// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/memtable.h" #include <memory> #include <algorithm> #include <limits> #include "db/dbformat.h" #include "db/merge_context.h" #include "db/pinned_iterators_manager.h" #include "db/writebuffer.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "rocksdb/merge_operator.h" #include "rocksdb/slice_transform.h" #include "table/internal_iterator.h" #include "table/merger.h" #include "util/arena.h" #include "util/coding.h" #include "util/murmurhash.h" #include "util/mutexlock.h" #include "util/perf_context_imp.h" #include "util/statistics.h" #include "util/stop_watch.h" namespace rocksdb { MemTableOptions::MemTableOptions(const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options) : write_buffer_size(mutable_cf_options.write_buffer_size), arena_block_size(mutable_cf_options.arena_block_size), memtable_prefix_bloom_bits( static_cast<uint32_t>( static_cast<double>(mutable_cf_options.write_buffer_size) * mutable_cf_options.memtable_prefix_bloom_size_ratio) * 8u), memtable_prefix_bloom_huge_page_tlb_size( mutable_cf_options.memtable_prefix_bloom_huge_page_tlb_size), inplace_update_support(ioptions.inplace_update_support), inplace_update_num_locks(mutable_cf_options.inplace_update_num_locks), inplace_callback(ioptions.inplace_callback), max_successive_merges(mutable_cf_options.max_successive_merges), filter_deletes(mutable_cf_options.filter_deletes), statistics(ioptions.statistics), merge_operator(ioptions.merge_operator), info_log(ioptions.info_log) {} MemTable::MemTable(const InternalKeyComparator& cmp, const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, WriteBuffer* write_buffer, SequenceNumber earliest_seq) : comparator_(cmp), moptions_(ioptions, mutable_cf_options), refs_(0), kArenaBlockSize(OptimizeBlockSize(moptions_.arena_block_size)), arena_(moptions_.arena_block_size, 0), allocator_(&arena_, write_buffer), table_(ioptions.memtable_factory->CreateMemTableRep( comparator_, &allocator_, ioptions.prefix_extractor, ioptions.info_log)), data_size_(0), num_entries_(0), num_deletes_(0), flush_in_progress_(false), flush_completed_(false), file_number_(0), first_seqno_(0), earliest_seqno_(earliest_seq), mem_next_logfile_number_(0), min_prep_log_referenced_(0), locks_(moptions_.inplace_update_support ? moptions_.inplace_update_num_locks : 0), prefix_extractor_(ioptions.prefix_extractor), flush_state_(FLUSH_NOT_REQUESTED), env_(ioptions.env) { UpdateFlushState(); // something went wrong if we need to flush before inserting anything assert(!ShouldScheduleFlush()); if (prefix_extractor_ && moptions_.memtable_prefix_bloom_bits > 0) { prefix_bloom_.reset(new DynamicBloom( &allocator_, moptions_.memtable_prefix_bloom_bits, ioptions.bloom_locality, 6 /* hard coded 6 probes */, nullptr, moptions_.memtable_prefix_bloom_huge_page_tlb_size, ioptions.info_log)); } } MemTable::~MemTable() { assert(refs_ == 0); } size_t MemTable::ApproximateMemoryUsage() { size_t arena_usage = arena_.ApproximateMemoryUsage(); size_t table_usage = table_->ApproximateMemoryUsage(); // let MAX_USAGE = std::numeric_limits<size_t>::max() // then if arena_usage + total_usage >= MAX_USAGE, return MAX_USAGE. // the following variation is to avoid numeric overflow. if (arena_usage >= std::numeric_limits<size_t>::max() - table_usage) { return std::numeric_limits<size_t>::max(); } // otherwise, return the actual usage return arena_usage + table_usage; } bool MemTable::ShouldFlushNow() const { // In a lot of times, we cannot allocate arena blocks that exactly matches the // buffer size. Thus we have to decide if we should over-allocate or // under-allocate. // This constant variable can be interpreted as: if we still have more than // "kAllowOverAllocationRatio * kArenaBlockSize" space left, we'd try to over // allocate one more block. const double kAllowOverAllocationRatio = 0.6; // If arena still have room for new block allocation, we can safely say it // shouldn't flush. auto allocated_memory = table_->ApproximateMemoryUsage() + arena_.MemoryAllocatedBytes(); // if