable, we don't expect // deletion entries taking effect. ASSERT_LT(db_size[0] / 3, db_size[2]); } else { // Otherwise, we should see a significant drop in db size. ASSERT_GT(db_size[0] / 3, db_size[2]); } } } TEST_P(DBCompactionTestWithParam, CompactionTrigger) { const int kNumKeysPerFile = 100; Options options = CurrentOptions(); options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.num_levels = 3; options.level0_file_num_compaction_trigger = 3; options.max_subcompactions = max_subcompactions_; options.memtable_factory.reset(new SpecialSkipListFactory(kNumKeysPerFile)); CreateAndReopenWithCF({"pikachu"}, options); Random rnd(301); for (int num = 0; num < options.level0_file_num_compaction_trigger - 1; num++) { std::vector values; // Write 100KB (100 values, each 1K) for (int i = 0; i < kNumKeysPerFile; i++) { values.push_back(RandomString(&rnd, 990)); ASSERT_OK(Put(1, Key(i), values[i])); } // put extra key to trigger flush ASSERT_OK(Put(1, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[1]); ASSERT_EQ(NumTableFilesAtLevel(0, 1), num + 1); } // generate one more file in level-0, and should trigger level-0 compaction std::vector values; for (int i = 0; i < kNumKeysPerFile; i++) { values.push_back(RandomString(&rnd, 990)); ASSERT_OK(Put(1, Key(i), values[i])); } // put extra key to trigger flush ASSERT_OK(Put(1, "", "")); dbfull()->TEST_WaitForCompact(); ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0); ASSERT_EQ(NumTableFilesAtLevel(1, 1), 1); } TEST_F(DBCompactionTest, BGCompactionsAllowed) { // Create several column families. Make compaction triggers in all of them // and see number of compactions scheduled to be less than allowed. const int kNumKeysPerFile = 100; Options options = CurrentOptions(); options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.num_levels = 3; // Should speed up compaction when there are 4 files. options.level0_file_num_compaction_trigger = 2; options.level0_slowdown_writes_trigger = 20; options.soft_pending_compaction_bytes_limit = 1 << 30; // Infinitely large options.max_background_compactions = 3; options.memtable_factory.reset(new SpecialSkipListFactory(kNumKeysPerFile)); // Block all threads in thread pool. const size_t kTotalTasks = 4; env_->SetBackgroundThreads(4, Env::LOW); test::SleepingBackgroundTask sleeping_tasks[kTotalTasks]; for (size_t i = 0; i < kTotalTasks; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_tasks[i], Env::Priority::LOW); sleeping_tasks[i].WaitUntilSleeping(); } CreateAndReopenWithCF({"one", "two", "three"}, options); Random rnd(301); for (int cf = 0; cf < 4; cf++) { for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) { for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(cf, Key(i), "")); } // put extra key to trigger flush ASSERT_OK(Put(cf, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[cf]); ASSERT_EQ(NumTableFilesAtLevel(0, cf), num + 1); } } // Now all column families qualify compaction but only one should be // scheduled, because no column family hits speed up condition. ASSERT_EQ(1, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); // Create two more files for one column family, which triggers speed up // condition, three compactions will be scheduled. for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) { for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(2, Key(i), "")); } // put extra key to trigger flush ASSERT_OK(Put(2, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[2]); ASSERT_EQ(options.level0_file_num_compaction_trigger + num + 1, NumTableFilesAtLevel(0, 2)); } ASSERT_EQ(3, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); // Unblock all threads to unblock all compactions. for (size_t i = 0; i < kTotalTasks; i++) { sleeping_tasks[i].WakeUp(); sleeping_tasks[i].WaitUntilDone(); } dbfull()->TEST_WaitForCompact(); // Verify number of compactions allowed will come back to 1. for (size_t i = 0; i < kTotalTasks; i++) { sleeping_tasks[i].Reset(); env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_tasks[i], Env::Priority::LOW); sleeping_tasks[i].WaitUntilSleeping(); } for (int cf = 0; cf < 4; cf++) { for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) { for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(cf, Key(i), "")); } // put extra key to trigger flush ASSERT_OK(Put(cf, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[cf]); ASSERT_EQ(NumTableFilesAtLevel(0, cf), num + 1); } } // Now all column families qualify compaction but only one should be // scheduled, because no column family hits speed up condition. ASSERT_EQ(1, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); for (size_t i = 0; i < kTotalTasks; i++) { sleeping_tasks[i].WakeUp(); sleeping_tasks[i].WaitUntilDone(); } } TEST_P(DBCompactionTestWithParam, CompactionsGenerateMultipleFiles) { Options options = CurrentOptions(); options.write_buffer_size = 100000000; // Large write buffer options.max_subcompactions = max_subcompactions_; CreateAndReopenWithCF({"pikachu"}, options); Random rnd(301); // Write 8MB (80 values, each 100K) ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0); std::vector values; for (int i = 0; i < 80; i++) { values.push_back(RandomString(&rnd, 100000)); ASSERT_OK(Put(1, Key(i), values[i])); } // Reopening moves updates to level-0 ReopenWithColumnFamilies({"default", "pikachu"}, options); dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1], true /* disallow trivial move */); ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0); ASSERT_GT(NumTableFilesAtLevel(1, 1), 1); for (int i = 0; i < 80; i++) { ASSERT_EQ(Get(1, Key(i)), values[i]); } } TEST_F(DBCompactionTest, MinorCompactionsHappen) { do { Options options = CurrentOptions(); options.write_buffer_size = 10000; CreateAndReopenWithCF({"pikachu"}, options); const int N = 500; int starting_num_tables = TotalTableFiles(1); for (int i = 0; i < N; i++) { ASSERT_OK(Put(1, Key(i), Key(i) + std::string(1000, 'v'))); } int ending_num_tables = TotalTableFiles(1); ASSERT_GT(ending_num_tables, starting_num_tables); for (int i = 0; i < N; i++) { ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(1, Key(i))); } ReopenWithColumnFamilies({"default", "pikachu"}, options); for (int i = 0; i < N; i++) { ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(1, Key(i))); } } while (ChangeCompactOptions()); } TEST_F(DBCompactionTest, UserKeyCrossFile1) { Options options = CurrentOptions(); options.compaction_style = kCompactionStyleLevel; options.level0_file_num_compaction_trigger = 3; DestroyAndReopen(options); // create first file and flush to l0 Put("4", "A"); Put("3", "A"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); Put("2", "A"); Delete("3"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); ASSERT_EQ("NOT_FOUND", Get("3")); // move both files down to l1 dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr); ASSERT_EQ("NOT_FOUND", Get("3")); for (int i = 0; i < 3; i++) { Put("2", "B"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ("NOT_FOUND", Get("3")); } TEST_F(DBCompactionTest, UserKeyCrossFile2) { Options options = CurrentOptions(); options.compaction_style = kCompactionStyleLevel; options.level0_file_num_compaction_trigger = 3; DestroyAndReopen(options); // create first file and flush to l0 Put("4", "A"); Put("3", "A"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); Put("2", "A"); SingleDelete("3"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); ASSERT_EQ("NOT_FOUND", Get("3")); // move both files down to l1 dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr); ASSERT_EQ("NOT_FOUND", Get("3")); for (int i = 0; i < 3; i++) { Put("2", "B"); Flush(); dbfull()->TEST_WaitForFlushMemTable(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ("NOT_FOUND", Get("3")); } TEST_F(DBCompactionTest, ZeroSeqIdCompaction) { Options options = CurrentOptions(); options.compaction_style = kCompactionStyleLevel; options.level0_file_num_compaction_trigger = 3; FlushedFileCollector* collector = new FlushedFileCollector(); options.listeners.emplace_back(collector); // compaction options CompactionOptions compact_opt; compact_opt.compression = kNoCompression; compact_opt.output_file_size_limit = 4096; const size_t key_len = static_cast(compact_opt.output_file_size_limit) / 5; DestroyAndReopen(options); std::vector snaps; // create first file and flush to l0 for (auto& key : {"1", "2", "3", "3", "3", "3"}) { Put(key, std::string(key_len, 'A')); snaps.push_back(dbfull()->GetSnapshot()); } Flush(); dbfull()->TEST_WaitForFlushMemTable(); // create second file and flush to l0 for (auto& key : {"3", "4", "5", "6", "7", "8"}) { Put(key, std::string(key_len, 'A')); snaps.push_back(dbfull()->GetSnapshot()); } Flush(); dbfull()->TEST_WaitForFlushMemTable(); // move both files down to l1 dbfull()->CompactFiles(compact_opt, collector->GetFlushedFiles(), 1); // release snap so that first instance of key(3) can have seqId=0 for (auto snap : snaps) { dbfull()->ReleaseSnapshot(snap); } // create 3 files in l0 so to trigger compaction for (int i = 0; i < options.level0_file_num_compaction_trigger; i++) { Put("2", std::string(1, 'A')); Flush(); dbfull()->TEST_WaitForFlushMemTable(); } dbfull()->TEST_WaitForCompact(); ASSERT_OK(Put("", "")); } TEST_F(DBCompactionTest, ManualCompactionUnknownOutputSize) { // github issue #2249 Options options = CurrentOptions(); options.compaction_style = kCompactionStyleLevel; options.level0_file_num_compaction_trigger = 3; DestroyAndReopen(options); // create two files in l1 that we can compact for (int i = 0; i < 2; ++i) { for (int j = 0; j < options.level0_file_num_compaction_trigger; j++) { // make l0 files' ranges overlap to avoid trivial move Put(std::to_string(2 * i), std::string(1, 'A')); Put(std::to_string(2 * i + 1), std::string(1, 'A')); Flush(); dbfull()->TEST_WaitForFlushMemTable(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0); ASSERT_EQ(NumTableFilesAtLevel(1, 0), i + 1); } ColumnFamilyMetaData cf_meta; dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta); ASSERT_EQ(2, cf_meta.levels[1].files.size()); std::vector input_filenames; for (const auto& sst_file : cf_meta.levels[1].files) { input_filenames.push_back(sst_file.name); } // note CompactionOptions::output_file_size_limit is unset. CompactionOptions compact_opt; compact_opt.compression = kNoCompression; dbfull()->CompactFiles(compact_opt, input_filenames, 1); } // Check that writes done during a memtable compaction are recovered // if the database is shutdown during the memtable compaction. TEST_F(DBCompactionTest, RecoverDuringMemtableCompaction) { do { Options options = CurrentOptions(); options.env = env_; CreateAndReopenWithCF({"pikachu"}, options); // Trigger a long memtable compaction and reopen the database during it ASSERT_OK(Put(1, "foo", "v1")); // Goes to 1st log file ASSERT_OK(Put(1, "big1", std::string(10000000, 'x'))); // Fills memtable ASSERT_OK(Put(1, "big2", std::string(1000, 'y'))); // Triggers compaction ASSERT_OK(Put(1, "bar", "v2")); // Goes to new log file ReopenWithColumnFamilies({"default", "pikachu"}, options); ASSERT_EQ("v1", Get(1, "foo")); ASSERT_EQ("v2", Get(1, "bar")); ASSERT_EQ(std::string(10000000, 'x'), Get(1, "big1")); ASSERT_EQ(std::string(1000, 'y'), Get(1, "big2")); } while (ChangeOptions()); } TEST_P(DBCompactionTestWithParam, TrivialMoveOneFile) { int32_t trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.write_buffer_size = 100000000; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); int32_t num_keys = 80; int32_t value_size = 100 * 1024; // 100 KB Random rnd(301); std::vector values; for (int i = 0; i < num_keys; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(Key(i), values[i])); } // Reopening moves updates to L0 Reopen(options); ASSERT_EQ(NumTableFilesAtLevel(0, 0), 1); // 1 file in L0 ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // 0 files in L1 std::vector metadata; db_->GetLiveFilesMetaData(&metadata); ASSERT_EQ(metadata.size(), 1U); LiveFileMetaData level0_file = metadata[0]; // L0 file meta CompactRangeOptions cro; cro.exclusive_manual_compaction = exclusive_manual_compaction_; // Compaction will initiate a trivial move from L0 to L1 dbfull()->CompactRange(cro, nullptr, nullptr); // File moved From L0 to L1 ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0); // 0 files in L0 ASSERT_EQ(NumTableFilesAtLevel(1, 0), 1); // 1 file in L1 metadata.clear(); db_->GetLiveFilesMetaData(&metadata); ASSERT_EQ(metadata.size(), 1U); ASSERT_EQ(metadata[0].name /* level1_file.name */, level0_file.name); ASSERT_EQ(metadata[0].size /* level1_file.size */, level0_file.size); for (int i = 0; i < num_keys; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } ASSERT_EQ(trivial_move, 1); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_P(DBCompactionTestWithParam, TrivialMoveNonOverlappingFiles) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.disable_auto_compactions = true; options.write_buffer_size = 10 * 1024 * 1024; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); // non overlapping ranges std::vector> ranges = { {100, 199}, {300, 399}, {0, 99}, {200, 299}, {600, 699}, {400, 499}, {500, 550}, {551, 599}, }; int32_t value_size = 10 * 1024; // 10 KB Random rnd(301); std::map values; for (size_t i = 0; i < ranges.size(); i++) { for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) { values[j] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(j), values[j])); } ASSERT_OK(Flush()); } int32_t level0_files = NumTableFilesAtLevel(0, 0); ASSERT_EQ(level0_files, ranges.size()); // Multiple files in L0 ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // No files in L1 CompactRangeOptions cro; cro.exclusive_manual_compaction = exclusive_manual_compaction_; // Since data is non-overlapping we expect compaction to initiate // a trivial move db_->CompactRange(cro, nullptr, nullptr); // We expect that all the files were trivially moved from L0 to L1 ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0); ASSERT_EQ(NumTableFilesAtLevel(1, 0) /* level1_files */, level0_files); for (size_t i = 0; i < ranges.size(); i++) { for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) { ASSERT_EQ(Get(Key(j)), values[j]); } } ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); trivial_move = 0; non_trivial_move = 0; values.clear(); DestroyAndReopen(options); // Same ranges as above but overlapping ranges = { {100, 199}, {300, 399}, {0, 99}, {200, 299}, {600, 699}, {400, 499}, {500, 560}, // this range overlap with the next one {551, 599}, }; for (size_t i = 0; i < ranges.size(); i++) { for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) { values[j] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(j), values[j])); } ASSERT_OK(Flush()); } db_->CompactRange(cro, nullptr, nullptr); for (size_t i = 0; i < ranges.size(); i++) { for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) { ASSERT_EQ(Get(Key(j)), values[j]); } } ASSERT_EQ(trivial_move, 0); ASSERT_EQ(non_trivial_move, 1); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_P(DBCompactionTestWithParam, TrivialMoveTargetLevel) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.disable_auto_compactions = true; options.write_buffer_size = 10 * 1024 * 1024; options.num_levels = 7; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB // Add 2 non-overlapping files Random rnd(301); std::map values; // file 1 [0 => 300] for (int32_t i = 0; i <= 300; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 2 [600 => 700] for (int32_t i = 600; i <= 700; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 2 files in L0 ASSERT_EQ("2", FilesPerLevel(0)); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 6; compact_options.exclusive_manual_compaction = exclusive_manual_compaction_; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); // 2 files in L6 ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); for (int32_t i = 0; i <= 300; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } for (int32_t i = 600; i <= 700; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } TEST_P(DBCompactionTestWithParam, ManualCompactionPartial) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); bool first = true; // Purpose of dependencies: // 4 -> 1: ensure the order of two non-trivial compactions // 5 -> 2 and 5 -> 3: ensure we do a check before two non-trivial compactions // are installed rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBCompaction::ManualPartial:4", "DBCompaction::ManualPartial:1"}, {"DBCompaction::ManualPartial:5", "DBCompaction::ManualPartial:2"}, {"DBCompaction::ManualPartial:5", "DBCompaction::ManualPartial:3"}}); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial:AfterRun", [&](void* /*arg*/) { if (first) { first = false; TEST_SYNC_POINT("DBCompaction::ManualPartial:4"); TEST_SYNC_POINT("DBCompaction::ManualPartial:3"); } else { // second non-trivial compaction TEST_SYNC_POINT("DBCompaction::ManualPartial:2"); } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.write_buffer_size = 10 * 1024 * 1024; options.num_levels = 7; options.max_subcompactions = max_subcompactions_; options.level0_file_num_compaction_trigger = 3; options.max_background_compactions = 3; options.target_file_size_base = 1 << 23; // 8 MB DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB // Add 2 non-overlapping files Random rnd(301); std::map values; // file 1 [0 => 100] for (int32_t i = 0; i < 100; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 2 [100 => 300] for (int32_t i = 100; i < 300; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 2 files in L0 ASSERT_EQ("2", FilesPerLevel(0)); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 6; compact_options.exclusive_manual_compaction = exclusive_manual_compaction_; // Trivial move the two non-overlapping files to level 6 ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); // 2 files in L6 ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); // file 3 [ 0 => 200] for (int32_t i = 0; i < 200; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 1 files in L0 ASSERT_EQ("1,0,0,0,0,0,2", FilesPerLevel(0)); ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, nullptr, false)); ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, nullptr, nullptr, false)); ASSERT_OK(dbfull()->TEST_CompactRange(2, nullptr, nullptr, nullptr, false)); ASSERT_OK(dbfull()->TEST_CompactRange(3, nullptr, nullptr, nullptr, false)); ASSERT_OK(dbfull()->TEST_CompactRange(4, nullptr, nullptr, nullptr, false)); // 2 files in L6, 1 file in L5 ASSERT_EQ("0,0,0,0,0,1,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 6); ASSERT_EQ(non_trivial_move, 0); rocksdb::port::Thread threads([&] { compact_options.change_level = false; compact_options.exclusive_manual_compaction = false; std::string begin_string = Key(0); std::string end_string = Key(199); Slice begin(begin_string); Slice end(end_string); // First non-trivial compaction is triggered ASSERT_OK(db_->CompactRange(compact_options, &begin, &end)); }); TEST_SYNC_POINT("DBCompaction::ManualPartial:1"); // file 4 [300 => 400) for (int32_t i = 300; i <= 400; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 5 [400 => 500) for (int32_t i = 400; i <= 500; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 6 [500 => 600) for (int32_t i = 500; i <= 600; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } // Second non-trivial compaction is triggered ASSERT_OK(Flush()); // Before two non-trivial compactions are installed, there are 3 files in L0 ASSERT_EQ("3,0,0,0,0,1,2", FilesPerLevel(0)); TEST_SYNC_POINT("DBCompaction::ManualPartial:5"); dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); // After two non-trivial compactions are installed, there is 1 file in L6, and // 1 file in L1 ASSERT_EQ("0,1,0,0,0,0,1", FilesPerLevel(0)); threads.join(); for (int32_t i = 0; i < 600; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } // Disable as the test is flaky. TEST_F(DBCompactionTest, DISABLED_ManualPartialFill) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); bool first = true; bool second = true; rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBCompaction::PartialFill:4", "DBCompaction::PartialFill:1"}, {"DBCompaction::PartialFill:2", "DBCompaction::PartialFill:3"}}); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial:AfterRun", [&](void* /*arg*/) { if (first) { TEST_SYNC_POINT("DBCompaction::PartialFill:4"); first = false; TEST_SYNC_POINT("DBCompaction::PartialFill:3"); } else if (second) { } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.write_buffer_size = 10 * 1024 * 1024; options.max_bytes_for_level_multiplier = 2; options.num_levels = 4; options.level0_file_num_compaction_trigger = 3; options.max_background_compactions = 3; DestroyAndReopen(options); // make sure all background compaction jobs can be scheduled auto stop_token = dbfull()->TEST_write_controler().GetCompactionPressureToken(); int32_t value_size = 10 * 1024; // 10 KB // Add 2 non-overlapping files Random rnd(301); std::map values; // file 1 [0 => 100] for (int32_t i = 0; i < 100; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 2 [100 => 300] for (int32_t i = 100; i < 300; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 2 files in L0 ASSERT_EQ("2", FilesPerLevel(0)); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 2; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); // 2 files in L2 ASSERT_EQ("0,0,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); // file 3 [ 0 => 200] for (int32_t i = 0; i < 200; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 2 files in L2, 1 in L0 ASSERT_EQ("1,0,2", FilesPerLevel(0)); ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, nullptr, false)); // 2 files in L2, 1 in L1 ASSERT_EQ("0,1,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 2); ASSERT_EQ(non_trivial_move, 0); rocksdb::port::Thread threads([&] { compact_options.change_level = false; compact_options.exclusive_manual_compaction = false; std::string begin_string = Key(0); std::string end_string = Key(199); Slice begin(begin_string); Slice end(end_string); ASSERT_OK(db_->CompactRange(compact_options, &begin, &end)); }); TEST_SYNC_POINT("DBCompaction::PartialFill:1"); // Many files 4 [300 => 4300) for (int32_t i = 0; i <= 5; i++) { for (int32_t j = 300; j < 4300; j++) { if (j == 2300) { ASSERT_OK(Flush()); dbfull()->TEST_WaitForFlushMemTable(); } values[j] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(j), values[j])); } } // Verify level sizes uint64_t target_size = 4 * options.max_bytes_for_level_base; for (int32_t i = 1; i < options.num_levels; i++) { ASSERT_LE(SizeAtLevel(i), target_size); target_size = static_cast(target_size * options.max_bytes_for_level_multiplier); } TEST_SYNC_POINT("DBCompaction::PartialFill:2"); dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); threads.join(); for (int32_t i = 0; i < 4300; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } TEST_F(DBCompactionTest, DeleteFileRange) { Options options = CurrentOptions(); options.write_buffer_size = 10 * 1024 * 1024; options.max_bytes_for_level_multiplier = 2; options.num_levels = 4; options.level0_file_num_compaction_trigger = 3; options.max_background_compactions = 3; DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB // Add 2 non-overlapping files Random rnd(301); std::map values; // file 1 [0 => 100] for (int32_t i = 0; i < 100; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // file 2 [100 => 300] for (int32_t i = 100; i < 300; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // 2 files in L0 ASSERT_EQ("2", FilesPerLevel(0)); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 2; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); // 2 files in L2 ASSERT_EQ("0,0,2", FilesPerLevel(0)); // file 3 [ 0 => 200] for (int32_t i = 0; i < 200; i++) { values[i] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); // Many files 4 [300 => 4300) for (int32_t i = 0; i <= 5; i++) { for (int32_t j = 300; j < 4300; j++) { if (j == 2300) { ASSERT_OK(Flush()); dbfull()->TEST_WaitForFlushMemTable(); } values[j] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(j), values[j])); } } ASSERT_OK(Flush()); dbfull()->TEST_WaitForFlushMemTable(); dbfull()->TEST_WaitForCompact(); // Verify level sizes uint64_t target_size = 4 * options.max_bytes_for_level_base; for (int32_t i = 1; i < options.num_levels; i++) { ASSERT_LE(SizeAtLevel(i), target_size); target_size = static_cast(target_size * options.max_bytes_for_level_multiplier); } size_t old_num_files = CountFiles(); std::string begin_string = Key(1000); std::string end_string = Key(2000); Slice begin(begin_string); Slice end(end_string); ASSERT_OK(DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin, &end)); int32_t deleted_count = 0; for (int32_t i = 0; i < 4300; i++) { if (i < 1000 || i > 2000) { ASSERT_EQ(Get(Key(i)), values[i]); } else { ReadOptions roptions; std::string result; Status s = db_->Get(roptions, Key(i), &result); ASSERT_TRUE(s.IsNotFound() || s.ok()); if (s.IsNotFound()) { deleted_count++; } } } ASSERT_GT(deleted_count, 0); begin_string = Key(5000); end_string = Key(6000); Slice begin1(begin_string); Slice end1(end_string); // Try deleting files in range which contain no keys ASSERT_OK( DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin1, &end1)); // Push data from level 0 to level 1 to force all data to be deleted // Note that we don't delete level 0 files compact_options.change_level = true; compact_options.target_level = 1; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); dbfull()->TEST_WaitForCompact(); ASSERT_OK( DeleteFilesInRange(db_, db_->DefaultColumnFamily(), nullptr, nullptr)); int32_t deleted_count2 = 0; for (int32_t i = 0; i < 4300; i++) { ReadOptions roptions; std::string result; Status s = db_->Get(roptions, Key(i), &result); ASSERT_TRUE(s.IsNotFound()); deleted_count2++; } ASSERT_GT(deleted_count2, deleted_count); size_t new_num_files = CountFiles(); ASSERT_GT(old_num_files, new_num_files); } TEST_F(DBCompactionTest, DeleteFilesInRanges) { Options options = CurrentOptions(); options.write_buffer_size = 10 * 1024 * 1024; options.max_bytes_for_level_multiplier = 2; options.num_levels = 4; options.max_background_compactions = 3; options.disable_auto_compactions = true; DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB Random rnd(301); std::map values; // file [0 => 100), [100 => 200), ... [900, 1000) for (auto i = 0; i < 10; i++) { for (auto j = 0; j < 100; j++) { auto k = i * 100 + j; values[k] = RandomString(&rnd, value_size); ASSERT_OK(Put(Key(k), values[k])); } ASSERT_OK(Flush()); } ASSERT_EQ("10", FilesPerLevel(0)); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 2; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); ASSERT_EQ("0,0,10", FilesPerLevel(0)); // file [0 => 100), [200 => 300), ... [800, 900) for (auto i = 0; i < 10; i+=2) { for (auto j = 0; j < 100; j++) { auto k = i * 100 + j; ASSERT_OK(Put(Key(k), values[k])); } ASSERT_OK(Flush()); } ASSERT_EQ("5,0,10", FilesPerLevel(0)); ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr)); ASSERT_EQ("0,5,10", FilesPerLevel(0)); // Delete files in range [0, 299] (inclusive) { auto begin_str1 = Key(0), end_str1 = Key(100); auto begin_str2 = Key(100), end_str2 = Key(200); auto begin_str3 = Key(200), end_str3 = Key(299); Slice begin1(begin_str1), end1(end_str1); Slice begin2(begin_str2), end2(end_str2); Slice begin3(begin_str3), end3(end_str3); std::vector ranges; ranges.push_back(RangePtr(&begin1, &end1)); ranges.push_back(RangePtr(&begin2, &end2)); ranges.push_back(RangePtr(&begin3, &end3)); ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(), ranges.data(), ranges.size())); ASSERT_EQ("0,3,7", FilesPerLevel(0)); // Keys [0, 300) should not exist. for (auto i = 0; i < 300; i++) { ReadOptions ropts; std::string result; auto s = db_->Get(ropts, Key(i), &result); ASSERT_TRUE(s.IsNotFound()); } for (auto i = 300; i < 1000; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } // Delete files in range [600, 999) (exclusive) { auto begin_str1 = Key(600), end_str1 = Key(800); auto begin_str2 = Key(700), end_str2 = Key(900); auto begin_str3 = Key(800), end_str3 = Key(999); Slice begin1(begin_str1), end1(end_str1); Slice begin2(begin_str2), end2(end_str2); Slice begin3(begin_str3), end3(end_str3); std::vector ranges; ranges.push_back(RangePtr(&begin1, &end1)); ranges.push_back(RangePtr(&begin2, &end2)); ranges.push_back(RangePtr(&begin3, &end3)); ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(), ranges.data(), ranges.size(), false)); ASSERT_EQ("0,1,4", FilesPerLevel(0)); // Keys [600, 900) should not exist. for (auto i = 600; i < 900; i++) { ReadOptions ropts; std::string result; auto s = db_->Get(ropts, Key(i), &result); ASSERT_TRUE(s.IsNotFound()); } for (auto i = 300; i < 600; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } for (auto i = 900; i < 1000; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } // Delete all files. { RangePtr range; ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(), &range, 1)); ASSERT_EQ("", FilesPerLevel(0)); for (auto i = 0; i < 1000; i++) { ReadOptions ropts; std::string result; auto s = db_->Get(ropts, Key(i), &result); ASSERT_TRUE(s.IsNotFound()); } } } TEST_F(DBCompactionTest, DeleteFileRangeFileEndpointsOverlapBug) { // regression