// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/compaction/compaction.h" #include #include #include "db/column_family.h" #include "rocksdb/compaction_filter.h" #include "rocksdb/sst_partitioner.h" #include "test_util/sync_point.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { const uint64_t kRangeTombstoneSentinel = PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion); int sstableKeyCompare(const Comparator* uc, const Slice& a, const Slice& b) { auto c = uc->CompareWithoutTimestamp(ExtractUserKey(a), ExtractUserKey(b)); if (c != 0) { return c; } auto a_footer = ExtractInternalKeyFooter(a); auto b_footer = ExtractInternalKeyFooter(b); if (a_footer == kRangeTombstoneSentinel) { if (b_footer != kRangeTombstoneSentinel) { return -1; } } else if (b_footer == kRangeTombstoneSentinel) { return 1; } return 0; } int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a, const InternalKey& b) { if (a == nullptr) { return -1; } return sstableKeyCompare(user_cmp, *a, b); } int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a, const InternalKey* b) { if (b == nullptr) { return -1; } return sstableKeyCompare(user_cmp, a, *b); } uint64_t TotalFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->fd.GetFileSize(); } return sum; } void Compaction::SetInputVersion(Version* _input_version) { input_version_ = _input_version; cfd_ = input_version_->cfd(); cfd_->Ref(); input_version_->Ref(); edit_.SetColumnFamily(cfd_->GetID()); } void Compaction::GetBoundaryKeys( VersionStorageInfo* vstorage, const std::vector& inputs, Slice* smallest_user_key, Slice* largest_user_key, int exclude_level) { bool initialized = false; const Comparator* ucmp = vstorage->InternalComparator()->user_comparator(); for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i].files.empty() || inputs[i].level == exclude_level) { continue; } if (inputs[i].level == 0) { // we need to consider all files on level 0 for (const auto* f : inputs[i].files) { const Slice& start_user_key = f->smallest.user_key(); if (!initialized || ucmp->Compare(start_user_key, *smallest_user_key) < 0) { *smallest_user_key = start_user_key; } const Slice& end_user_key = f->largest.user_key(); if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) { *largest_user_key = end_user_key; } initialized = true; } } else { // we only need to consider the first and last file const Slice& start_user_key = inputs[i].files[0]->smallest.user_key(); if (!initialized || ucmp->Compare(start_user_key, *smallest_user_key) < 0) { *smallest_user_key = start_user_key; } const Slice& end_user_key = inputs[i].files.back()->largest.user_key(); if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) { *largest_user_key = end_user_key; } initialized = true; } } } std::vector Compaction::PopulateWithAtomicBoundaries( VersionStorageInfo* vstorage, std::vector inputs) { const Comparator* ucmp = vstorage->InternalComparator()->user_comparator(); for (size_t i = 0; i < inputs.size(); i++) { if (inputs[i].level == 0 || inputs[i].files.empty()) { continue; } inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size()); AtomicCompactionUnitBoundary cur_boundary; size_t first_atomic_idx = 0; auto add_unit_boundary = [&](size_t to) { if (first_atomic_idx == to) return; for (size_t k = first_atomic_idx; k < to; k++) { inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary); } first_atomic_idx = to; }; for (size_t j = 0; j < inputs[i].files.size(); j++) { const auto* f = inputs[i].files[j]; if (j == 0) { // First file in a level. cur_boundary.smallest = &f->smallest; cur_boundary.largest = &f->largest; } else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) == 0) { // SSTs overlap but the end key of the previous file was not // artificially extended by a range tombstone. Extend the current // boundary. cur_boundary.largest = &f->largest; } else { // Atomic compaction unit has ended. add_unit_boundary(j); cur_boundary.smallest = &f->smallest; cur_boundary.largest = &f->largest; } } add_unit_boundary(inputs[i].files.size()); assert(inputs[i].files.size() == inputs[i].atomic_compaction_unit_boundaries.size()); } return inputs; } // helper function to determine if compaction is creating files at the // bottommost level bool Compaction::IsBottommostLevel( int output_level, VersionStorageInfo* vstorage, const std::vector& inputs) { int output_l0_idx; if (output_level == 0) { output_l0_idx = 0; for (const auto* file : vstorage->LevelFiles(0)) { if (inputs[0].files.back() == file) { break; } ++output_l0_idx; } assert(static_cast(output_l0_idx) < vstorage->LevelFiles(0).size()); } else { output_l0_idx = -1; } Slice smallest_key, largest_key; GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key); return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key, output_level, output_l0_idx); } // test function to validate the functionality of IsBottommostLevel() // function -- determines if compaction with inputs and storage is bottommost bool Compaction::TEST_IsBottommostLevel( int output_level, VersionStorageInfo* vstorage, const std::vector& inputs) { return IsBottommostLevel(output_level, vstorage, inputs); } bool Compaction::IsFullCompaction( VersionStorageInfo* vstorage, const std::vector& inputs) { size_t num_files_in_compaction = 0; size_t total_num_files = 0; for (int l = 0; l < vstorage->num_levels(); l++) { total_num_files += vstorage->NumLevelFiles(l); } for (size_t i = 0; i < inputs.size(); i++) { num_files_in_compaction += inputs[i].size(); } return num_files_in_compaction == total_num_files; } Compaction::Compaction( VersionStorageInfo* vstorage, const ImmutableOptions& _immutable_options, const MutableCFOptions& _mutable_cf_options, const MutableDBOptions& _mutable_db_options, std::vector _inputs, int _output_level, uint64_t _target_file_size, uint64_t _max_compaction_bytes, uint32_t _output_path_id, CompressionType _compression, CompressionOptions _compression_opts, Temperature _output_temperature, uint32_t _max_subcompactions, std::vector _grandparents, bool _manual_compaction, const std::string& _trim_ts, double _score, bool _deletion_compaction, bool l0_files_might_overlap, CompactionReason _compaction_reason, BlobGarbageCollectionPolicy _blob_garbage_collection_policy, double _blob_garbage_collection_age_cutoff) : input_vstorage_(vstorage), start_level_(_inputs[0].level), output_level_(_output_level), target_output_file_size_(_target_file_size), max_compaction_bytes_(_max_compaction_bytes), max_subcompactions_(_max_subcompactions), immutable_options_(_immutable_options), mutable_cf_options_(_mutable_cf_options), input_version_(nullptr), number_levels_(vstorage->num_levels()), cfd_(nullptr), output_path_id_(_output_path_id), output_compression_(_compression), output_compression_opts_(_compression_opts), output_temperature_(_output_temperature), deletion_compaction_(_deletion_compaction), l0_files_might_overlap_(l0_files_might_overlap), inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))), grandparents_(std::move(_grandparents)), score_(_score), bottommost_level_( // For simplicity, we don't support the concept of "bottommost level" // with // `CompactionReason::kExternalSstIngestion` and // `CompactionReason::kRefitLevel` (_compaction_reason == CompactionReason::kExternalSstIngestion || _compaction_reason == CompactionReason::kRefitLevel) ? false : IsBottommostLevel(output_level_, vstorage, inputs_)), is_full_compaction_(IsFullCompaction(vstorage, inputs_)), is_manual_compaction_(_manual_compaction), trim_ts_(_trim_ts), is_trivial_move_(false), compaction_reason_(_compaction_reason), notify_on_compaction_completion_(false), enable_blob_garbage_collection_( _blob_garbage_collection_policy == BlobGarbageCollectionPolicy::kForce ? true : (_blob_garbage_collection_policy == BlobGarbageCollectionPolicy::kDisable ? false : mutable_cf_options()->enable_blob_garbage_collection)), blob_garbage_collection_age_cutoff_( _blob_garbage_collection_age_cutoff < 0 || _blob_garbage_collection_age_cutoff > 1 ? mutable_cf_options()->blob_garbage_collection_age_cutoff : _blob_garbage_collection_age_cutoff), penultimate_level_( // For simplicity, we don't support the concept of "penultimate level" // with `CompactionReason::kExternalSstIngestion` and // `CompactionReason::kRefitLevel` _compaction_reason == CompactionReason::kExternalSstIngestion || _compaction_reason == CompactionReason::kRefitLevel ? Compaction::kInvalidLevel : EvaluatePenultimateLevel(vstorage, immutable_options_, start_level_, output_level_)) { MarkFilesBeingCompacted(true); if (is_manual_compaction_) { compaction_reason_ = CompactionReason::kManualCompaction; } if (max_subcompactions_ == 0) { max_subcompactions_ = _mutable_db_options.max_subcompactions; } // for the non-bottommost levels, it tries to build files match the target // file size, but not guaranteed. It could be 2x the size of the target size. max_output_file_size_ = bottommost_level_ || grandparents_.empty() || !