// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // #include "db/memtable_list.h" #include #include #include #include #include "db/db_impl/db_impl.h" #include "db/memtable.h" #include "db/range_tombstone_fragmenter.h" #include "db/version_set.h" #include "logging/log_buffer.h" #include "monitoring/thread_status_util.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "table/merging_iterator.h" #include "test_util/sync_point.h" #include "util/coding.h" namespace ROCKSDB_NAMESPACE { class InternalKeyComparator; class Mutex; class VersionSet; void MemTableListVersion::AddMemTable(MemTable* m) { memlist_.push_front(m); *parent_memtable_list_memory_usage_ += m->ApproximateMemoryUsage(); } void MemTableListVersion::UnrefMemTable(autovector* to_delete, MemTable* m) { if (m->Unref()) { to_delete->push_back(m); assert(*parent_memtable_list_memory_usage_ >= m->ApproximateMemoryUsage()); *parent_memtable_list_memory_usage_ -= m->ApproximateMemoryUsage(); } } MemTableListVersion::MemTableListVersion( size_t* parent_memtable_list_memory_usage, MemTableListVersion* old) : max_write_buffer_number_to_maintain_( old->max_write_buffer_number_to_maintain_), max_write_buffer_size_to_maintain_( old->max_write_buffer_size_to_maintain_), parent_memtable_list_memory_usage_(parent_memtable_list_memory_usage) { if (old != nullptr) { memlist_ = old->memlist_; for (auto& m : memlist_) { m->Ref(); } memlist_history_ = old->memlist_history_; for (auto& m : memlist_history_) { m->Ref(); } } } MemTableListVersion::MemTableListVersion( size_t* parent_memtable_list_memory_usage, int max_write_buffer_number_to_maintain, int64_t max_write_buffer_size_to_maintain) : max_write_buffer_number_to_maintain_(max_write_buffer_number_to_maintain), max_write_buffer_size_to_maintain_(max_write_buffer_size_to_maintain), parent_memtable_list_memory_usage_(parent_memtable_list_memory_usage) {} void MemTableListVersion::Ref() { ++refs_; } // called by superversion::clean() void MemTableListVersion::Unref(autovector* to_delete) { assert(refs_ >= 1); --refs_; if (refs_ == 0) { // if to_delete is equal to nullptr it means we're confident // that refs_ will not be zero assert(to_delete != nullptr); for (const auto& m : memlist_) { UnrefMemTable(to_delete, m); } for (const auto& m : memlist_history_) { UnrefMemTable(to_delete, m); } delete this; } } int MemTableList::NumNotFlushed() const { int size = static_cast(current_->memlist_.size()); assert(num_flush_not_started_ <= size); return size; } int MemTableList::NumFlushed() const { return static_cast(current_->memlist_history_.size()); } // Search all the memtables starting from the most recent one. // Return the most recent value found, if any. // Operands stores the list of merge operations to apply, so far. bool MemTableListVersion::Get(const LookupKey& key, std::string* value, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq, const ReadOptions& read_opts, ReadCallback* callback, bool* is_blob_index) { return GetFromList(&memlist_, key, value, timestamp, s, merge_context, max_covering_tombstone_seq, seq, read_opts, callback, is_blob_index); } void MemTableListVersion::MultiGet(const ReadOptions& read_options, MultiGetRange* range, ReadCallback* callback, bool* is_blob) { for (auto memtable : memlist_) { memtable->MultiGet(read_options, range, callback, is_blob); if (range->empty()) { return; } } } bool MemTableListVersion::GetMergeOperands( const LookupKey& key, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, const ReadOptions& read_opts) { for (MemTable* memtable : memlist_) { bool done = memtable->Get(key, /*value*/ nullptr, /*timestamp*/ nullptr, s, merge_context, max_covering_tombstone_seq, read_opts, nullptr, nullptr, false); if (done) { return true; } } return false; } bool MemTableListVersion::GetFromHistory( const LookupKey& key, std::string* value, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq, const ReadOptions& read_opts, bool* is_blob_index) { return GetFromList(&memlist_history_, key, value, timestamp, s, merge_context, max_covering_tombstone_seq, seq, read_opts, nullptr /*read_callback*/, is_blob_index); } bool MemTableListVersion::GetFromList( std::list* list, const LookupKey& key, std::string* value, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq, const ReadOptions& read_opts, ReadCallback* callback, bool* is_blob_index) { *seq = kMaxSequenceNumber; for (auto& memtable : *list) { SequenceNumber current_seq = kMaxSequenceNumber; bool done = memtable->Get(key, value, timestamp, s, merge_context, max_covering_tombstone_seq, ¤t_seq, read_opts, callback, is_blob_index); if (*seq == kMaxSequenceNumber) { // Store the most recent sequence number of any operation on this key. // Since we only care about the most recent change, we only need to // return the first operation found when searching memtables in // reverse-chronological order. // current_seq would be equal to kMaxSequenceNumber if the value was to be // skipped. This allows seq to be assigned again