test for #2833: groups of files whose user-keys overlap at the // endpoints could be split by `DeleteFilesInRange`. This caused old data to // reappear, either because a new version of the key was removed, or a range // deletion was partially dropped. It could also cause non-overlapping // invariant to be violated if the files dropped by DeleteFilesInRange were // a subset of files that a range deletion spans. const int kNumL0Files = 2; const int kValSize = 8 << 10; // 8KB Options options = CurrentOptions(); options.level0_file_num_compaction_trigger = kNumL0Files; options.target_file_size_base = 1 << 10; // 1KB DestroyAndReopen(options); // The snapshot prevents key 1 from having its old version dropped. The low // `target_file_size_base` ensures two keys will be in each output file. const Snapshot* snapshot = nullptr; Random rnd(301); // The value indicates which flush the key belonged to, which is enough // for us to determine the keys' relative ages. After L0 flushes finish, // files look like: // // File 0: 0 -> vals[0], 1 -> vals[0] // File 1: 1 -> vals[1], 2 -> vals[1] // // Then L0->L1 compaction happens, which outputs keys as follows: // // File 0: 0 -> vals[0], 1 -> vals[1] // File 1: 1 -> vals[0], 2 -> vals[1] // // DeleteFilesInRange shouldn't be allowed to drop just file 0, as that // would cause `1 -> vals[0]` (an older key) to reappear. std::string vals[kNumL0Files]; for (int i = 0; i < kNumL0Files; ++i) { vals[i] = RandomString(&rnd, kValSize); Put(Key(i), vals[i]); Put(Key(i + 1), vals[i]); Flush(); if (i == 0) { snapshot = db_->GetSnapshot(); } } dbfull()->TEST_WaitForCompact(); // Verify `DeleteFilesInRange` can't drop only file 0 which would cause // "1 -> vals[0]" to reappear. std::string begin_str = Key(0), end_str = Key(1); Slice begin = begin_str, end = end_str; ASSERT_OK(DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin, &end)); ASSERT_EQ(vals[1], Get(Key(1))); db_->ReleaseSnapshot(snapshot); } TEST_P(DBCompactionTestWithParam, TrivialMoveToLastLevelWithFiles) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Options options = CurrentOptions(); options.write_buffer_size = 100000000; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB Random rnd(301); std::vector values; // File with keys [ 0 => 99 ] for (int i = 0; i < 100; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); ASSERT_EQ("1", FilesPerLevel(0)); // Compaction will do L0=>L1 (trivial move) then move L1 files to L3 CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 3; compact_options.exclusive_manual_compaction = exclusive_manual_compaction_; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); ASSERT_EQ("0,0,0,1", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); // File with keys [ 100 => 199 ] for (int i = 100; i < 200; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(Key(i), values[i])); } ASSERT_OK(Flush()); ASSERT_EQ("1,0,0,1", FilesPerLevel(0)); CompactRangeOptions cro; cro.exclusive_manual_compaction = exclusive_manual_compaction_; // Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves) ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr)); ASSERT_EQ("0,0,0,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 4); ASSERT_EQ(non_trivial_move, 0); for (int i = 0; i < 200; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_P(DBCompactionTestWithParam, LevelCompactionThirdPath) { Options options = CurrentOptions(); options.db_paths.emplace_back(dbname_, 500 * 1024); options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024); options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024); options.memtable_factory.reset( new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1)); options.compaction_style = kCompactionStyleLevel; options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 2; options.num_levels = 4; options.max_bytes_for_level_base = 400 * 1024; options.max_subcompactions = max_subcompactions_; // options = CurrentOptions(options); std::vector filenames; env_->GetChildren(options.db_paths[1].path, &filenames); // Delete archival files. for (size_t i = 0; i < filenames.size(); ++i) { env_->DeleteFile(options.db_paths[1].path + "/" + filenames[i]); } env_->DeleteDir(options.db_paths[1].path); Reopen(options); Random rnd(301); int key_idx = 0; // First three 110KB files are not going to second path. // After that, (100K, 200K) for (int num = 0; num < 3; num++) { GenerateNewFile(&rnd, &key_idx); } // Another 110KB triggers a compaction to 400K file to fill up first path GenerateNewFile(&rnd, &key_idx); ASSERT_EQ(3, GetSstFileCount(options.db_paths[1].path)); // (1, 4) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4", FilesPerLevel(0)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 1) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,1", FilesPerLevel(0)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 2) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,2", FilesPerLevel(0)); ASSERT_EQ(2, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 3) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,3", FilesPerLevel(0)); ASSERT_EQ(3, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 4) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,4", FilesPerLevel(0)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 5) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,5", FilesPerLevel(0)); ASSERT_EQ(5, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 6) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,6", FilesPerLevel(0)); ASSERT_EQ(6, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 7) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,7", FilesPerLevel(0)); ASSERT_EQ(7, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); // (1, 4, 8) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,8", FilesPerLevel(0)); ASSERT_EQ(8, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Reopen(options); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Destroy(options); } TEST_P(DBCompactionTestWithParam, LevelCompactionPathUse) { Options options = CurrentOptions(); options.db_paths.emplace_back(dbname_, 500 * 1024); options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024); options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024); options.memtable_factory.reset( new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1)); options.compaction_style = kCompactionStyleLevel; options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 2; options.num_levels = 4; options.max_bytes_for_level_base = 400 * 1024; options.max_subcompactions = max_subcompactions_; // options = CurrentOptions(options); std::vector filenames; env_->GetChildren(options.db_paths[1].path, &filenames); // Delete archival files. for (size_t i = 0; i < filenames.size(); ++i) { env_->DeleteFile(options.db_paths[1].path + "/" + filenames[i]); } env_->DeleteDir(options.db_paths[1].path); Reopen(options); Random rnd(301); int key_idx = 0; // Always gets compacted into 1 Level1 file, // 0/1 Level 0 file for (int num = 0; num < 3; num++) { key_idx = 0; GenerateNewFile(&rnd, &key_idx); } key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,1", FilesPerLevel(0)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("0,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("0,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("0,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("0,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); key_idx = 0; GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,1", FilesPerLevel(0)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(dbname_)); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Reopen(options); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Destroy(options); } TEST_P(DBCompactionTestWithParam, LevelCompactionCFPathUse) { Options options = CurrentOptions(); options.db_paths.emplace_back(dbname_, 500 * 1024); options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024); options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024); options.memtable_factory.reset( new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1)); options.compaction_style = kCompactionStyleLevel; options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 2; options.num_levels = 4; options.max_bytes_for_level_base = 400 * 1024; options.max_subcompactions = max_subcompactions_; std::vector option_vector; option_vector.emplace_back(options); ColumnFamilyOptions cf_opt1(options), cf_opt2(options); // Configure CF1 specific paths. cf_opt1.cf_paths.emplace_back(dbname_ + "cf1", 500 * 1024); cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_2", 4 * 1024 * 1024); cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_3", 1024 * 1024 * 1024); option_vector.emplace_back(DBOptions(options), cf_opt1); CreateColumnFamilies({"one"},option_vector[1]); // Configura CF2 specific paths. cf_opt2.cf_paths.emplace_back(dbname_ + "cf2", 500 * 1024); cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_2", 4 * 1024 * 1024); cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_3", 1024 * 1024 * 1024); option_vector.emplace_back(DBOptions(options), cf_opt2); CreateColumnFamilies({"two"},option_vector[2]); ReopenWithColumnFamilies({"default", "one", "two"}, option_vector); Random rnd(301); int key_idx = 0; int key_idx1 = 0; int key_idx2 = 0; auto generate_file = [&]() { GenerateNewFile(0, &rnd, &key_idx); GenerateNewFile(1, &rnd, &key_idx1); GenerateNewFile(2, &rnd, &key_idx2); }; auto check_sstfilecount = [&](int path_id, int expected) { ASSERT_EQ(expected, GetSstFileCount(options.db_paths[path_id].path)); ASSERT_EQ(expected, GetSstFileCount(cf_opt1.cf_paths[path_id].path)); ASSERT_EQ(expected, GetSstFileCount(cf_opt2.cf_paths[path_id].path)); }; auto check_filesperlevel = [&](const std::string& expected) { ASSERT_EQ(expected, FilesPerLevel(0)); ASSERT_EQ(expected, FilesPerLevel(1)); ASSERT_EQ(expected, FilesPerLevel(2)); }; auto check_getvalues = [&]() { for (int i = 0; i < key_idx; i++) { auto v = Get(0, Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } for (int i = 0; i < key_idx1; i++) { auto v = Get(1, Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } for (int i = 0; i < key_idx2; i++) { auto v = Get(2, Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } }; // Check that default column family uses db_paths. // And Column family "one" uses cf_paths. // First three 110KB files are not going to second path. // After that, (100K, 200K) for (int num = 0; num < 3; num++) { generate_file(); } // Another 110KB triggers a compaction to 400K file to fill up first path generate_file(); check_sstfilecount(1, 3); // (1, 4) generate_file(); check_filesperlevel("1,4"); check_sstfilecount(1, 4); check_sstfilecount(0, 1); // (1, 4, 1) generate_file(); check_filesperlevel("1,4,1"); check_sstfilecount(2, 1); check_sstfilecount(1, 4); check_sstfilecount(0, 1); // (1, 4, 2) generate_file(); check_filesperlevel("1,4,2"); check_sstfilecount(2, 2); check_sstfilecount(1, 4); check_sstfilecount(0, 1); check_getvalues(); ReopenWithColumnFamilies({"default", "one", "two"}, option_vector); check_getvalues(); Destroy(options, true); } TEST_P(DBCompactionTestWithParam, ConvertCompactionStyle) { Random rnd(301); int max_key_level_insert = 200; int max_key_universal_insert = 600; // Stage 1: generate a db with level compaction Options options = CurrentOptions(); options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.num_levels = 4; options.level0_file_num_compaction_trigger = 3; options.max_bytes_for_level_base = 500 << 10; // 500KB options.max_bytes_for_level_multiplier = 1; options.target_file_size_base = 200 << 10; // 200KB options.target_file_size_multiplier = 1; options.max_subcompactions = max_subcompactions_; CreateAndReopenWithCF({"pikachu"}, options); for (int i = 0; i <= max_key_level_insert; i++) { // each value is 10K ASSERT_OK(Put(1, Key(i), RandomString(&rnd, 10000))); } ASSERT_OK(Flush(1)); dbfull()->TEST_WaitForCompact(); ASSERT_GT(TotalTableFiles(1, 4), 1); int non_level0_num_files = 0; for (int i = 1; i < options.num_levels; i++) { non_level0_num_files += NumTableFilesAtLevel(i, 1); } ASSERT_GT(non_level0_num_files, 0); // Stage 2: reopen with universal compaction - should fail options = CurrentOptions(); options.compaction_style = kCompactionStyleUniversal; options.num_levels = 1; options = CurrentOptions(options); Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options); ASSERT_TRUE(s.IsInvalidArgument()); // Stage 3: compact into a single file and move the file to level 0 options = CurrentOptions(); options.disable_auto_compactions = true; options.target_file_size_base = INT_MAX; options.target_file_size_multiplier = 1; options.max_bytes_for_level_base = INT_MAX; options.max_bytes_for_level_multiplier = 1; options.num_levels = 4; options = CurrentOptions(options); ReopenWithColumnFamilies({"default", "pikachu"}, options); CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 0; // cannot use kForceOptimized here because the compaction here is expected // to generate one output file compact_options.bottommost_level_compaction = BottommostLevelCompaction::kForce; compact_options.exclusive_manual_compaction = exclusive_manual_compaction_; dbfull()->CompactRange(compact_options, handles_[1], nullptr, nullptr); // Only 1 file in L0 ASSERT_EQ("1", FilesPerLevel(1)); // Stage 4: re-open in universal compaction style and do some db operations options = CurrentOptions(); options.compaction_style = kCompactionStyleUniversal; options.num_levels = 4; options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 3; options = CurrentOptions(options); ReopenWithColumnFamilies({"default", "pikachu"}, options); options.num_levels = 1; ReopenWithColumnFamilies({"default", "pikachu"}, options); for (int i = max_key_level_insert / 2; i <= max_key_universal_insert; i++) { ASSERT_OK(Put(1, Key(i), RandomString(&rnd, 10000))); } dbfull()->Flush(FlushOptions()); ASSERT_OK(Flush(1)); dbfull()->TEST_WaitForCompact(); for (int i = 1; i < options.num_levels; i++) { ASSERT_EQ(NumTableFilesAtLevel(i, 1), 0); } // verify keys inserted in both level compaction style and universal // compaction style std::string keys_in_db; Iterator* iter = dbfull()->NewIterator(ReadOptions(), handles_[1]); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { keys_in_db.append(iter->key().ToString()); keys_in_db.push_back(','); } delete iter; std::string expected_keys; for (int i = 0; i <= max_key_universal_insert; i++) { expected_keys.append(Key(i)); expected_keys.push_back(','); } ASSERT_EQ(keys_in_db, expected_keys); } TEST_F(DBCompactionTest, L0_CompactionBug_Issue44_a) { do { CreateAndReopenWithCF({"pikachu"}, CurrentOptions()); ASSERT_OK(Put(1, "b", "v")); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ASSERT_OK(Delete(1, "b")); ASSERT_OK(Delete(1, "a")); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ASSERT_OK(Delete(1, "a")); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ASSERT_OK(Put(1, "a", "v")); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ASSERT_EQ("(a->v)", Contents(1)); env_->SleepForMicroseconds(1000000); // Wait for compaction to finish ASSERT_EQ("(a->v)", Contents(1)); } while (ChangeCompactOptions()); } TEST_F(DBCompactionTest, L0_CompactionBug_Issue44_b) { do { CreateAndReopenWithCF({"pikachu"}, CurrentOptions()); Put(1, "", ""); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Delete(1, "e"); Put(1, "", ""); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Put(1, "c", "cv"); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Put(1, "", ""); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Put(1, "", ""); env_->SleepForMicroseconds(1000000); // Wait for compaction to finish ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Put(1, "d", "dv"); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Put(1, "", ""); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); Delete(1, "d"); Delete(1, "b"); ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions()); ASSERT_EQ("(->)(c->cv)", Contents(1)); env_->SleepForMicroseconds(1000000); // Wait for compaction to finish ASSERT_EQ("(->)(c->cv)", Contents(1)); } while (ChangeCompactOptions()); } TEST_F(DBCompactionTest, ManualAutoRace) { CreateAndReopenWithCF({"pikachu"}, CurrentOptions()); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::BGWorkCompaction", "DBCompactionTest::ManualAutoRace:1"}, {"DBImpl::RunManualCompaction:WaitScheduled", "BackgroundCallCompaction:0"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Put(1, "foo", ""); Put(1, "bar", ""); Flush(1); Put(1, "foo", ""); Put(1, "bar", ""); // Generate four files in CF 0, which should trigger an auto compaction Put("foo", ""); Put("bar", ""); Flush(); Put("foo", ""); Put("bar", ""); Flush(); Put("foo", ""); Put("bar", ""); Flush(); Put("foo", ""); Put("bar", ""); Flush(); // The auto compaction is scheduled but waited until here TEST_SYNC_POINT("DBCompactionTest::ManualAutoRace:1"); // The auto compaction will wait until the manual compaction is registerd // before processing so that it will be cancelled. dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr); ASSERT_EQ("0,1", FilesPerLevel(1)); // Eventually the cancelled compaction will be rescheduled and executed. dbfull()->TEST_WaitForCompact(); ASSERT_EQ("0,1", FilesPerLevel(0)); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_P(DBCompactionTestWithParam, ManualCompaction) { Options options = CurrentOptions(); options.max_subcompactions = max_subcompactions_; options.statistics = rocksdb::CreateDBStatistics(); CreateAndReopenWithCF({"pikachu"}, options); // iter - 0 with 7 levels // iter - 1 with 3 levels for (int iter = 0; iter < 2; ++iter) { MakeTables(3, "p", "q", 1); ASSERT_EQ("1,1,1", FilesPerLevel(1)); // Compaction range falls before files Compact(1, "", "c"); ASSERT_EQ("1,1,1", FilesPerLevel(1)); // Compaction range falls after files Compact(1, "r", "z"); ASSERT_EQ("1,1,1", FilesPerLevel(1)); // Compaction range overlaps files Compact(1, "p1", "p9"); ASSERT_EQ("0,0,1", FilesPerLevel(1)); // Populate a different range MakeTables(3, "c", "e", 1); ASSERT_EQ("1,1,2", FilesPerLevel(1)); // Compact just the new range Compact(1, "b", "f"); ASSERT_EQ("0,0,2", FilesPerLevel(1)); // Compact all MakeTables(1, "a", "z", 1); ASSERT_EQ("1,0,2", FilesPerLevel(1)); uint64_t prev_block_cache_add = options.statistics->getTickerCount(BLOCK_CACHE_ADD); CompactRangeOptions cro; cro.exclusive_manual_compaction = exclusive_manual_compaction_; db_->CompactRange(cro, handles_[1], nullptr, nullptr); // Verify manual compaction doesn't fill block cache ASSERT_EQ(prev_block_cache_add, options.statistics->getTickerCount(BLOCK_CACHE_ADD)); ASSERT_EQ("0,0,1", FilesPerLevel(1)); if (iter == 0) { options = CurrentOptions(); options.num_levels = 3; options.create_if_missing = true; options.statistics = rocksdb::CreateDBStatistics(); DestroyAndReopen(options); CreateAndReopenWithCF({"pikachu"}, options); } } } TEST_P(DBCompactionTestWithParam, ManualLevelCompactionOutputPathId) { Options options = CurrentOptions(); options.db_paths.emplace_back(dbname_ + "_2", 2 * 10485760); options.db_paths.emplace_back(dbname_ + "_3", 100 * 10485760); options.db_paths.emplace_back(dbname_ + "_4", 120 * 10485760); options.max_subcompactions = max_subcompactions_; CreateAndReopenWithCF({"pikachu"}, options); // iter - 0 with 7 levels // iter - 1 with 3 levels for (int iter = 0; iter < 2; ++iter) { for (int i = 0; i < 3; ++i) { ASSERT_OK(Put(1, "p", "begin")); ASSERT_OK(Put(1, "q", "end")); ASSERT_OK(Flush(1)); } ASSERT_EQ("3", FilesPerLevel(1)); ASSERT_EQ(3, GetSstFileCount(options.db_paths[0].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); // Compaction range falls before files Compact(1, "", "c"); ASSERT_EQ("3", FilesPerLevel(1)); // Compaction range falls after files Compact(1, "r", "z"); ASSERT_EQ("3", FilesPerLevel(1)); // Compaction range overlaps files Compact(1, "p1", "p9", 1); ASSERT_OK(dbfull()->TEST_WaitForCompact()); ASSERT_EQ("0,1", FilesPerLevel(1)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); // Populate a different range for (int i = 0; i < 3; ++i) { ASSERT_OK(Put(1, "c", "begin")); ASSERT_OK(Put(1, "e", "end")); ASSERT_OK(Flush(1)); } ASSERT_EQ("3,1", FilesPerLevel(1)); // Compact just the new range Compact(1, "b", "f", 1); ASSERT_OK(dbfull()->TEST_WaitForCompact()); ASSERT_EQ("0,2", FilesPerLevel(1)); ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); // Compact all ASSERT_OK(Put(1, "a", "begin")); ASSERT_OK(Put(1, "z", "end")); ASSERT_OK(Flush(1)); ASSERT_EQ("1,2", FilesPerLevel(1)); ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[0].path)); CompactRangeOptions compact_options; compact_options.target_path_id = 1; compact_options.exclusive_manual_compaction = exclusive_manual_compaction_; db_->CompactRange(compact_options, handles_[1], nullptr, nullptr); ASSERT_OK(dbfull()->TEST_WaitForCompact()); ASSERT_EQ("0,1", FilesPerLevel(1)); ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path)); ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path)); ASSERT_EQ(0, GetSstFileCount(dbname_)); if (iter == 0) { DestroyAndReopen(options); options = CurrentOptions(); options.db_paths.emplace_back(dbname_ + "_2", 2 * 10485760); options.db_paths.emplace_back(dbname_ + "_3", 100 * 10485760); options.db_paths.emplace_back(dbname_ + "_4", 120 * 10485760); options.max_background_flushes = 1; options.num_levels = 3; options.create_if_missing = true; CreateAndReopenWithCF({"pikachu"}, options); } } } TEST_F(DBCompactionTest, FilesDeletedAfterCompaction) { do { CreateAndReopenWithCF({"pikachu"}, CurrentOptions()); ASSERT_OK(Put(1, "foo", "v2")); Compact(1, "a", "z"); const size_t num_files = CountLiveFiles(); for (int i = 0; i < 10; i++) { ASSERT_OK(Put(1, "foo", "v2")); Compact(1, "a", "z"); } ASSERT_EQ(CountLiveFiles(), num_files); } while (ChangeCompactOptions()); } // Check level comapction with compact files TEST_P(DBCompactionTestWithParam, DISABLED_CompactFilesOnLevelCompaction) { const int kTestKeySize = 16; const int kTestValueSize = 984; const int kEntrySize = kTestKeySize + kTestValueSize; const int kEntriesPerBuffer = 100; Options options; options.create_if_missing = true; options.write_buffer_size = kEntrySize * kEntriesPerBuffer; options.compaction_style = kCompactionStyleLevel; options.target_file_size_base = options.write_buffer_size; options.max_bytes_for_level_base = options.target_file_size_base * 2; options.level0_stop_writes_trigger = 2; options.max_bytes_for_level_multiplier = 2; options.compression = kNoCompression; options.max_subcompactions = max_subcompactions_; options = CurrentOptions(options); CreateAndReopenWithCF({"pikachu"}, options); Random rnd(301); for (int key = 64 * kEntriesPerBuffer; key >= 0; --key) { ASSERT_OK(Put(1, ToString(key), RandomString(&rnd, kTestValueSize))); } dbfull()->TEST_WaitForFlushMemTable(handles_[1]); dbfull()->TEST_WaitForCompact(); ColumnFamilyMetaData cf_meta; dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta); int output_level = static_cast(cf_meta.levels.size()) - 1; for (int file_picked = 5; file_picked > 0; --file_picked) { std::set overlapping_file_names; std::vector compaction_input_file_names; for (int f = 0; f < file_picked; ++f) { int level = 0; auto file_meta = PickFileRandomly(cf_meta, &rnd, &level); compaction_input_file_names.push_back(file_meta->name); GetOverlappingFileNumbersForLevelCompaction( cf_meta, options.comparator, level, output_level, file_meta, &overlapping_file_names); } ASSERT_OK(dbfull()->CompactFiles( CompactionOptions(), handles_[1], compaction_input_file_names, output_level)); // Make sure all overlapping files do not exist after compaction dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta); VerifyCompactionResult(cf_meta, overlapping_file_names); } // make sure all key-values are still there. for (int key = 64 * kEntriesPerBuffer; key >= 0; --key) { ASSERT_NE(Get(1, ToString(key)), "NOT_FOUND"); } } TEST_P(DBCompactionTestWithParam, PartialCompactionFailure) { Options options; const int kKeySize = 16; const int kKvSize = 1000; const int kKeysPerBuffer = 100; const int kNumL1Files = 5; options.create_if_missing = true; options.write_buffer_size = kKeysPerBuffer * kKvSize; options.max_write_buffer_number = 2; options.target_file_size_base = options.write_buffer_size * (options.max_write_buffer_number - 1); options.level0_file_num_compaction_trigger = kNumL1Files; options.max_bytes_for_level_base = options.level0_file_num_compaction_trigger * options.target_file_size_base; options.max_bytes_for_level_multiplier = 2; options.compression = kNoCompression; options.max_subcompactions = max_subcompactions_; env_->SetBackgroundThreads(1, Env::HIGH); env_->SetBackgroundThreads(1, Env::LOW); // stop the compaction thread until we simulate the file creation failure. test::SleepingBackgroundTask sleeping_task_low; env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low, Env::Priority::LOW); options.env = env_; DestroyAndReopen(options); const int kNumInsertedKeys = options.level0_file_num_compaction_trigger * (options.max_write_buffer_number - 1) * kKeysPerBuffer; Random rnd(301); std::vector keys; std::vector values; for (int k = 0; k < kNumInsertedKeys; ++k) { keys.emplace_back(RandomString(&rnd, kKeySize)); values.emplace_back(RandomString(&rnd, kKvSize - kKeySize)); ASSERT_OK(Put(Slice(keys[k]), Slice(values[k]))); dbfull()->TEST_WaitForFlushMemTable(); } dbfull()->TEST_FlushMemTable(true); // Make sure the number of L0 files can trigger compaction. ASSERT_GE(NumTableFilesAtLevel(0), options.level0_file_num_compaction_trigger); auto previous_num_level0_files = NumTableFilesAtLevel(0); // Fail the first file creation. env_->non_writable_count_ = 1; sleeping_task_low.WakeUp(); sleeping_task_low.WaitUntilDone(); // Expect compaction to fail here as one file will fail its // creation. ASSERT_TRUE(!dbfull()->TEST_WaitForCompact().ok()); // Verify L0 -> L1 compaction does fail. ASSERT_EQ(NumTableFilesAtLevel(1), 0); // Verify all L0 files are still there. ASSERT_EQ(NumTableFilesAtLevel(0), previous_num_level0_files); // All key-values must exist after compaction fails. for (int k = 0; k < kNumInsertedKeys; ++k) { ASSERT_EQ(values[k], Get(keys[k])); } env_->non_writable_count_ = 0; // Make sure RocksDB will not get into corrupted state. Reopen(options); // Verify again after reopen. for (int k = 0; k < kNumInsertedKeys; ++k) { ASSERT_EQ(values[k], Get(keys[k])); } } TEST_P(DBCompactionTestWithParam, DeleteMovedFileAfterCompaction) { // iter 1 -- delete_obsolete_files_period_micros == 0 for (int iter = 0; iter < 2; ++iter) { // This test triggers move compaction and verifies that the file is not // deleted when it's part of move compaction Options options = CurrentOptions(); options.env = env_; if (iter == 1) { options.delete_obsolete_files_period_micros = 0; } options.create_if_missing = true; options.level0_file_num_compaction_trigger = 2; // trigger compaction when we have 2 files OnFileDeletionListener* listener = new OnFileDeletionListener(); options.listeners.emplace_back(listener); options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); Random rnd(301); // Create two 1MB sst files for (int i = 0; i < 2; ++i) { // Create 1MB sst file for (int j = 0; j < 100; ++j) { ASSERT_OK(Put(Key(i * 50 + j), RandomString(&rnd, 10 * 1024))); } ASSERT_OK(Flush()); } // this should execute L0->L1 dbfull()->TEST_WaitForCompact(); ASSERT_EQ("0,1", FilesPerLevel(0)); // block compactions test::SleepingBackgroundTask sleeping_task; env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task, Env::Priority::LOW); options.max_bytes_for_level_base = 1024 * 1024; // 1 MB Reopen(options); std::unique_ptr iterator(db_->NewIterator(ReadOptions())); ASSERT_EQ("0,1", FilesPerLevel(0)); // let compactions go sleeping_task.WakeUp(); sleeping_task.WaitUntilDone(); // this should execute L1->L2 (move) dbfull()->TEST_WaitForCompact(); ASSERT_EQ("0,0,1", FilesPerLevel(0)); std::vector metadata; db_->GetLiveFilesMetaData(&metadata); ASSERT_EQ(metadata.size(), 1U); auto moved_file_name = metadata[0].name; // Create two more 1MB sst files for (int i = 0; i < 2; ++i) { // Create 1MB sst file for (int j = 0; j < 100; ++j) { ASSERT_OK(Put(Key(i * 50 + j + 100), RandomString(&rnd, 10 * 1024))); } ASSERT_OK(Flush()); } // this should execute both L0->L1 and L1->L2 (merge with previous file) dbfull()->TEST_WaitForCompact(); ASSERT_EQ("0,0,2", FilesPerLevel(0)); // iterator is holding the file ASSERT_OK(env_->FileExists(dbname_ + moved_file_name)); listener->SetExpectedFileName(dbname_ + moved_file_name); iterator.reset(); // this file should have been compacted away ASSERT_NOK(env_->FileExists(dbname_ + moved_file_name)); listener->VerifyMatchedCount(1); } } TEST_P(DBCompactionTestWithParam, CompressLevelCompaction) { if (!Zlib_Supported()) { return; } Options options = CurrentOptions(); options.memtable_factory.reset( new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1)); options.compaction_style = kCompactionStyleLevel; options.write_buffer_size = 110 << 10; // 110KB options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 2; options.num_levels = 