_immutable_options.level_compaction_dynamic_file_size ? target_output_file_size_ : 2 * target_output_file_size_; #ifndef NDEBUG for (size_t i = 1; i < inputs_.size(); ++i) { assert(inputs_[i].level > inputs_[i - 1].level); } #endif // setup input_levels_ { input_levels_.resize(num_input_levels()); for (size_t which = 0; which < num_input_levels(); which++) { DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files, &arena_); } } GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_); // Every compaction regardless of any compaction reason may respect the // existing compact cursor in the output level to split output files output_split_key_ = nullptr; if (immutable_options_.compaction_style == kCompactionStyleLevel && immutable_options_.compaction_pri == kRoundRobin) { const InternalKey* cursor = &input_vstorage_->GetCompactCursors()[output_level_]; if (cursor->size() != 0) { const Slice& cursor_user_key = ExtractUserKey(cursor->Encode()); auto ucmp = vstorage->InternalComparator()->user_comparator(); // May split output files according to the cursor if it in the user-key // range if (ucmp->CompareWithoutTimestamp(cursor_user_key, smallest_user_key_) > 0 && ucmp->CompareWithoutTimestamp(cursor_user_key, largest_user_key_) <= 0) { output_split_key_ = cursor; } } } PopulatePenultimateLevelOutputRange(); } void Compaction::PopulatePenultimateLevelOutputRange() { if (!SupportsPerKeyPlacement()) { return; } // exclude the last level, the range of all input levels is the safe range // of keys that can be moved up. int exclude_level = number_levels_ - 1; penultimate_output_range_type_ = PenultimateOutputRangeType::kNonLastRange; // For universal compaction, the penultimate_output_range could be extended if // all penultimate level files are included in the compaction (which includes // the case that the penultimate level is empty). if (immutable_options_.compaction_style == kCompactionStyleUniversal) { exclude_level = kInvalidLevel; penultimate_output_range_type_ = PenultimateOutputRangeType::kFullRange; std::set penultimate_inputs; for (const auto& input_lvl : inputs_) { if (input_lvl.level == penultimate_level_) { for (const auto& file : input_lvl.files) { penultimate_inputs.emplace(file->fd.GetNumber()); } } } auto penultimate_files = input_vstorage_->LevelFiles(penultimate_level_); for (const auto& file : penultimate_files) { if (penultimate_inputs.find(file->fd.GetNumber()) == penultimate_inputs.end()) { exclude_level = number_levels_ - 1; penultimate_output_range_type_ = PenultimateOutputRangeType::kNonLastRange; break; } } } GetBoundaryKeys(input_vstorage_, inputs_, &penultimate_level_smallest_user_key_, &penultimate_level_largest_user_key_, exclude_level); } Compaction::~Compaction() { if (input_version_ != nullptr) { input_version_->Unref(); } if (cfd_ != nullptr) { cfd_->UnrefAndTryDelete(); } } bool Compaction::SupportsPerKeyPlacement() const { return penultimate_level_ != kInvalidLevel; } int Compaction::GetPenultimateLevel() const { return penultimate_level_; } // smallest_key and largest_key include timestamps if user-defined timestamp is // enabled. bool Compaction::OverlapPenultimateLevelOutputRange( const Slice& smallest_key, const Slice& largest_key) const { if (!SupportsPerKeyPlacement()) { return false; } const Comparator* ucmp = input_vstorage_->InternalComparator()->user_comparator(); return ucmp->CompareWithoutTimestamp( smallest_key, penultimate_level_largest_user_key_) <= 0 && ucmp->CompareWithoutTimestamp( largest_key, penultimate_level_smallest_user_key_) >= 0; } // key includes timestamp if user-defined timestamp is enabled. bool Compaction::WithinPenultimateLevelOutputRange(const Slice& key) const { if (!SupportsPerKeyPlacement()) { return false; } if (penultimate_level_smallest_user_key_.empty() || penultimate_level_largest_user_key_.empty()) { return false; } const Comparator* ucmp = input_vstorage_->InternalComparator()->user_comparator(); return ucmp->CompareWithoutTimestamp( key, penultimate_level_smallest_user_key_) >= 0 && ucmp->CompareWithoutTimestamp( key, penultimate_level_largest_user_key_) <= 0; } bool Compaction::InputCompressionMatchesOutput() const { int base_level = input_vstorage_->base_level(); bool matches = (GetCompressionType(input_vstorage_, mutable_cf_options_, start_level_, base_level) == output_compression_); if (matches) { TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches"); return true; } TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch"); return matches; } bool Compaction::IsTrivialMove() const { // Avoid a move if