we can still allocate one more block without exceeding the // over-allocation ratio, then we should not flush. if (allocated_memory + kArenaBlockSize < moptions_.write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) { return false; } // if user keeps adding entries that exceeds moptions.write_buffer_size, // we need to flush earlier even though we still have much available // memory left. if (allocated_memory > moptions_.write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) { return true; } // In this code path, Arena has already allocated its "last block", which // means the total allocatedmemory size is either: // (1) "moderately" over allocated the memory (no more than `0.6 * arena // block size`. Or, // (2) the allocated memory is less than write buffer size, but we'll stop // here since if we allocate a new arena block, we'll over allocate too much // more (half of the arena block size) memory. // // In either case, to avoid over-allocate, the last block will stop allocation // when its usage reaches a certain ratio, which we carefully choose "0.75 // full" as the stop condition because it addresses the following issue with // great simplicity: What if the next inserted entry's size is // bigger than AllocatedAndUnused()? // // The answer is: if the entry size is also bigger than 0.25 * // kArenaBlockSize, a dedicated block will be allocated for it; otherwise // arena will anyway skip the AllocatedAndUnused() and allocate a new, empty // and regular block. In either case, we *overly* over-allocated. // // Therefore, setting the last block to be at most "0.75 full" avoids both // cases. // // NOTE: the average percentage of waste space of this approach can be counted // as: "arena block size * 0.25 / write buffer size". User who specify a small // write buffer size and/or big arena block size may suffer. return arena_.AllocatedAndUnused() < kArenaBlockSize / 4; } void MemTable::UpdateFlushState() { auto state = flush_state_.load(std::memory_order_relaxed); if (state == FLUSH_NOT_REQUESTED && ShouldFlushNow()) { // ignore CAS failure, because that means somebody else requested // a flush flush_state_.compare_exchange_strong(state, FLUSH_REQUESTED, std::memory_order_relaxed, std::memory_order_relaxed); } } int MemTable::KeyComparator::operator()(const char* prefix_len_key1, const char* prefix_len_key2) const { // Internal keys are encoded as length-prefixed strings. Slice k1 = GetLengthPrefixedSlice(prefix_len_key1); Slice k2 = GetLengthPrefixedSlice(prefix_len_key2); return comparator.Compare(k1, k2); } int MemTable::KeyComparator::operator()(const char* prefix_len_key, const Slice& key) const { // Internal keys are encoded as length-prefixed strings. Slice a = GetLengthPrefixedSlice(prefix_len_key); return comparator.Compare(a, key); } Slice MemTableRep::UserKey(const char* key) const { Slice slice = GetLengthPrefixedSlice(key); return Slice(slice.data(), slice.size() - 8); } KeyHandle MemTableRep::Allocate(const size_t len, char** buf) { *buf = allocator_->Allocate(len); return static_cast<KeyHandle>(*buf); } // Encode a suitable internal key target for "target" and return it. // Uses *scratch as scratch space, and the returned pointer will point // into this scratch space. const char* EncodeKey(std::string* scratch, const Slice& target) { scratch->clear(); PutVarint32(scratch, static_cast<uint32_t>(target.size())); scratch->append(target.data(), target.size()); return scratch->data(); } class MemTableIterator : public InternalIterator { public: MemTableIterator( const MemTable& mem, const ReadOptions& read_options, Arena* arena) : bloom_(nullptr), prefix_extractor_(mem.prefix_extractor_), valid_(false), arena_mode_(arena != nullptr) { if (prefix_extractor_ != nullptr && !read_options.total_order_seek) { bloom_ = mem.prefix_bloom_.get(); iter_ = mem.table_->GetDynamicPrefixIterator(arena); } else { iter_ = mem.table_->GetIterator(arena); } } ~MemTableIterator() { #ifndef NDEBUG // Assert that the