4; options.max_bytes_for_level_base = 400 * 1024; options.max_subcompactions = max_subcompactions_; // First two levels have no compression, so that a trivial move between // them will be allowed. Level 2 has Zlib compression so that a trivial // move to level 3 will not be allowed options.compression_per_level = {kNoCompression, kNoCompression, kZlibCompression}; int matches = 0, didnt_match = 0, trivial_move = 0, non_trivial = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "Compaction::InputCompressionMatchesOutput:Matches", [&](void* /*arg*/) { matches++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "Compaction::InputCompressionMatchesOutput:DidntMatch", [&](void* /*arg*/) { didnt_match++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Reopen(options); Random rnd(301); int key_idx = 0; // First three 110KB files are going to level 0 // After that, (100K, 200K) for (int num = 0; num < 3; num++) { GenerateNewFile(&rnd, &key_idx); } // Another 110KB triggers a compaction to 400K file to fill up level 0 GenerateNewFile(&rnd, &key_idx); ASSERT_EQ(4, GetSstFileCount(dbname_)); // (1, 4) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4", FilesPerLevel(0)); // (1, 4, 1) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,1", FilesPerLevel(0)); // (1, 4, 2) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,2", FilesPerLevel(0)); // (1, 4, 3) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,3", FilesPerLevel(0)); // (1, 4, 4) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,4", FilesPerLevel(0)); // (1, 4, 5) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,5", FilesPerLevel(0)); // (1, 4, 6) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,6", FilesPerLevel(0)); // (1, 4, 7) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,7", FilesPerLevel(0)); // (1, 4, 8) GenerateNewFile(&rnd, &key_idx); ASSERT_EQ("1,4,8", FilesPerLevel(0)); ASSERT_EQ(matches, 12); // Currently, the test relies on the number of calls to // InputCompressionMatchesOutput() per compaction. const int kCallsToInputCompressionMatch = 2; ASSERT_EQ(didnt_match, 8 * kCallsToInputCompressionMatch); ASSERT_EQ(trivial_move, 12); ASSERT_EQ(non_trivial, 8); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Reopen(options); for (int i = 0; i < key_idx; i++) { auto v = Get(Key(i)); ASSERT_NE(v, "NOT_FOUND"); ASSERT_TRUE(v.size() == 1 || v.size() == 990); } Destroy(options); } TEST_F(DBCompactionTest, SanitizeCompactionOptionsTest) { Options options = CurrentOptions(); options.max_background_compactions = 5; options.soft_pending_compaction_bytes_limit = 0; options.hard_pending_compaction_bytes_limit = 100; options.create_if_missing = true; DestroyAndReopen(options); ASSERT_EQ(100, db_->GetOptions().soft_pending_compaction_bytes_limit); options.max_background_compactions = 3; options.soft_pending_compaction_bytes_limit = 200; options.hard_pending_compaction_bytes_limit = 150; DestroyAndReopen(options); ASSERT_EQ(150, db_->GetOptions().soft_pending_compaction_bytes_limit); } // This tests for a bug that could cause two level0 compactions running // concurrently // TODO(aekmekji): Make sure that the reason this fails when run with // max_subcompactions > 1 is not a correctness issue but just inherent to // running parallel L0-L1 compactions TEST_F(DBCompactionTest, SuggestCompactRangeNoTwoLevel0Compactions) { Options options = CurrentOptions(); options.compaction_style = kCompactionStyleLevel; options.write_buffer_size = 110 << 10; options.arena_block_size = 4 << 10; options.level0_file_num_compaction_trigger = 4; options.num_levels = 4; options.compression = kNoCompression; options.max_bytes_for_level_base = 450 << 10; options.target_file_size_base = 98 << 10; options.max_write_buffer_number = 2; options.max_background_compactions = 2; DestroyAndReopen(options); // fill up the DB Random rnd(301); for (int num = 0; num < 10; num++) { GenerateNewRandomFile(&rnd); } db_->CompactRange(CompactRangeOptions(), nullptr, nullptr); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"CompactionJob::Run():Start", "DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:1"}, {"DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:2", "CompactionJob::Run():End"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // trigger L0 compaction for (int num = 0; num < options.level0_file_num_compaction_trigger + 1; num++) { GenerateNewRandomFile(&rnd, /* nowait */ true); ASSERT_OK(Flush()); } TEST_SYNC_POINT( "DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:1"); GenerateNewRandomFile(&rnd, /* nowait */ true); dbfull()->TEST_WaitForFlushMemTable(); ASSERT_OK(experimental::SuggestCompactRange(db_, nullptr, nullptr)); for (int num = 0; num < options.level0_file_num_compaction_trigger + 1; num++) { GenerateNewRandomFile(&rnd, /* nowait */ true); ASSERT_OK(Flush()); } TEST_SYNC_POINT( "DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:2"); dbfull()->TEST_WaitForCompact(); } static std::string ShortKey(int i) { assert(i < 10000); char buf[100]; snprintf(buf, sizeof(buf), "key%04d", i); return std::string(buf); } TEST_P(DBCompactionTestWithParam, ForceBottommostLevelCompaction) { int32_t trivial_move = 0; int32_t non_trivial_move = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:TrivialMove", [&](void* /*arg*/) { trivial_move++; }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:NonTrivial", [&](void* /*arg*/) { non_trivial_move++; }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // The key size is guaranteed to be <= 8 class ShortKeyComparator : public Comparator { int Compare(const rocksdb::Slice& a, const rocksdb::Slice& b) const override { assert(a.size() <= 8); assert(b.size() <= 8); return BytewiseComparator()->Compare(a, b); } const char* Name() const override { return "ShortKeyComparator"; } void FindShortestSeparator(std::string* start, const rocksdb::Slice& limit) const override { return BytewiseComparator()->FindShortestSeparator(start, limit); } void FindShortSuccessor(std::string* key) const override { return BytewiseComparator()->FindShortSuccessor(key); } } short_key_cmp; Options options = CurrentOptions(); options.target_file_size_base = 100000000; options.write_buffer_size = 100000000; options.max_subcompactions = max_subcompactions_; options.comparator = &short_key_cmp; DestroyAndReopen(options); int32_t value_size = 10 * 1024; // 10 KB Random rnd(301); std::vector values; // File with keys [ 0 => 99 ] for (int i = 0; i < 100; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(ShortKey(i), values[i])); } ASSERT_OK(Flush()); ASSERT_EQ("1", FilesPerLevel(0)); // Compaction will do L0=>L1 (trivial move) then move L1 files to L3 CompactRangeOptions compact_options; compact_options.change_level = true; compact_options.target_level = 3; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); ASSERT_EQ("0,0,0,1", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 1); ASSERT_EQ(non_trivial_move, 0); // File with keys [ 100 => 199 ] for (int i = 100; i < 200; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(ShortKey(i), values[i])); } ASSERT_OK(Flush()); ASSERT_EQ("1,0,0,1", FilesPerLevel(0)); // Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves) // then compacte the bottommost level L3=>L3 (non trivial move) compact_options = CompactRangeOptions(); compact_options.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); ASSERT_EQ("0,0,0,1", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 4); ASSERT_EQ(non_trivial_move, 1); // File with keys [ 200 => 299 ] for (int i = 200; i < 300; i++) { values.push_back(RandomString(&rnd, value_size)); ASSERT_OK(Put(ShortKey(i), values[i])); } ASSERT_OK(Flush()); ASSERT_EQ("1,0,0,1", FilesPerLevel(0)); trivial_move = 0; non_trivial_move = 0; compact_options = CompactRangeOptions(); compact_options.bottommost_level_compaction = BottommostLevelCompaction::kSkip; // Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves) // and will skip bottommost level compaction ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr)); ASSERT_EQ("0,0,0,2", FilesPerLevel(0)); ASSERT_EQ(trivial_move, 3); ASSERT_EQ(non_trivial_move, 0); for (int i = 0; i < 300; i++) { ASSERT_EQ(Get(ShortKey(i)), values[i]); } rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_P(DBCompactionTestWithParam, IntraL0Compaction) { Options options = CurrentOptions(); options.compression = kNoCompression; options.level0_file_num_compaction_trigger = 5; options.max_background_compactions = 2; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); const size_t kValueSize = 1 << 20; Random rnd(301); std::string value(RandomString(&rnd, kValueSize)); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"LevelCompactionPicker::PickCompactionBySize:0", "CompactionJob::Run():Start"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // index: 0 1 2 3 4 5 6 7 8 9 // size: 1MB 1MB 1MB 1MB 1MB 2MB 1MB 1MB 1MB 1MB // score: 1.5 1.3 1.5 2.0 inf // // Files 0-4 will be included in an L0->L1 compaction. // // L0->L0 will be triggered since the sync points guarantee compaction to base // level is still blocked when files 5-9 trigger another compaction. // // Files 6-9 are the longest span of available files for which // work-per-deleted-file decreases (see "score" row above). for (int i = 0; i < 10; ++i) { ASSERT_OK(Put(Key(0), "")); // prevents trivial move if (i == 5) { ASSERT_OK(Put(Key(i + 1), value + value)); } else { ASSERT_OK(Put(Key(i + 1), value)); } ASSERT_OK(Flush()); } dbfull()->TEST_WaitForCompact(); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); std::vector> level_to_files; dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(), &level_to_files); ASSERT_GE(level_to_files.size(), 2); // at least L0 and L1 // L0 has the 2MB file (not compacted) and 4MB file (output of L0->L0) ASSERT_EQ(2, level_to_files[0].size()); ASSERT_GT(level_to_files[1].size(), 0); for (int i = 0; i < 2; ++i) { ASSERT_GE(level_to_files[0][i].fd.file_size, 1 << 21); } } TEST_P(DBCompactionTestWithParam, IntraL0CompactionDoesNotObsoleteDeletions) { // regression test for issue #2722: L0->L0 compaction can resurrect deleted // keys from older L0 files if L1+ files' key-ranges do not include the key. Options options = CurrentOptions(); options.compression = kNoCompression; options.level0_file_num_compaction_trigger = 5; options.max_background_compactions = 2; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); const size_t kValueSize = 1 << 20; Random rnd(301); std::string value(RandomString(&rnd, kValueSize)); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"LevelCompactionPicker::PickCompactionBySize:0", "CompactionJob::Run():Start"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // index: 0 1 2 3 4 5 6 7 8 9 // size: 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB // score: 1.25 1.33 1.5 2.0 inf // // Files 0-4 will be included in an L0->L1 compaction. // // L0->L0 will be triggered since the sync points guarantee compaction to base // level is still blocked when files 5-9 trigger another compaction. All files // 5-9 are included in the L0->L0 due to work-per-deleted file decreasing. // // Put a key-value in files 0-4. Delete that key in files 5-9. Verify the // L0->L0 preserves the deletion such that the key remains deleted. for (int i = 0; i < 10; ++i) { // key 0 serves both to prevent trivial move and as the key we want to // verify is not resurrected by L0->L0 compaction. if (i < 5) { ASSERT_OK(Put(Key(0), "")); } else { ASSERT_OK(Delete(Key(0))); } ASSERT_OK(Put(Key(i + 1), value)); ASSERT_OK(Flush()); } dbfull()->TEST_WaitForCompact(); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); std::vector> level_to_files; dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(), &level_to_files); ASSERT_GE(level_to_files.size(), 2); // at least L0 and L1 // L0 has a single output file from L0->L0 ASSERT_EQ(1, level_to_files[0].size()); ASSERT_GT(level_to_files[1].size(), 0); ASSERT_GE(level_to_files[0][0].fd.file_size, 1 << 22); ReadOptions roptions; std::string result; ASSERT_TRUE(db_->Get(roptions, Key(0), &result).IsNotFound()); } TEST_P(DBCompactionTestWithParam, FullCompactionInBottomPriThreadPool) { const int kNumFilesTrigger = 3; Env::Default()->SetBackgroundThreads(1, Env::Priority::BOTTOM); for (bool use_universal_compaction : {false, true}) { Options options = CurrentOptions(); if (use_universal_compaction) { options.compaction_style = kCompactionStyleUniversal; } else { options.compaction_style = kCompactionStyleLevel; options.level_compaction_dynamic_level_bytes = true; } options.num_levels = 4; options.write_buffer_size = 100 << 10; // 100KB options.target_file_size_base = 32 << 10; // 32KB options.level0_file_num_compaction_trigger = kNumFilesTrigger; // Trigger compaction if size amplification exceeds 110% options.compaction_options_universal.max_size_amplification_percent = 110; DestroyAndReopen(options); int num_bottom_pri_compactions = 0; SyncPoint::GetInstance()->SetCallBack( "DBImpl::BGWorkBottomCompaction", [&](void* /*arg*/) { ++num_bottom_pri_compactions; }); SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int num = 0; num < kNumFilesTrigger; num++) { ASSERT_EQ(NumSortedRuns(), num); int key_idx = 0; GenerateNewFile(&rnd, &key_idx); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ(1, num_bottom_pri_compactions); // Verify that size amplification did occur ASSERT_EQ(NumSortedRuns(), 1); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } Env::Default()->SetBackgroundThreads(0, Env::Priority::BOTTOM); } TEST_F(DBCompactionTest, OptimizedDeletionObsoleting) { // Deletions can be dropped when compacted to non-last level if they fall // outside the lower-level files' key-ranges. const int kNumL0Files = 4; Options options = CurrentOptions(); options.level0_file_num_compaction_trigger = kNumL0Files; options.statistics = rocksdb::CreateDBStatistics(); DestroyAndReopen(options); // put key 1 and 3 in separate L1, L2 files. // So key 0, 2, and 4+ fall outside these levels' key-ranges. for (int level = 2; level >= 1; --level) { for (int i = 0; i < 2; ++i) { Put(Key(2 * i + 1), "val"); Flush(); } MoveFilesToLevel(level); ASSERT_EQ(2, NumTableFilesAtLevel(level)); } // Delete keys in range [1, 4]. These L0 files will be compacted with L1: // - Tombstones for keys 2 and 4 can be dropped early. // - Tombstones for keys 1 and 3 must be kept due to L2 files' key-ranges. for (int i = 0; i < kNumL0Files; ++i) { Put(Key(0), "val"); // sentinel to prevent trivial move Delete(Key(i + 1)); Flush(); } dbfull()->TEST_WaitForCompact(); for (int i = 0; i < kNumL0Files; ++i) { std::string