there is lots of overlapping grandparent data. // Otherwise, the move could create a parent file that will require // a very expensive merge later on. // If start_level_== output_level_, the purpose is to force compaction // filter to be applied to that level, and thus cannot be a trivial move. // Check if start level have files with overlapping ranges if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false && l0_files_might_overlap_) { // We cannot move files from L0 to L1 if the L0 files in the LSM-tree are // overlapping, unless we are sure that files picked in L0 don't overlap. return false; } if (is_manual_compaction_ && (immutable_options_.compaction_filter != nullptr || immutable_options_.compaction_filter_factory != nullptr)) { // This is a manual compaction and we have a compaction filter that should // be executed, we cannot do a trivial move return false; } if (start_level_ == output_level_) { // It doesn't make sense if compaction picker picks files just to trivial // move to the same level. return false; } if (compaction_reason_ == CompactionReason::kChangeTemperature) { // Changing temperature usually requires rewriting the file. return false; } // Used in universal compaction, where trivial move can be done if the // input files are non overlapping if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) && (output_level_ != 0) && (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal)) { return is_trivial_move_; } if (!(start_level_ != output_level_ && num_input_levels() == 1 && input(0, 0)->fd.GetPathId() == output_path_id() && InputCompressionMatchesOutput())) { return false; } // assert inputs_.size() == 1 if (output_level_ + 1 < number_levels_) { std::unique_ptr partitioner = CreateSstPartitioner(); for (const auto& file : inputs_.front().files) { std::vector file_grand_parents; input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest, &file->largest, &file_grand_parents); const auto compaction_size = file->fd.GetFileSize() + TotalFileSize(file_grand_parents); if (compaction_size > max_compaction_bytes_) { return false; } if (partitioner.get() != nullptr) { if (!partitioner->CanDoTrivialMove(file->smallest.user_key(), file->largest.user_key())) { return false; } } } } // PerKeyPlacement compaction should never be trivial move. if (SupportsPerKeyPlacement()) { return false; } return true; } void Compaction::AddInputDeletions(VersionEdit* out_edit) { for (size_t which = 0; which < num_input_levels(); which++) { for (size_t i = 0; i < inputs_[which].size(); i++) { out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber()); } } } bool Compaction::KeyNotExistsBeyondOutputLevel( const Slice& user_key, std::vector* level_ptrs) const { assert(input_version_ != nullptr); assert(level_ptrs != nullptr); assert(level_ptrs->size() == static_cast(number_levels_)); if (bottommost_level_) { return true; } else if (output_level_ != 0 && cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { // Maybe use binary search to find right entry instead of linear search? const Comparator* user_cmp = cfd_->user_comparator(); for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) { const std::vector& files = input_vstorage_->LevelFiles(lvl); for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) { auto* f = files[level_ptrs->at(lvl)]; if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { // We've advanced far enough // In the presence of user-defined timestamp, we may need to handle // the case in which f->smallest.user_key() (including ts) has the // same user key, but the ts part is smaller. If so, // Compare(user_key, f->smallest.user_key()) returns -1. // That's why we need CompareWithoutTimestamp(). if (user_cmp->CompareWithoutTimestamp(user_key, f->smallest.user_key()) >= 0) { // Key falls in this file's range, so it may // exist beyond output level return false; } break; } } } return true; } return false; } bool Compaction::KeyRangeNotExistsBeyondOutputLevel( const Slice& begin_key, const Slice& end_key, std::vector* level_ptrs) const { assert(input_version_ != nullptr); assert(level_ptrs != nullptr); assert(level_ptrs->size() == static_cast(number_levels_)); assert(cfd_->user_comparator()->CompareWithoutTimestamp(begin_key, end_key) < 0); if (bottommost_level_) { return true /* does not overlap */; } else if (output_level_ != 0 && cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { const Comparator* user_cmp = cfd_->user_comparator(); for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) { const