MemTableIterator is never deleted while // Pinning is Enabled. assert(!pinned_iters_mgr_ || (pinned_iters_mgr_ && !pinned_iters_mgr_->PinningEnabled())); #endif if (arena_mode_) { iter_->~Iterator(); } else { delete iter_; } } #ifndef NDEBUG virtual void SetPinnedItersMgr( PinnedIteratorsManager* pinned_iters_mgr) override { pinned_iters_mgr_ = pinned_iters_mgr; } PinnedIteratorsManager* pinned_iters_mgr_ = nullptr; #endif virtual bool Valid() const override { return valid_; } virtual void Seek(const Slice& k) override { PERF_TIMER_GUARD(seek_on_memtable_time); PERF_COUNTER_ADD(seek_on_memtable_count, 1); if (bloom_ != nullptr) { if (!bloom_->MayContain( prefix_extractor_->Transform(ExtractUserKey(k)))) { PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); valid_ = false; return; } else { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } } iter_->Seek(k, nullptr); valid_ = iter_->Valid(); } virtual void SeekToFirst() override { iter_->SeekToFirst(); valid_ = iter_->Valid(); } virtual void SeekToLast() override { iter_->SeekToLast(); valid_ = iter_->Valid(); } virtual void Next() override { assert(Valid()); iter_->Next(); valid_ = iter_->Valid(); } virtual void Prev() override { assert(Valid()); iter_->Prev(); valid_ = iter_->Valid(); } virtual Slice key() const override { assert(Valid()); return GetLengthPrefixedSlice(iter_->key()); } virtual Slice value() const override { assert(Valid()); Slice key_slice = GetLengthPrefixedSlice(iter_->key()); return GetLengthPrefixedSlice(key_slice.data() + key_slice.size()); } virtual Status status() const override { return Status::OK(); } virtual bool IsKeyPinned() const override { // memtable data is always pinned return true; } private: DynamicBloom* bloom_; const SliceTransform* const prefix_extractor_; MemTableRep::Iterator* iter_; bool valid_; bool arena_mode_; // No copying allowed MemTableIterator(const MemTableIterator&); void operator=(const MemTableIterator&); }; InternalIterator* MemTable::NewIterator(const ReadOptions& read_options, Arena* arena) { assert(arena != nullptr); auto mem = arena->AllocateAligned(sizeof(MemTableIterator)); return new (mem) MemTableIterator(*this, read_options, arena); } port::RWMutex* MemTable::GetLock(const Slice& key) { static murmur_hash hash; return &locks_[hash(key) % locks_.size()]; } uint64_t MemTable::ApproximateSize(const Slice& start_ikey, const Slice& end_ikey) { uint64_t entry_count = table_->ApproximateNumEntries(start_ikey, end_ikey); if (entry_count == 0) { return 0; } uint64_t n = num_entries_.load(std::memory_order_relaxed); if (n == 0) { return 0; } if (entry_count > n) { // table_->ApproximateNumEntries() is just an estimate so it can be larger // than actual entries we have. Cap it to entries we have to limit the // inaccuracy. entry_count = n; } uint64_t data_size = data_size_.load(std::memory_order_relaxed); return entry_count * (data_size / n); } void MemTable::Add(SequenceNumber s, ValueType type, const Slice& key, /* user key */ const Slice& value, bool allow_concurrent) { // Format of an entry is concatenation of: // key_size : varint32 of internal_key.size() // key bytes : char[internal_key.size()] // value_size : varint32 of value.size() // value bytes : char[value.size()] uint32_t key_size = static_cast<uint32_t>(key.size()); uint32_t val_size = static_cast<uint32_t>(value.size()); uint32_t internal_key_size = key_size + 8; const uint32_t encoded_len = VarintLength(internal_key_size) + internal_key_size + VarintLength(val_size) + val_size; char* buf = nullptr; KeyHandle handle = table_->Allocate(encoded_len, &buf); char* p = EncodeVarint32(buf, internal_key_size); memcpy(p, key.data(), key_size); p += key_size; uint64_t packed = PackSequenceAndType(s, type); EncodeFixed64(p, packed); p += 8; p = EncodeVarint32(p, val_size); memcpy(p, value.data(), val_size); assert((unsigned)(p + val_size - buf) == (unsigned)encoded_len); if (!allow_concurrent) { table_->Insert(handle); // this is a bit ugly, but is the way to avoid locked instructions // when incrementing an atomic num_entries_.store(num_entries_.