value; ASSERT_TRUE(db_->Get(ReadOptions(), Key(i + 1), &value).IsNotFound()); } ASSERT_EQ(2, options.statistics->getTickerCount( COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE)); ASSERT_EQ(2, options.statistics->getTickerCount(COMPACTION_KEY_DROP_OBSOLETE)); } TEST_F(DBCompactionTest, CompactFilesPendingL0Bug) { // https://www.facebook.com/groups/rocksdb.dev/permalink/1389452781153232/ // CompactFiles() had a bug where it failed to pick a compaction when an L0 // compaction existed, but marked it as scheduled anyways. It'd never be // unmarked as scheduled, so future compactions or DB close could hang. const int kNumL0Files = 5; Options options = CurrentOptions(); options.level0_file_num_compaction_trigger = kNumL0Files - 1; options.max_background_compactions = 2; DestroyAndReopen(options); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"LevelCompactionPicker::PickCompaction:Return", "DBCompactionTest::CompactFilesPendingL0Bug:Picked"}, {"DBCompactionTest::CompactFilesPendingL0Bug:ManualCompacted", "DBImpl::BackgroundCompaction:NonTrivial:AfterRun"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); auto schedule_multi_compaction_token = dbfull()->TEST_write_controler().GetCompactionPressureToken(); // Files 0-3 will be included in an L0->L1 compaction. // // File 4 will be included in a call to CompactFiles() while the first // compaction is running. for (int i = 0; i < kNumL0Files - 1; ++i) { ASSERT_OK(Put(Key(0), "val")); // sentinel to prevent trivial move ASSERT_OK(Put(Key(i + 1), "val")); ASSERT_OK(Flush()); } TEST_SYNC_POINT("DBCompactionTest::CompactFilesPendingL0Bug:Picked"); // file 4 flushed after 0-3 picked ASSERT_OK(Put(Key(kNumL0Files), "val")); ASSERT_OK(Flush()); // previously DB close would hang forever as this situation caused scheduled // compactions count to never decrement to zero. ColumnFamilyMetaData cf_meta; dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta); ASSERT_EQ(kNumL0Files, cf_meta.levels[0].files.size()); std::vector input_filenames; input_filenames.push_back(cf_meta.levels[0].files.front().name); ASSERT_OK(dbfull() ->CompactFiles(CompactionOptions(), input_filenames, 0 /* output_level */)); TEST_SYNC_POINT("DBCompactionTest::CompactFilesPendingL0Bug:ManualCompacted"); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, CompactFilesOverlapInL0Bug) { // Regression test for bug of not pulling in L0 files that overlap the user- // specified input files in time- and key-ranges. Put(Key(0), "old_val"); Flush(); Put(Key(0), "new_val"); Flush(); ColumnFamilyMetaData cf_meta; dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta); ASSERT_GE(cf_meta.levels.size(), 2); ASSERT_EQ(2, cf_meta.levels[0].files.size()); // Compacting {new L0 file, L1 file} should pull in the old L0 file since it // overlaps in key-range and time-range. std::vector input_filenames; input_filenames.push_back(cf_meta.levels[0].files.front().name); ASSERT_OK(dbfull()->CompactFiles(CompactionOptions(), input_filenames, 1 /* output_level */)); ASSERT_EQ("new_val", Get(Key(0))); } TEST_F(DBCompactionTest, CompactBottomLevelFilesWithDeletions) { // bottom-level files may contain deletions due to snapshots protecting the // deleted keys. Once the snapshot is released, we should see files with many // such deletions undergo single-file compactions. const int kNumKeysPerFile = 1024; const int kNumLevelFiles = 4; const int kValueSize = 128; Options options = CurrentOptions(); options.compression = kNoCompression; options.level0_file_num_compaction_trigger = kNumLevelFiles; // inflate it a bit to account for key/metadata overhead options.target_file_size_base = 120 * kNumKeysPerFile * kValueSize / 100; CreateAndReopenWithCF({"one"}, options); Random rnd(301); const Snapshot* snapshot = nullptr; for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } if (i == kNumLevelFiles - 1) { snapshot = db_->GetSnapshot(); // delete every other key after grabbing a snapshot, so these deletions // and the keys they cover can't be dropped until after the snapshot is // released. for (int j = 0; j < kNumLevelFiles * kNumKeysPerFile; j += 2) { ASSERT_OK(Delete(Key(j))); } } Flush(); if (i < kNumLevelFiles - 1) { ASSERT_EQ(i + 1, NumTableFilesAtLevel(0)); } } dbfull()->TEST_WaitForCompact(); ASSERT_EQ(kNumLevelFiles, NumTableFilesAtLevel(1)); std::vector pre_release_metadata, post_release_metadata; db_->GetLiveFilesMetaData(&pre_release_metadata); // just need to bump seqnum so ReleaseSnapshot knows the newest key in the SST // files does not need to be preserved in case of a future snapshot. ASSERT_OK(Put(Key(0), "val")); ASSERT_NE(kMaxSequenceNumber, dbfull()->bottommost_files_mark_threshold_); // release snapshot and wait for compactions to finish. Single-file // compactions should be triggered, which reduce the size of each bottom-level // file without changing file count. db_->ReleaseSnapshot(snapshot); ASSERT_EQ(kMaxSequenceNumber, dbfull()->bottommost_files_mark_threshold_); rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); ASSERT_TRUE(compaction->compaction_reason() == CompactionReason::kBottommostFiles); }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); dbfull()->TEST_WaitForCompact(); db_->GetLiveFilesMetaData(&post_release_metadata); ASSERT_EQ(pre_release_metadata.size(), post_release_metadata.size()); for (size_t i = 0; i < pre_release_metadata.size(); ++i) { const auto& pre_file = pre_release_metadata[i]; const auto& post_file = post_release_metadata[i]; ASSERT_EQ(1, pre_file.level); ASSERT_EQ(1, post_file.level); // each file is smaller than it was before as it was rewritten without // deletion markers/deleted keys. ASSERT_LT(post_file.size, pre_file.size); } rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, LevelCompactExpiredTtlFiles) { const int kNumKeysPerFile = 32; const int kNumLevelFiles = 2; const int kValueSize = 1024; Options options = CurrentOptions(); options.compression = kNoCompression; options.ttl = 24 * 60 * 60; // 24 hours options.max_open_files = -1; env_->time_elapse_only_sleep_ = false; options.env = env_; env_->addon_time_.store(0); DestroyAndReopen(options); Random rnd(301); for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } Flush(); } dbfull()->TEST_WaitForCompact(); MoveFilesToLevel(3); ASSERT_EQ("0,0,0,2", FilesPerLevel()); // Delete previously written keys. for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK(Delete(Key(i * kNumKeysPerFile + j))); } Flush(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ("2,0,0,2", FilesPerLevel()); MoveFilesToLevel(1); ASSERT_EQ("0,2,0,2", FilesPerLevel()); env_->addon_time_.fetch_add(36 * 60 * 60); // 36 hours ASSERT_EQ("0,2,0,2", FilesPerLevel()); // Just do a simple write + flush so that the Ttl expired files get // compacted. ASSERT_OK(Put("a", "1")); Flush(); rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); ASSERT_TRUE(compaction->compaction_reason() == CompactionReason::kTtl); }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); dbfull()->TEST_WaitForCompact(); // All non-L0 files are deleted, as they contained only deleted data. ASSERT_EQ("1", FilesPerLevel()); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); // Test dynamically changing ttl. env_->addon_time_.store(0); DestroyAndReopen(options); for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } Flush(); } dbfull()->TEST_WaitForCompact(); MoveFilesToLevel(3); ASSERT_EQ("0,0,0,2", FilesPerLevel()); // Delete previously written keys. for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK(Delete(Key(i * kNumKeysPerFile + j))); } Flush(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ("2,0,0,2", FilesPerLevel()); MoveFilesToLevel(1); ASSERT_EQ("0,2,0,2", FilesPerLevel()); // Move time forward by 12 hours, and make sure that compaction still doesn't // trigger as ttl is set to 24 hours. env_->addon_time_.fetch_add(12 * 60 * 60); ASSERT_OK(Put("a", "1")); Flush(); dbfull()->TEST_WaitForCompact(); ASSERT_EQ("1,2,0,2", FilesPerLevel()); rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); ASSERT_TRUE(compaction->compaction_reason() == CompactionReason::kTtl); }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // Dynamically change ttl to 10 hours. // This should trigger a ttl compaction, as 12 hours have already passed. ASSERT_OK(dbfull()->SetOptions({{"ttl", "36000"}})); dbfull()->TEST_WaitForCompact(); // All non-L0 files are deleted, as they contained only deleted data. ASSERT_EQ("1", FilesPerLevel()); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, LevelPeriodicCompaction) { const int kNumKeysPerFile = 32; const int kNumLevelFiles = 2; const int kValueSize = 100; Options options = CurrentOptions(); options.periodic_compaction_seconds = 48 * 60 * 60; // 2 days options.max_open_files = -1; // needed for ttl compaction env_->time_elapse_only_sleep_ = false; options.env = env_; env_->addon_time_.store(0); DestroyAndReopen(options); int periodic_compactions = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); auto compaction_reason = compaction->compaction_reason(); if (compaction_reason == CompactionReason::kPeriodicCompaction) { periodic_compactions++; } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } Flush(); } dbfull()->TEST_WaitForCompact(); ASSERT_EQ("2", FilesPerLevel()); ASSERT_EQ(0, periodic_compactions); // Add 50 hours and do a write env_->addon_time_.fetch_add(50 * 60 * 60); ASSERT_OK(Put("a", "1")); Flush(); dbfull()->TEST_WaitForCompact(); // Assert that the files stay in the same level ASSERT_EQ("3", FilesPerLevel()); // The two old files go through the periodic compaction process ASSERT_EQ(2, periodic_compactions); MoveFilesToLevel(1); ASSERT_EQ("0,3", FilesPerLevel()); // Add another 50 hours and do another write env_->addon_time_.fetch_add(50 * 60 * 60); ASSERT_OK(Put("b", "2")); Flush(); dbfull()->TEST_WaitForCompact(); ASSERT_EQ("1,3", FilesPerLevel()); // The three old files now go through the periodic compaction process. 2 + 3. ASSERT_EQ(5, periodic_compactions); // Add another 50 hours and do another write env_->addon_time_.fetch_add(50 * 60 * 60); ASSERT_OK(Put("c", "3")); Flush(); dbfull()->TEST_WaitForCompact(); ASSERT_EQ("2,3", FilesPerLevel()); // The four old files now go through the periodic compaction process. 5 + 4. ASSERT_EQ(9, periodic_compactions); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, LevelPeriodicCompactionWithOldDB) { // This test makes sure that periodic compactions are working with a DB // where file_creation_time of some files is 0. // After compactions the new files are created with a valid file_creation_time const int kNumKeysPerFile = 32; const int kNumFiles = 4; const int kValueSize = 100; Options options = CurrentOptions(); options.max_open_files = -1; // needed for ttl compaction env_->time_elapse_only_sleep_ = false; options.env = env_; env_->addon_time_.store(0); DestroyAndReopen(options); int periodic_compactions = 0; bool set_file_creation_time_to_zero = true; bool set_creation_time_to_zero = true; rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); auto compaction_reason = compaction->compaction_reason(); if (compaction_reason == CompactionReason::kPeriodicCompaction) { periodic_compactions++; } }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "PropertyBlockBuilder::AddTableProperty:Start", [&](void* arg) { TableProperties* props = reinterpret_cast(arg); if (set_file_creation_time_to_zero) { props->file_creation_time = 0; } if (set_creation_time_to_zero) { props->creation_time = 0; } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int i = 0; i < kNumFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } Flush(); // Move the first two files to L2. if (i == 1) { MoveFilesToLevel(2); set_creation_time_to_zero = false; } } ASSERT_OK(dbfull()->TEST_WaitForCompact()); ASSERT_EQ("2,0,2", FilesPerLevel()); ASSERT_EQ(0, periodic_compactions); Close(); set_file_creation_time_to_zero = false; // Forward the clock by 2 days. env_->addon_time_.fetch_add(2 * 24 * 60 * 60); options.periodic_compaction_seconds = 1 * 24 * 60 * 60; // 1 day Reopen(options); ASSERT_OK(dbfull()->TEST_WaitForCompact()); ASSERT_EQ("2,0,2", FilesPerLevel()); // Make sure that all files go through periodic compaction. ASSERT_EQ(kNumFiles, periodic_compactions); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, LevelPeriodicAndTtlCompaction) { const int kNumKeysPerFile = 32; const int kNumLevelFiles = 2; const int kValueSize = 100; Options options = CurrentOptions(); options.ttl = 10 * 60 * 60; // 10 hours options.periodic_compaction_seconds = 48 * 60 * 60; // 2 days options.max_open_files = -1; // needed for both periodic and ttl compactions env_->time_elapse_only_sleep_ = false; options.env = env_; env_->addon_time_.store(0); DestroyAndReopen(options); int periodic_compactions = 0; int ttl_compactions = 0; rocksdb::SyncPoint::GetInstance()->SetCallBack( "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) { Compaction* compaction = reinterpret_cast(arg); auto compaction_reason = compaction->compaction_reason(); if (compaction_reason == CompactionReason::kPeriodicCompaction) { periodic_compactions++; } else if (compaction_reason == CompactionReason::kTtl) { ttl_compactions++; } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int i = 0; i < kNumLevelFiles; ++i) { for (int j = 0; j < kNumKeysPerFile; ++j) { ASSERT_OK( Put(Key(i * kNumKeysPerFile + j), RandomString(&rnd, kValueSize))); } Flush(); } dbfull()->TEST_WaitForCompact(); MoveFilesToLevel(3); ASSERT_EQ("0,0,0,2", FilesPerLevel()); ASSERT_EQ(0, periodic_compactions); ASSERT_EQ(0, ttl_compactions); // Add some time greater than periodic_compaction_time. env_->addon_time_.fetch_add(50 * 60 * 60); ASSERT_OK(Put("a", "1")); Flush(); dbfull()->TEST_WaitForCompact(); // Files in the bottom level go through periodic compactions. ASSERT_EQ("1,0,0,2", FilesPerLevel()); ASSERT_EQ(2, periodic_compactions); ASSERT_EQ(0, ttl_compactions); // Add a little more time than ttl env_->addon_time_.fetch_add(11 * 60 * 60); ASSERT_OK(Put("b", "1")); Flush(); dbfull()->TEST_WaitForCompact(); // Notice that the previous file in level 1 falls down to the bottom level // due to ttl compactions, one level at a time. // And bottom level files don't get picked up for ttl compactions. ASSERT_EQ("1,0,0,3", FilesPerLevel()); ASSERT_EQ(2, periodic_compactions); ASSERT_EQ(3, ttl_compactions); // Add some time greater than periodic_compaction_time. env_->addon_time_.fetch_add(50 * 60 * 60); ASSERT_OK(Put("c", "1")); Flush(); dbfull()->TEST_WaitForCompact(); // Previous L0 file falls one level at a time to bottom level due to ttl. // And all 4 bottom files go through periodic compactions. ASSERT_EQ("1,0,0,4", FilesPerLevel()); ASSERT_EQ(6, periodic_compactions); ASSERT_EQ(6, ttl_compactions); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, CompactRangeDelayedByL0FileCount) { // Verify that, when `CompactRangeOptions::allow_write_stall == false`, manual // compaction only triggers flush after it's sure stall won't be triggered for // L0 file count going too high. const int kNumL0FilesTrigger = 4; const int kNumL0FilesLimit = 8; // i == 0: verifies normal case where stall is avoided by delay // i == 1: verifies no delay in edge case where stall trigger is same as // compaction trigger, so stall can't be avoided for (int i = 0; i < 2; ++i) { Options options = CurrentOptions(); options.level0_slowdown_writes_trigger = kNumL0FilesLimit; if (i == 0) { options.level0_file_num_compaction_trigger = kNumL0FilesTrigger; } else { options.level0_file_num_compaction_trigger = kNumL0FilesLimit; } Reopen(options); if (i == 0) { // ensure the auto compaction doesn't finish until manual compaction has // had a chance to be delayed. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait", "CompactionJob::Run():End"}}); } else { // ensure the auto-compaction doesn't finish until manual compaction has // continued without delay. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::FlushMemTable:StallWaitDone", "CompactionJob::Run():End"}}); } rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int j = 0; j < kNumL0FilesLimit - 1; ++j) { for (int k = 0; k < 2; ++k) { ASSERT_OK(Put(Key(k), RandomString(&rnd, 1024))); } Flush(); } auto manual_compaction_thread = port::Thread([this]() { CompactRangeOptions cro; cro.allow_write_stall = false; db_->CompactRange(cro, nullptr, nullptr); }); manual_compaction_thread.join(); dbfull()->TEST_WaitForCompact(); ASSERT_EQ(0, NumTableFilesAtLevel(0)); ASSERT_GT(NumTableFilesAtLevel(1), 0); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } } TEST_F(DBCompactionTest, CompactRangeDelayedByImmMemTableCount) { // Verify that, when `CompactRangeOptions::allow_write_stall == false`, manual // compaction only triggers flush after it's sure stall won't be triggered for // immutable memtable count going too high. const int kNumImmMemTableLimit = 8; // i == 0: verifies normal case where stall is avoided by delay // i == 1: verifies no delay in edge case where stall trigger is same as flush // trigger, so stall can't be avoided for (int i = 0; i < 2; ++i) { Options options = CurrentOptions(); options.disable_auto_compactions = true; // the delay limit is one less than the stop limit. This test focuses on // avoiding delay limit, but this option sets stop limit, so add one. options.max_write_buffer_number = kNumImmMemTableLimit + 1; if (i == 1) { options.min_write_buffer_number_to_merge = kNumImmMemTableLimit; } Reopen(options); if (i == 0) { // ensure the flush doesn't finish until manual compaction has had a // chance to be delayed. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait", "FlushJob::WriteLevel0Table"}}); } else { // ensure the flush doesn't finish until manual compaction has continued // without delay. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::FlushMemTable:StallWaitDone", "FlushJob::WriteLevel0Table"}}); } rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int j = 0; j < kNumImmMemTableLimit - 1; ++j) { ASSERT_OK(Put(Key(0), RandomString(&rnd, 1024))); FlushOptions flush_opts; flush_opts.wait = false; flush_opts.allow_write_stall = true; dbfull()->Flush(flush_opts); } auto manual_compaction_thread = port::Thread([this]() { CompactRangeOptions cro; cro.allow_write_stall = false; db_->CompactRange(cro, nullptr, nullptr); }); manual_compaction_thread.join(); dbfull()->TEST_WaitForFlushMemTable(); ASSERT_EQ(0, NumTableFilesAtLevel(0)); ASSERT_GT(NumTableFilesAtLevel(1), 0); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } } TEST_F(DBCompactionTest, CompactRangeShutdownWhileDelayed) { // Verify that, when `CompactRangeOptions::allow_write_stall == false`, delay // does not hang if CF is dropped or DB is closed const int kNumL0FilesTrigger = 4; const int kNumL0FilesLimit = 8; Options options = CurrentOptions(); options.level0_file_num_compaction_trigger = kNumL0FilesTrigger; options.level0_slowdown_writes_trigger = kNumL0FilesLimit; // i == 0: DB::DropColumnFamily() on CompactRange's target CF unblocks it // i == 1: DB::CancelAllBackgroundWork() unblocks CompactRange. This is to // simulate what happens during Close as we can't call Close (it // blocks on the auto-compaction, making a cycle). for (int i = 0; i < 2; ++i) { CreateAndReopenWithCF({"one"}, options); // The calls to close CF/DB wait until the manual compaction stalls. // The auto-compaction waits until the manual compaction finishes to ensure // the signal comes from closing CF/DB, not from compaction making progress. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait", "DBCompactionTest::CompactRangeShutdownWhileDelayed:PreShutdown"}, {"DBCompactionTest::CompactRangeShutdownWhileDelayed:PostManual", "CompactionJob::Run():End"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); Random rnd(301); for (int j = 0; j < kNumL0FilesLimit - 1; ++j) { for (int k = 0; k < 2; ++k) { ASSERT_OK(Put(1, Key(k), RandomString(&rnd, 1024))); } Flush(1); } auto manual_compaction_thread = port::Thread([this, i]() { CompactRangeOptions cro; cro.allow_write_stall = false; Status s = db_->CompactRange(cro, handles_[1], nullptr, nullptr); if (i == 0) { ASSERT_TRUE(db_->CompactRange(cro, handles_[1], nullptr, nullptr) .IsColumnFamilyDropped()); } else { ASSERT_TRUE(db_->CompactRange(cro, handles_[1], nullptr, nullptr) .IsShutdownInProgress()); } }); TEST_SYNC_POINT( "DBCompactionTest::CompactRangeShutdownWhileDelayed:PreShutdown"); if (i == 0) { ASSERT_OK(db_->DropColumnFamily(handles_[1])); } else { dbfull()->CancelAllBackgroundWork(false /* wait */); } manual_compaction_thread.join(); TEST_SYNC_POINT( "DBCompactionTest::CompactRangeShutdownWhileDelayed:PostManual"); dbfull()->TEST_WaitForCompact(); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } } TEST_F(DBCompactionTest, CompactRangeSkipFlushAfterDelay) { // Verify that, when `CompactRangeOptions::allow_write_stall == false`, // CompactRange skips its flush if the delay is long enough that the memtables // existing at the beginning of the call have already been flushed. const int kNumL0FilesTrigger = 4; const int kNumL0FilesLimit = 8; Options options = CurrentOptions(); options.level0_slowdown_writes_trigger = kNumL0FilesLimit; options.level0_file_num_compaction_trigger = kNumL0FilesTrigger; Reopen(options); Random rnd(301); // The manual flush includes the memtable that was active when CompactRange // began. So it unblocks CompactRange and precludes its flush. Throughout the // test, stall conditions are upheld via high L0 file count. rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait", "DBCompactionTest::CompactRangeSkipFlushAfterDelay:PreFlush"}, {"DBCompactionTest::CompactRangeSkipFlushAfterDelay:PostFlush", "DBImpl::FlushMemTable:StallWaitDone"}, {"DBImpl::FlushMemTable:StallWaitDone", "CompactionJob::Run():End"}}); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); //used for the delayable flushes FlushOptions flush_opts; flush_opts.allow_write_stall = true; for (int i = 0; i < kNumL0FilesLimit - 1; ++i) { for (int j = 0; j < 2; ++j) { ASSERT_OK(Put(Key(j), RandomString(&rnd, 1024))); } dbfull()->Flush(flush_opts); } auto manual_compaction_thread = port::Thread([this]() { CompactRangeOptions cro; cro.allow_write_stall = false; db_->CompactRange(cro, nullptr, nullptr); }); TEST_SYNC_POINT("DBCompactionTest::CompactRangeSkipFlushAfterDelay:PreFlush"); Put(ToString(0), RandomString(&rnd, 1024)); dbfull()->Flush(flush_opts); Put(ToString(0), RandomString(&rnd, 1024)); TEST_SYNC_POINT("DBCompactionTest::CompactRangeSkipFlushAfterDelay:PostFlush"); manual_compaction_thread.join(); // If CompactRange's flush was skipped, the final Put above will still be // in the active memtable. std::string num_keys_in_memtable; db_->GetProperty(DB::Properties::kNumEntriesActiveMemTable, &num_keys_in_memtable); ASSERT_EQ(ToString(1), num_keys_in_memtable); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); } TEST_F(DBCompactionTest, CompactRangeFlushOverlappingMemtable) { // Verify memtable only gets flushed if it contains data overlapping the range // provided to `CompactRange`. Tests all kinds of overlap/non-overlap. const int kNumEndpointKeys = 5; std::string keys[kNumEndpointKeys] = {"a", "b", "c", "d", "e"}; Options options = CurrentOptions(); options.disable_auto_compactions = true; Reopen(options); // One extra iteration for nullptr, which means left side of interval is // unbounded. for (int i = 0; i <= kNumEndpointKeys; ++i) { Slice begin; Slice* begin_ptr; if (i == 0) { begin_ptr = nullptr; } else { begin = keys[i - 1]; begin_ptr = &begin; } // Start at `i` so right endpoint comes after left endpoint. One extra // iteration for nullptr, which means right side of interval is unbounded. for (int j = std::max(0, i - 1); j <= kNumEndpointKeys; ++j) { Slice end; Slice* end_ptr; if (j == kNumEndpointKeys) { end_ptr = nullptr; } else { end = keys[j]; end_ptr = &end; } ASSERT_OK(Put("b", "val")); ASSERT_OK(Put("d", "val")); CompactRangeOptions compact_range_opts; ASSERT_OK(db_->CompactRange(compact_range_opts, begin_ptr, end_ptr)); uint64_t get_prop_tmp, num_memtable_entries = 0; ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumEntriesImmMemTables, &get_prop_tmp)); num_memtable_entries += get_prop_tmp; ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumEntriesActiveMemTable, &get_prop_tmp)); num_memtable_entries += get_prop_tmp; if (begin_ptr == nullptr || end_ptr == nullptr || (i <= 4 && j >= 1 && (begin != "c" || end != "c"))) { // In this case `CompactRange`'s range overlapped in some way with the // memtable's range, so flush should've happened. Then "b" and "d" won't // be in the memtable. ASSERT_EQ(0, num_memtable_entries); } else { ASSERT_EQ(2, num_memtable_entries); // flush anyways to prepare for next iteration db_->Flush(FlushOptions()); } } } } TEST_F(DBCompactionTest, CompactionStatsTest) { Options options = CurrentOptions(); options.level0_file_num_compaction_trigger = 2; CompactionStatsCollector* collector = new CompactionStatsCollector(); options.listeners.emplace_back(collector); DestroyAndReopen(options); for (int i = 0; i < 32; i++) { for (int j = 0; j < 5000; j++) { Put(std::to_string(j), std::string(1, 'A')); } ASSERT_OK(Flush()); ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable()); } dbfull()->TEST_WaitForCompact(); ColumnFamilyHandleImpl* cfh = static_cast(dbfull()->DefaultColumnFamily()); ColumnFamilyData* cfd = cfh->cfd(); VerifyCompactionStats(*cfd, *collector); } TEST_F(DBCompactionTest, CompactFilesOutputRangeConflict) { // LSM setup: // L1: [ba bz] // L2: [a b] [c d] // L3: [a b] [c d] // // Thread 1: Thread 2: // Begin compacting all L2->L3 // Compact [ba bz] L1->L3 // End compacting all L2->L3 // // The compaction operation in thread 2 should be disallowed because the range // overlaps with the compaction in thread 1, which also covers that range in // L3. Options options = CurrentOptions(); FlushedFileCollector* collector = new FlushedFileCollector(); options.listeners.emplace_back(collector); Reopen(options); for (int level = 3; level >= 2; --level) { ASSERT_OK(Put("a", "val")); ASSERT_OK(Put("b", "val")); ASSERT_OK(Flush()); ASSERT_OK(Put("c", "val")); ASSERT_OK(Put("d", "val")); ASSERT_OK(Flush()); MoveFilesToLevel(level); } ASSERT_OK(Put("ba", "val")); ASSERT_OK(Put("bz", "val")); ASSERT_OK(Flush()); MoveFilesToLevel(1); SyncPoint::GetInstance()->LoadDependency({ {"CompactFilesImpl:0", "DBCompactionTest::CompactFilesOutputRangeConflict:Thread2Begin"}, {"DBCompactionTest::CompactFilesOutputRangeConflict:Thread2End", "CompactFilesImpl:1"}, }); SyncPoint::GetInstance()->EnableProcessing(); auto bg_thread = port::Thread([&]() { // Thread 1 std::vector filenames = collector->GetFlushedFiles(); filenames.pop_back(); ASSERT_OK(db_->CompactFiles(CompactionOptions(), filenames, 3 /* output_level */)); }); // Thread 2 TEST_SYNC_POINT( "DBCompactionTest::CompactFilesOutputRangeConflict:Thread2Begin"); std::string filename = collector->GetFlushedFiles().back(); ASSERT_FALSE( db_->CompactFiles(CompactionOptions(), {filename}, 3 /* output_level */) .ok()); TEST_SYNC_POINT( "DBCompactionTest::CompactFilesOutputRangeConflict:Thread2End"); bg_thread.join(); } TEST_F(DBCompactionTest, CompactionHasEmptyOutput) { Options options = CurrentOptions(); SstStatsCollector* collector = new SstStatsCollector(); options.level0_file_num_compaction_trigger = 2; options.listeners.emplace_back(collector); Reopen(options); // Make sure the L0 files overlap to prevent trivial move. ASSERT_OK(Put("a", "val")); ASSERT_OK(Put("b", "val")); ASSERT_OK(Flush()); ASSERT_OK(Delete("a")); ASSERT_OK(Delete("b")); ASSERT_OK(Flush()); dbfull()->TEST_WaitForCompact(); ASSERT_EQ(NumTableFilesAtLevel(0), 0); ASSERT_EQ(NumTableFilesAtLevel(1), 0); // Expect one file creation to start for each flush, and zero for compaction // since no keys are written. ASSERT_EQ(2, collector->num_ssts_creation_started()); } TEST_F(DBCompactionTest, CompactionLimiter) { const int kNumKeysPerFile = 10; const int kMaxBackgroundThreads = 64; struct CompactionLimiter { std::string name; int limit_tasks; int max_tasks; int tasks; std::shared_ptr limiter; }; std::vector limiter_settings; limiter_settings.push_back({"limiter_1", 1, 0, 0, nullptr}); limiter_settings.push_back({"limiter_2", 2, 0, 0, nullptr}); limiter_settings.push_back({"limiter_3", 3, 0, 0, nullptr}); for (auto& ls : limiter_settings) { ls.limiter.reset(NewConcurrentTaskLimiter(ls.name, ls.limit_tasks)); } std::shared_ptr unique_limiter( NewConcurrentTaskLimiter("unique_limiter", -1)); const char* cf_names[] = {"default", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f" }; const int cf_count = sizeof cf_names / sizeof cf_names[0]; std::unordered_map cf_to_limiter; Options options = CurrentOptions(); options.write_buffer_size = 110 * 1024; // 110KB options.arena_block_size = 4096; options.num_levels = 3; options.level0_file_num_compaction_trigger = 4; options.level0_slowdown_writes_trigger = 64; options.level0_stop_writes_trigger = 64; options.max_background_jobs = kMaxBackgroundThreads; // Enough threads options.memtable_factory.reset(new SpecialSkipListFactory(kNumKeysPerFile)); options.max_write_buffer_number = 10; // Enough memtables