std::vector& files = input_vstorage_->LevelFiles(lvl); for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) { auto* f = files[level_ptrs->at(lvl)]; // Advance until the first file with begin_key <= f->largest.user_key() if (user_cmp->CompareWithoutTimestamp(begin_key, f->largest.user_key()) > 0) { continue; } // We know that the previous file prev_f, if exists, has // prev_f->largest.user_key() < begin_key. if (user_cmp->CompareWithoutTimestamp(end_key, f->smallest.user_key()) <= 0) { // not overlapping with this level break; } else { // We have: // - begin_key < end_key, // - begin_key <= f->largest.user_key(), and // - end_key > f->smallest.user_key() return false /* overlap */; } } } return true /* does not overlap */; } return false /* overlaps */; }; // Mark (or clear) each file that is being compacted void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) { for (size_t i = 0; i < num_input_levels(); i++) { for (size_t j = 0; j < inputs_[i].size(); j++) { assert(mark_as_compacted ? !inputs_[i][j]->being_compacted : inputs_[i][j]->being_compacted); inputs_[i][j]->being_compacted = mark_as_compacted; } } } // Sample output: // If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5, // print: "3@0 + 2@3 + 1@4 files to L5" const char* Compaction::InputLevelSummary( InputLevelSummaryBuffer* scratch) const { int len = 0; bool is_first = true; for (auto& input_level : inputs_) { if (input_level.empty()) { continue; } if (!is_first) { len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + "); len = std::min(len, static_cast(sizeof(scratch->buffer))); } else { is_first = false; } len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "%" ROCKSDB_PRIszt "@%d", input_level.size(), input_level.level); len = std::min(len, static_cast(sizeof(scratch->buffer))); } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " files to L%d", output_level()); return scratch->buffer; } uint64_t Compaction::CalculateTotalInputSize() const { uint64_t size = 0; for (auto& input_level : inputs_) { for (auto f : input_level.files) { size += f->fd.GetFileSize(); } } return size; } void Compaction::ReleaseCompactionFiles(Status status) { MarkFilesBeingCompacted(false); cfd_->compaction_picker()->ReleaseCompactionFiles(this, status); } void Compaction::ResetNextCompactionIndex() { assert(input_version_ != nullptr); input_vstorage_->ResetNextCompactionIndex(start_level_); } namespace { int InputSummary(const std::vector& files, char* output, int len) { *output = '\0'; int write = 0; for (size_t i = 0; i < files.size(); i++) { int sz = len - write; int ret; char sztxt[16]; AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16); ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ", files.at(i)->fd.GetNumber(), sztxt); if (ret < 0 || ret >= sz) break; write += ret; } // if files.size() is non-zero, overwrite the last space return write - !!files.size(); } } // namespace void Compaction::Summary(char* output, int len) { int write = snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [", input_version_->GetVersionNumber(), start_level_); if (write < 0 || write >= len) { return; } for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) { if (level_iter > 0) { write += snprintf(output + write, len - write, "], ["); if (write < 0 || write >= len) { return; } } write += InputSummary(inputs_[level_iter].files, output + write, len - write); if (write < 0 || write >= len) { return; } } snprintf(output + write, len - write, "]"); } uint64_t Compaction::OutputFilePreallocationSize() const { uint64_t preallocation_size = 0; for (const auto& level_files : inputs_) { for (const auto& file : level_files.files) { preallocation_size += file->fd.GetFileSize(); } } if (max_output_file_size_ != std::numeric_limits::max() && (immutable_options_.compaction_style == kCompactionStyleLevel || output_level() > 0)) { preallocation_size = std::min(max_output_file_size_, preallocation_size); } // Over-estimate slightly so we don't end up just barely crossing // the threshold // No point to preallocate more than 1GB. return std::min(uint64_t{1073741824}, preallocation_size + (preallocation_size / 10)); } std::unique_ptr Compaction::CreateCompactionFilter() const { if (!cfd_->ioptions()->compaction_filter_factory) { return nullptr; } if (!cfd_->ioptions() ->compaction_filter_factory->ShouldFilterTableFileCreation( TableFileCreationReason::kCompaction)) { return nullptr; } CompactionFilter::Context context; context.is_full_compaction = is_full_compaction_; context.is_manual_compaction = is_manual_compaction_; context.column_family_id = cfd_->GetID(); context.reason = TableFileCreationReason::kCompaction; return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter( context); } std::unique_ptr Compaction::CreateSstPartitioner() const { if (!immutable_options_.sst_partitioner_factory) { return nullptr; } SstPartitioner::Context context; context.is_full_compaction = is_full_compaction_; context.is_manual_compaction = is_manual_compaction_; context.output_level = output_level_; context.smallest_user_key = smallest_user_key_; context.largest_user_key = largest_user_key_; return immutable_options_.sst_partitioner_factory->CreatePartitioner(context); } bool Compaction::IsOutputLevelEmpty() const { return inputs_.back().level != output_level_ || inputs_.back().empty(); } bool Compaction::ShouldFormSubcompactions() const { if (cfd_ == nullptr) { return false; } // Round-Robin pri under leveled compaction allows subcompactions by default // and the number of subcompactions can be larger than max_subcompactions_ if (cfd_->ioptions()->compaction_pri == kRoundRobin && cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { return output_level_ > 0; } if (max_subcompactions_ <= 1) { return false; } if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0; } else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) { return number_levels_ > 1 && output_level_ > 0; } else { return false; } } bool Compaction::DoesInputReferenceBlobFiles() const { assert(input_version_); const VersionStorageInfo* storage_info = input_version_->storage_info(); assert(storage_info); if (storage_info->GetBlobFiles().empty()) { return false; } for (size_t i = 0; i < inputs_.size(); ++i) { for (const FileMetaData* meta : inputs_[i].files) { assert(meta); if (meta->oldest_blob_file_number != kInvalidBlobFileNumber) { return true; } } } return false; } uint64_t Compaction::MinInputFileOldestAncesterTime( const InternalKey* start, const InternalKey* end) const { uint64_t min_oldest_ancester_time = std::numeric_limits::max(); const InternalKeyComparator& icmp = column_family_data()->internal_comparator(); for (const auto& level_files : inputs_) { for (const auto& file : level_files.files) { if (start != nullptr && icmp.Compare(file->largest, *start) < 0) { continue; } if (end != nullptr && icmp.Compare(file->smallest, *end) > 0) { continue; } uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime(); if (oldest_ancester_time != 0) { min_oldest_ancester_time = std::min(min_oldest_ancester_time, oldest_ancester_time); } } } return min_oldest_ancester_time; } uint64_t Compaction::MinInputFileEpochNumber() const { uint64_t min_epoch_number = std::numeric_limits::max(); for (const auto& inputs_per_level : inputs_) { for (const auto& file : inputs_per_level.files) { min_epoch_number = std::min(min_epoch_number, file->epoch_number); } } return min_epoch_number; } int Compaction::EvaluatePenultimateLevel( const VersionStorageInfo* vstorage, const ImmutableOptions& immutable_options, const int start_level, const int output_level) { // TODO: currently per_key_placement feature only support level and universal // compaction if (immutable_options.compaction_style != kCompactionStyleLevel && immutable_options.compaction_style != kCompactionStyleUniversal) { return kInvalidLevel; } if (output_level != immutable_options.num_levels - 1) { return kInvalidLevel; } int penultimate_level = output_level - 1; assert(penultimate_level < immutable_options.num_levels); if (penultimate_level <= 0) { return kInvalidLevel; } // If the penultimate level is not within input level -> output level range // check if the penultimate output level is empty, if it's empty, it could // also be locked for the penultimate output. // TODO: ideally, it only needs to check if there's a file within the // compaction output key range. For simplicity, it just check if there's any // file on the penultimate level. if (start_level == immutable_options.num_levels - 1 && (immutable_options.compaction_style != kCompactionStyleUniversal || !vstorage->LevelFiles(penultimate_level).empty())) { return kInvalidLevel; } bool supports_per_key_placement = immutable_options.preclude_last_level_data_seconds > 0; // it could be overridden by unittest TEST_SYNC_POINT_CALLBACK("Compaction::SupportsPerKeyPlacement:Enabled", &supports_per_key_placement); if (!supports_per_key_placement) { return kInvalidLevel; } return penultimate_level; } } // namespace ROCKSDB_NAMESPACE