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); data_size_.store(data_size_.load(std::memory_order_relaxed) + encoded_len, std::memory_order_relaxed); if (type == kTypeDeletion) { num_deletes_.store(num_deletes_.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); } if (prefix_bloom_) { assert(prefix_extractor_); prefix_bloom_->Add(prefix_extractor_->Transform(key)); } // The first sequence number inserted into the memtable assert(first_seqno_ == 0 || s > first_seqno_); if (first_seqno_ == 0) { first_seqno_.store(s, std::memory_order_relaxed); if (earliest_seqno_ == kMaxSequenceNumber) { earliest_seqno_.store(GetFirstSequenceNumber(), std::memory_order_relaxed); } assert(first_seqno_.load() >= earliest_seqno_.load()); } } else { table_->InsertConcurrently(handle); num_entries_.fetch_add(1, std::memory_order_relaxed); data_size_.fetch_add(encoded_len, std::memory_order_relaxed); if (type == kTypeDeletion) { num_deletes_.fetch_add(1, std::memory_order_relaxed); } if (prefix_bloom_) { assert(prefix_extractor_); prefix_bloom_->AddConcurrently(prefix_extractor_->Transform(key)); } // atomically update first_seqno_ and earliest_seqno_. uint64_t cur_seq_num = first_seqno_.load(std::memory_order_relaxed); while ((cur_seq_num == 0 || s < cur_seq_num) && !first_seqno_.compare_exchange_weak(cur_seq_num, s)) { } uint64_t cur_earliest_seqno = earliest_seqno_.load(std::memory_order_relaxed); while ( (cur_earliest_seqno == kMaxSequenceNumber || s < cur_earliest_seqno) && !first_seqno_.compare_exchange_weak(cur_earliest_seqno, s)) { } } UpdateFlushState(); } // Callback from MemTable::Get() namespace { struct Saver { Status* status; const LookupKey* key; bool* found_final_value; // Is value set correctly? Used by KeyMayExist bool* merge_in_progress; std::string* value; SequenceNumber seq; const MergeOperator* merge_operator; // the merge operations encountered; MergeContext* merge_context; MemTable* mem; Logger* logger; Statistics* statistics; bool inplace_update_support; Env* env_; }; } // namespace static bool SaveValue(void* arg, const char* entry) { Saver* s = reinterpret_cast<Saver*>(arg); MergeContext* merge_context = s->merge_context; const MergeOperator* merge_operator = s->merge_operator; assert(s != nullptr && merge_context != nullptr); // entry format is: // klength varint32 // userkey char[klength-8] // tag uint64 // vlength varint32 // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. uint32_t key_length; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (s->mem->GetInternalKeyComparator().user_comparator()->Equal( Slice(key_ptr, key_length - 8), s->key->user_key())) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; UnPackSequenceAndType(tag, &s->seq, &type); switch (type) { case kTypeValue: { if (s->inplace_update_support) { s->mem->GetLock(s->key->user_key())->ReadLock(); } Slice v = GetLengthPrefixedSlice(key_ptr + key_length); *(s->status) = Status::OK(); if (*(s->merge_in_progress)) { assert(merge_operator); bool merge_success = false; { StopWatchNano timer(s->env_, s->statistics != nullptr); PERF_TIMER_GUARD(merge_operator_time_nanos); merge_success = merge_operator->FullMerge( s->key->user_key(), &v, merge_context->GetOperands(), s->value, s->logger); RecordTick(s->statistics, MERGE_OPERATION_TOTAL_TIME, timer.ElapsedNanos()); } if (!merge_success) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); *(s->status) = Status::Corruption("Error: Could not perform merge."); } } else if (s->value != nullptr) { s->value->assign(v.data(), v.size()); } if (s->inplace_update_support) { s->mem->GetLock(s->key->user_key())->ReadUnlock(); } *(s->found_final_value) = true; return false; } case kTypeDeletion: case kTypeSingleDeletion: { if (*(s->merge_in_progress)) { assert(merge_operator != nullptr); *(s->status) = Status::OK(); bool merge_success = false; { StopWatchNano timer(s->env_, s->statistics != nullptr); PERF_TIMER_GUARD(merge_operator_time_nanos); merge_success = merge_operator->FullMerge( s->key->user_key(), nullptr, merge_context->GetOperands(), s->value, s->logger); RecordTick(s->statistics, MERGE_OPERATION_TOTAL_TIME, timer.ElapsedNanos()); } if (!merge_success) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); *(s->status) = Status::Corruption("Error: Could not perform merge."); } } else { *(s->status) = Status::NotFound(); } *(s->found_final_value) = true; return false; } case kTypeMerge: { if (!merge_operator) { *(s->status) = Status::InvalidArgument( "merge_operator is not properly initialized."); // Normally we continue the loop (return true) when we see a merge // operand. But in case of an error, we should stop the loop // immediately and pretend we have found the value to stop further // seek. Otherwise, the later call will override this error status. *(s->found_final_value) = true; return false; } Slice v = GetLengthPrefixedSlice(key_ptr + key_length); *(s->merge_in_progress) = true; merge_context->PushOperand(v); return true; } default: assert(false); return true; } } // s->state could be Corrupt, merge or notfound return false; } bool MemTable::Get(const LookupKey& key, std::string* value, Status* s, MergeContext* merge_context, SequenceNumber* seq) { // The sequence number is updated synchronously in version_set.h if (IsEmpty()) { // Avoiding recording stats for speed. return false; } PERF_TIMER_GUARD(get_from_memtable_time); Slice user_key = key.user_key(); bool found_final_value = false; bool merge_in_progress = s->IsMergeInProgress(); bool const may_contain = nullptr == prefix_bloom_ ? false : prefix_bloom_->MayContain(prefix_extractor_->Transform(user_key)); if (prefix_bloom_ && !may_contain) { // iter is null if prefix bloom says the key does not exist PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); *seq = kMaxSequenceNumber; } else { if (prefix_bloom_) { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } Saver saver; saver.status = s; saver.found_final_value = &found_final_value; saver.merge_in_progress = &merge_in_progress; saver.key = &key; saver.value = value; saver.seq = kMaxSequenceNumber; saver.mem = this; saver.merge_context = merge_context; saver.merge_operator = moptions_.merge_operator; saver.logger = moptions_.info_log; saver.inplace_update_support = moptions_.inplace_update_support; saver.statistics = moptions_.statistics; saver.env_ = env_; table_->Get(key, &saver, SaveValue); *seq = saver.seq; } // No change to value, since we have not yet found a Put/Delete if (!found_final_value && merge_in_progress) { *s = Status::MergeInProgress(); } PERF_COUNTER_ADD(get_from_memtable_count, 1); return found_final_value; } void MemTable::Update(SequenceNumber seq, const Slice& key, const Slice& value) { LookupKey lkey(key, seq); Slice mem_key = lkey.memtable_key(); std::unique_ptr<MemTableRep::Iterator> iter( table_->GetDynamicPrefixIterator()); iter->Seek(lkey.internal_key(), mem_key.data()); if (iter->Valid()) { // entry format is: // key_length varint32 // userkey char[klength-8] // tag uint64 // vlength varint32 // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. const char* entry = iter->key(); uint32_t key_length = 0; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (comparator_.comparator.user_comparator()->Equal( Slice(key_ptr, key_length - 8), lkey.user_key())) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; SequenceNumber unused; UnPackSequenceAndType(tag, &unused, &type); switch (type) { case kTypeValue: { Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length); uint32_t prev_size = static_cast<uint32_t>(prev_value.size()); uint32_t new_size = static_cast<uint32_t>(value.size()); // Update value, if new value size <= previous value size if (new_size <= prev_size ) { char* p = EncodeVarint32(const_cast<char*>(key_ptr) + key_length, new_size); WriteLock wl(GetLock(lkey.user_key())); memcpy(p, value.data(), value.size()); assert((unsigned)((p + value.size()) - entry) == (unsigned)(VarintLength(key_length) + key_length + VarintLength(value.size()) + value.size())); return; } } default: // If the latest value is kTypeDeletion, kTypeMerge or kTypeLogData // we don't have enough space for update inplace Add(seq, kTypeValue, key, value); return; } } } // key doesn't exist Add(seq, kTypeValue, key, value); } bool MemTable::UpdateCallback(SequenceNumber seq, const Slice& key, const Slice& delta) { LookupKey lkey(key, seq); Slice memkey = lkey.memtable_key(); std::unique_ptr<MemTableRep::Iterator> iter( table_->GetDynamicPrefixIterator()); iter->Seek(lkey.internal_key(), memkey.data()); if (iter->Valid()) { // entry format is: // key_length varint32 // userkey char[klength-8] // tag uint64 // vlength varint32 // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. const char* entry = iter->key(); uint32_t key_length = 0; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (comparator_.comparator.user_comparator()->Equal( Slice(key_ptr, key_length - 8), lkey.user_key())) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; uint64_t unused; UnPackSequenceAndType(tag, &unused, &type); switch (type) { case kTypeValue: { Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length); uint32_t prev_size = static_cast<uint32_t>(prev_value.size()); char* prev_buffer = const_cast<char*>(prev_value.data()); uint32_t new_prev_size = prev_size; std::string str_value; WriteLock wl(GetLock(lkey.user_key())); auto status = moptions_.inplace_callback(prev_buffer, &new_prev_size, delta, &str_value); if (status == UpdateStatus::UPDATED_INPLACE) { // Value already updated by callback. assert(new_prev_size <= prev_size); if (new_prev_size < prev_size) { // overwrite the new prev_size char* p = EncodeVarint32(const_cast<char*>(key_ptr) + key_length, new_prev_size); if (VarintLength(new_prev_size) < VarintLength(prev_size)) { // shift the value buffer as well. memcpy(p, prev_buffer, new_prev_size); } } RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED); UpdateFlushState(); return true; } else if (status == UpdateStatus::UPDATED) { Add(seq, kTypeValue, key, Slice(str_value)); RecordTick(moptions_.statistics, NUMBER_KEYS_WRITTEN); UpdateFlushState(); return true; } else if (status == UpdateStatus::UPDATE_FAILED) { // No action required. Return. UpdateFlushState(); return true; } } default: break; } } } // If the latest value is not kTypeValue // or key doesn't exist return false; } size_t MemTable::CountSuccessiveMergeEntries(const LookupKey& key) { Slice memkey = key.memtable_key(); // A total ordered iterator is costly for some memtablerep (prefix aware // reps). By passing in the user key, we allow efficient iterator creation. // The iterator only needs to be ordered within the same user key. std::unique_ptr<MemTableRep::Iterator> iter( table_->GetDynamicPrefixIterator()); iter->Seek(key.internal_key(), memkey.data()); size_t num_successive_merges = 0; for (; iter->Valid(); iter->Next()) { const char* entry = iter->key(); uint32_t key_length = 0; const char* iter_key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (!comparator_.comparator.user_comparator()->Equal( Slice(iter_key_ptr, key_length - 8), key.user_key())) { break; } const uint64_t tag = DecodeFixed64(iter_key_ptr + key_length - 8); ValueType type; uint64_t unused; UnPackSequenceAndType(tag, &unused, &type); if (type != kTypeMerge) { break; } ++num_successive_merges; } return num_successive_merges; } void MemTableRep::Get(const LookupKey& k, void* callback_args, bool (*callback_func)(void* arg, const char* entry)) { auto iter = GetDynamicPrefixIterator(); for (iter->Seek(k.internal_key(), k.memtable_key().data()); iter->Valid() && callback_func(callback_args, iter->key()); iter->Next()) { } } void MemTable::RefLogContainingPrepSection(uint64_t log) { assert(log > 0); auto cur = min_prep_log_referenced_.load(); while ((log < cur || cur == 0) && !min_prep_log_referenced_.compare_exchange_strong(cur, log)) { cur = min_prep_log_referenced_.load(); } } uint64_t MemTable::GetMinLogContainingPrepSection() { return min_prep_log_referenced_.load(); } } // namespace rocksdb