DestroyAndReopen(options); std::vector option_vector; option_vector.reserve(cf_count); for (int cf = 0; cf < cf_count; cf++) { ColumnFamilyOptions cf_opt(options); if (cf == 0) { // "Default" CF does't use compaction limiter cf_opt.compaction_thread_limiter = nullptr; } else if (cf == 1) { // "1" CF uses bypass compaction limiter unique_limiter->SetMaxOutstandingTask(-1); cf_opt.compaction_thread_limiter = unique_limiter; } else { // Assign limiter by mod auto& ls = limiter_settings[cf % 3]; cf_opt.compaction_thread_limiter = ls.limiter; cf_to_limiter[cf_names[cf]] = &ls; } option_vector.emplace_back(DBOptions(options), cf_opt); } for (int cf = 1; cf < cf_count; cf++) { CreateColumnFamilies({cf_names[cf]}, option_vector[cf]); } ReopenWithColumnFamilies(std::vector(cf_names, cf_names + cf_count), option_vector); port::Mutex mutex; rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:BeforeCompaction", [&](void* arg) { const auto& cf_name = static_cast(arg)->GetName(); auto iter = cf_to_limiter.find(cf_name); if (iter != cf_to_limiter.end()) { MutexLock l(&mutex); ASSERT_GE(iter->second->limit_tasks, ++iter->second->tasks); iter->second->max_tasks = std::max(iter->second->max_tasks, iter->second->limit_tasks); } }); rocksdb::SyncPoint::GetInstance()->SetCallBack( "DBImpl::BackgroundCompaction:AfterCompaction", [&](void* arg) { const auto& cf_name = static_cast(arg)->GetName(); auto iter = cf_to_limiter.find(cf_name); if (iter != cf_to_limiter.end()) { MutexLock l(&mutex); ASSERT_GE(--iter->second->tasks, 0); } }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // Block all compact threads in thread pool. const size_t kTotalFlushTasks = kMaxBackgroundThreads / 4; const size_t kTotalCompactTasks = kMaxBackgroundThreads - kTotalFlushTasks; env_->SetBackgroundThreads((int)kTotalFlushTasks, Env::HIGH); env_->SetBackgroundThreads((int)kTotalCompactTasks, Env::LOW); test::SleepingBackgroundTask sleeping_compact_tasks[kTotalCompactTasks]; // Block all compaction threads in thread pool. for (size_t i = 0; i < kTotalCompactTasks; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_compact_tasks[i], Env::LOW); sleeping_compact_tasks[i].WaitUntilSleeping(); } int keyIndex = 0; for (int n = 0; n < options.level0_file_num_compaction_trigger; n++) { for (int cf = 0; cf < cf_count; cf++) { for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(cf, Key(keyIndex++), "")); } // put extra key to trigger flush ASSERT_OK(Put(cf, "", "")); } for (int cf = 0; cf < cf_count; cf++) { dbfull()->TEST_WaitForFlushMemTable(handles_[cf]); } } // Enough L0 files to trigger compaction for (int cf = 0; cf < cf_count; cf++) { ASSERT_EQ(NumTableFilesAtLevel(0, cf), options.level0_file_num_compaction_trigger); } // Create more files for one column family, which triggers speed up // condition, all compactions will be scheduled. for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) { for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(0, Key(i), "")); } // put extra key to trigger flush ASSERT_OK(Put(0, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[0]); ASSERT_EQ(options.level0_file_num_compaction_trigger + num + 1, NumTableFilesAtLevel(0, 0)); } // All CFs are pending compaction ASSERT_EQ(cf_count, env_->GetThreadPoolQueueLen(Env::LOW)); // Unblock all compaction threads for (size_t i = 0; i < kTotalCompactTasks; i++) { sleeping_compact_tasks[i].WakeUp(); sleeping_compact_tasks[i].WaitUntilDone(); } for (int cf = 0; cf < cf_count; cf++) { dbfull()->TEST_WaitForFlushMemTable(handles_[cf]); } ASSERT_OK(dbfull()->TEST_WaitForCompact()); // Max outstanding compact tasks reached limit for (auto& ls : limiter_settings) { ASSERT_EQ(ls.limit_tasks, ls.max_tasks); ASSERT_EQ(0, ls.limiter->GetOutstandingTask()); } // test manual compaction under a fully throttled limiter int cf_test = 1; unique_limiter->SetMaxOutstandingTask(0); // flush one more file to cf 1 for (int i = 0; i < kNumKeysPerFile; i++) { ASSERT_OK(Put(cf_test, Key(keyIndex++), "")); } // put extra key to trigger flush ASSERT_OK(Put(cf_test, "", "")); dbfull()->TEST_WaitForFlushMemTable(handles_[cf_test]); ASSERT_EQ(1, NumTableFilesAtLevel(0, cf_test)); Compact(cf_test, Key(0), Key(keyIndex)); ASSERT_OK(dbfull()->TEST_WaitForCompact()); } INSTANTIATE_TEST_CASE_P(DBCompactionTestWithParam, DBCompactionTestWithParam, ::testing::Values(std::make_tuple(1, true), std::make_tuple(1, false), std::make_tuple(4, true), std::make_tuple(4, false))); TEST_P(DBCompactionDirectIOTest, DirectIO) { Options options = CurrentOptions(); Destroy(options); options.create_if_missing = true; options.disable_auto_compactions = true; options.use_direct_io_for_flush_and_compaction = GetParam(); options.env = new MockEnv(Env::Default()); Reopen(options); bool readahead = false; SyncPoint::GetInstance()->SetCallBack( "TableCache::NewIterator:for_compaction", [&](void* arg) { bool* use_direct_reads = static_cast(arg); ASSERT_EQ(*use_direct_reads, options.use_direct_reads); }); SyncPoint::GetInstance()->SetCallBack( "CompactionJob::OpenCompactionOutputFile", [&](void* arg) { bool* use_direct_writes = static_cast(arg); ASSERT_EQ(*use_direct_writes, options.use_direct_io_for_flush_and_compaction); }); if (options.use_direct_io_for_flush_and_compaction) { SyncPoint::GetInstance()->SetCallBack( "SanitizeOptions:direct_io", [&](void* /*arg*/) { readahead = true; }); } SyncPoint::GetInstance()->EnableProcessing(); CreateAndReopenWithCF({"pikachu"}, options); MakeTables(3, "p", "q", 1); ASSERT_EQ("1,1,1", FilesPerLevel(1)); Compact(1, "p1", "p9"); ASSERT_EQ(readahead, options.use_direct_reads); ASSERT_EQ("0,0,1", FilesPerLevel(1)); Destroy(options); delete options.env; } INSTANTIATE_TEST_CASE_P(DBCompactionDirectIOTest, DBCompactionDirectIOTest, testing::Bool()); class CompactionPriTest : public DBTestBase, public testing::WithParamInterface { public: CompactionPriTest() : DBTestBase("/compaction_pri_test") { compaction_pri_ = GetParam(); } // Required if inheriting from testing::WithParamInterface<> static void SetUpTestCase() {} static void TearDownTestCase() {} uint32_t compaction_pri_; }; TEST_P(CompactionPriTest, Test) { Options options = CurrentOptions(); options.write_buffer_size = 16 * 1024; options.compaction_pri = static_cast(compaction_pri_); options.hard_pending_compaction_bytes_limit = 256 * 1024; options.max_bytes_for_level_base = 64 * 1024; options.max_bytes_for_level_multiplier = 4; options.compression = kNoCompression; DestroyAndReopen(options); Random rnd(301); const int kNKeys = 5000; int keys[kNKeys]; for (int i = 0; i < kNKeys; i++) { keys[i] = i; } std::random_shuffle(std::begin(keys), std::end(keys)); for (int i = 0; i < kNKeys; i++) { ASSERT_OK(Put(Key(keys[i]), RandomString(&rnd, 102))); } dbfull()->TEST_WaitForCompact(); for (int i = 0; i < kNKeys; i++) { ASSERT_NE("NOT_FOUND", Get(Key(i))); } } INSTANTIATE_TEST_CASE_P( CompactionPriTest, CompactionPriTest, ::testing::Values(CompactionPri::kByCompensatedSize, CompactionPri::kOldestLargestSeqFirst, CompactionPri::kOldestSmallestSeqFirst, CompactionPri::kMinOverlappingRatio)); class NoopMergeOperator : public MergeOperator { public: NoopMergeOperator() {} bool FullMergeV2(const MergeOperationInput& /*merge_in*/, MergeOperationOutput* merge_out) const override { std::string val("bar"); merge_out->new_value = val; return true; } const char* Name() const override { return "Noop"; } }; TEST_F(DBCompactionTest, PartialManualCompaction) { Options opts = CurrentOptions(); opts.num_levels = 3; opts.level0_file_num_compaction_trigger = 10; opts.compression = kNoCompression; opts.merge_operator.reset(new NoopMergeOperator()); opts.target_file_size_base = 10240; DestroyAndReopen(opts); Random rnd(301); for (auto i = 0; i < 8; ++i) { for (auto j = 0; j < 10; ++j) { Merge("foo", RandomString(&rnd, 1024)); } Flush(); } MoveFilesToLevel(2); std::string prop; EXPECT_TRUE(dbfull()->GetProperty(DB::Properties::kLiveSstFilesSize, &prop)); uint64_t max_compaction_bytes = atoi(prop.c_str()) / 2; ASSERT_OK(dbfull()->SetOptions( {{"max_compaction_bytes", std::to_string(max_compaction_bytes)}})); CompactRangeOptions cro; cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; dbfull()->CompactRange(cro, nullptr, nullptr); } TEST_F(DBCompactionTest, ManualCompactionFailsInReadOnlyMode) { // Regression test for bug where manual compaction hangs forever when the DB // is in read-only mode. Verify it now at least returns, despite failing. const int kNumL0Files = 4; std::unique_ptr mock_env( new FaultInjectionTestEnv(Env::Default())); Options opts = CurrentOptions(); opts.disable_auto_compactions = true; opts.env = mock_env.get(); DestroyAndReopen(opts); Random rnd(301); for (int i = 0; i < kNumL0Files; ++i) { // Make sure files are overlapping in key-range to prevent trivial move. Put("key1", RandomString(&rnd, 1024)); Put("key2", RandomString(&rnd, 1024)); Flush(); } ASSERT_EQ(kNumL0Files, NumTableFilesAtLevel(0)); // Enter read-only mode by failing a write. mock_env->SetFilesystemActive(false); // Make sure this is outside `CompactRange`'s range so that it doesn't fail // early trying to flush memtable. ASSERT_NOK(Put("key3", RandomString(&rnd, 1024))); // In the bug scenario, the first manual compaction would fail and forget to // unregister itself, causing the second one to hang forever due to conflict // with a non-running compaction. CompactRangeOptions cro; cro.exclusive_manual_compaction = false; Slice begin_key("key1"); Slice end_key("key2"); ASSERT_NOK(dbfull()->CompactRange(cro, &begin_key, &end_key)); ASSERT_NOK(dbfull()->CompactRange(cro, &begin_key, &end_key)); // Close before mock_env destruct. Close(); } // ManualCompactionBottomLevelOptimization tests the bottom level manual // compaction optimization to skip recompacting files created by Ln-1 to Ln // compaction TEST_F(DBCompactionTest, ManualCompactionBottomLevelOptimized) { Options opts = CurrentOptions(); opts.num_levels = 3; opts.level0_file_num_compaction_trigger = 5; opts.compression = kNoCompression; opts.merge_operator.reset(new NoopMergeOperator()); opts.target_file_size_base = 1024; opts.max_bytes_for_level_multiplier = 2; opts.disable_auto_compactions = true; DestroyAndReopen(opts); ColumnFamilyHandleImpl* cfh = static_cast(dbfull()->DefaultColumnFamily()); ColumnFamilyData* cfd = cfh->cfd(); InternalStats* internal_stats_ptr = cfd->internal_stats(); ASSERT_NE(internal_stats_ptr, nullptr); Random rnd(301); for (auto i = 0; i < 8; ++i) { for (auto j = 0; j < 10; ++j) { ASSERT_OK( Put("foo" + std::to_string(i * 10 + j), RandomString(&rnd, 1024))); } Flush(); } MoveFilesToLevel(2); for (auto i = 0; i < 8; ++i) { for (auto j = 0; j < 10; ++j) { ASSERT_OK( Put("bar" + std::to_string(i * 10 + j), RandomString(&rnd, 1024))); } Flush(); } const std::vector& comp_stats = internal_stats_ptr->TEST_GetCompactionStats(); int num = comp_stats[2].num_input_files_in_output_level; ASSERT_EQ(num, 0); CompactRangeOptions cro; cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; dbfull()->CompactRange(cro, nullptr, nullptr); const std::vector& comp_stats2 = internal_stats_ptr->TEST_GetCompactionStats(); num = comp_stats2[2].num_input_files_in_output_level; ASSERT_EQ(num, 0); } // FixFileIngestionCompactionDeadlock tests and verifies that compaction and // file ingestion do not cause deadlock in the event of write stall triggered // by number of L0 files reaching level0_stop_writes_trigger. TEST_P(DBCompactionTestWithParam, FixFileIngestionCompactionDeadlock) { const int kNumKeysPerFile = 100; // Generate SST files. Options options = CurrentOptions(); // Generate an external SST file containing a single key, i.e. 99 std::string sst_files_dir = dbname_ + "/sst_files/"; test::DestroyDir(env_, sst_files_dir); ASSERT_OK(env_->CreateDir(sst_files_dir)); SstFileWriter sst_writer(EnvOptions(), options); const std::string sst_file_path = sst_files_dir + "test.sst"; ASSERT_OK(sst_writer.Open(sst_file_path)); ASSERT_OK(sst_writer.Put(Key(kNumKeysPerFile - 1), "value")); ASSERT_OK(sst_writer.Finish()); SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); SyncPoint::GetInstance()->LoadDependency({ {"DBImpl::IngestExternalFile:AfterIncIngestFileCounter", "BackgroundCallCompaction:0"}, }); SyncPoint::GetInstance()->EnableProcessing(); options.write_buffer_size = 110 << 10; // 110KB options.level0_file_num_compaction_trigger = options.level0_stop_writes_trigger; options.max_subcompactions = max_subcompactions_; options.memtable_factory.reset(new SpecialSkipListFactory(kNumKeysPerFile)); DestroyAndReopen(options); Random rnd(301); // Generate level0_stop_writes_trigger L0 files to trigger write stop for (int i = 0; i != options.level0_file_num_compaction_trigger; ++i) { for (int j = 0; j != kNumKeysPerFile; ++j) { ASSERT_OK(Put(Key(j), RandomString(&rnd, 990))); } if (0 == i) { // When we reach here, the memtables have kNumKeysPerFile keys. Note that // flush is not yet triggered. We need to write an extra key so that the // write path will call PreprocessWrite and flush the previous key-value // pairs to e flushed. After that, there will be the newest key in the // memtable, and a bunch of L0 files. Since there is already one key in // the memtable, then for i = 1, 2, ..., we do not have to write this // extra key to trigger flush. ASSERT_OK(Put("", "")); } dbfull()->TEST_WaitForFlushMemTable(); ASSERT_EQ(NumTableFilesAtLevel(0 /*level*/, 0 /*cf*/), i + 1); } // When we reach this point, there will be level0_stop_writes_trigger L0 // files and one extra key (99) in memory, which overlaps with the external // SST file. Write stall triggers, and can be cleared only after compaction // reduces the number of L0 files. // Compaction will also be triggered since we have reached the threshold for // auto compaction. Note that compaction may begin after the following file // ingestion thread and waits for ingestion to finish. // Thread to ingest file with overlapping key range with the current // memtable. Consequently ingestion will trigger a flush. The flush MUST // proceed without waiting for the write stall condition to clear, otherwise // deadlock can happen. port::Thread ingestion_thr([&]() { IngestExternalFileOptions ifo; Status s = db_->IngestExternalFile({sst_file_path}, ifo); ASSERT_OK(s); }); // More write to trigger write stop ingestion_thr.join(); ASSERT_OK(dbfull()->TEST_WaitForCompact()); Close(); } #endif // !defined(ROCKSDB_LITE) } // namespace rocksdb int main(int argc, char** argv) { #if !defined(ROCKSDB_LITE) rocksdb::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); #else (void) argc; (void) argv; return 0; #endif }