when the next value is // read. *seq = current_seq; } if (done) { assert(*seq != kMaxSequenceNumber || s->IsNotFound()); return true; } if (!done && !s->ok() && !s->IsMergeInProgress() && !s->IsNotFound()) { return false; } } return false; } Status MemTableListVersion::AddRangeTombstoneIterators( const ReadOptions& read_opts, Arena* /*arena*/, RangeDelAggregator* range_del_agg) { assert(range_del_agg != nullptr); // Except for snapshot read, using kMaxSequenceNumber is OK because these // are immutable memtables. SequenceNumber read_seq = read_opts.snapshot != nullptr ? read_opts.snapshot->GetSequenceNumber() : kMaxSequenceNumber; for (auto& m : memlist_) { std::unique_ptr range_del_iter( m->NewRangeTombstoneIterator(read_opts, read_seq)); range_del_agg->AddTombstones(std::move(range_del_iter)); } return Status::OK(); } void MemTableListVersion::AddIterators( const ReadOptions& options, std::vector* iterator_list, Arena* arena) { for (auto& m : memlist_) { iterator_list->push_back(m->NewIterator(options, arena)); } } void MemTableListVersion::AddIterators( const ReadOptions& options, MergeIteratorBuilder* merge_iter_builder) { for (auto& m : memlist_) { merge_iter_builder->AddIterator( m->NewIterator(options, merge_iter_builder->GetArena())); } } uint64_t MemTableListVersion::GetTotalNumEntries() const { uint64_t total_num = 0; for (auto& m : memlist_) { total_num += m->num_entries(); } return total_num; } MemTable::MemTableStats MemTableListVersion::ApproximateStats( const Slice& start_ikey, const Slice& end_ikey) { MemTable::MemTableStats total_stats = {0, 0}; for (auto& m : memlist_) { auto mStats = m->ApproximateStats(start_ikey, end_ikey); total_stats.size += mStats.size; total_stats.count += mStats.count; } return total_stats; } uint64_t MemTableListVersion::GetTotalNumDeletes() const { uint64_t total_num = 0; for (auto& m : memlist_) { total_num += m->num_deletes(); } return total_num; } SequenceNumber MemTableListVersion::GetEarliestSequenceNumber( bool include_history) const { if (include_history && !memlist_history_.empty()) { return memlist_history_.back()->GetEarliestSequenceNumber(); } else if (!memlist_.empty()) { return memlist_.back()->GetEarliestSequenceNumber(); } else { return kMaxSequenceNumber; } } // caller is responsible for referencing m void MemTableListVersion::Add(MemTable* m, autovector* to_delete) { assert(refs_ == 1); // only when refs_ == 1 is MemTableListVersion mutable AddMemTable(m); TrimHistory(to_delete, m->ApproximateMemoryUsage()); } // Removes m from list of memtables not flushed. Caller should NOT Unref m. void MemTableListVersion::Remove(MemTable* m, autovector* to_delete) { assert(refs_ == 1); // only when refs_ == 1 is MemTableListVersion mutable memlist_.remove(m); m->MarkFlushed(); if (max_write_buffer_size_to_maintain_ > 0 || max_write_buffer_number_to_maintain_ > 0) { memlist_history_.push_front(m); // Unable to get size of mutable memtable at this point, pass 0 to // TrimHistory as a best effort. TrimHistory(to_delete, 0); } else { UnrefMemTable(to_delete, m); } } // return the total memory usage assuming the oldest flushed memtable is dropped size_t MemTableListVersion::ApproximateMemoryUsageExcludingLast() const { size_t total_memtable_size = 0; for (auto& memtable : memlist_) { total_memtable_size += memtable->ApproximateMemoryUsage(); } for (auto& memtable : memlist_history_) { total_memtable_size += memtable->ApproximateMemoryUsage(); } if (!memlist_history_.empty()) { total_memtable_size -= memlist_history_.back()->ApproximateMemoryUsage(); } return total_memtable_size; } bool MemTableListVersion::MemtableLimitExceeded(size_t usage) { if (max_write_buffer_size_to_maintain_ > 0) { // calculate the total memory usage after dropping the oldest flushed // memtable, compare with max_write_buffer_size_to_maintain_ to decide // whether to trim history return ApproximateMemoryUsageExcludingLast() + usage >= static_cast(max_write_buffer_size_to_maintain_); } else if (max_write_buffer_number_to_maintain_ > 0) { return memlist_.size() + memlist_history_.size() > static_cast(max_write_buffer_number_to_maintain_); } else { return false; } } // Make sure we don't use up too much space in history void MemTableListVersion::TrimHistory(autovector* to_delete, size_t usage) { while (MemtableLimitExceeded(usage) && !memlist_history_.empty()) { MemTable* x = memlist_history_.back(); memlist_history_.pop_back(); UnrefMemTable(to_delete, x); } } // Returns true if there is at least one memtable on which flush has // not yet started. bool MemTableList::IsFlushPending() const { if ((flush_requested_ && num_flush_not_started_ > 0) || (num_flush_not_started_ >= min_write_buffer_number_to_merge_)) { assert(imm_flush_needed.load(std::memory_order_relaxed)); return true; } return false; } // Returns the memtables that need to be flushed. void MemTableList::PickMemtablesToFlush(const uint64_t* max_memtable_id, autovector* ret) { AutoThreadOperationStageUpdater stage_updater( ThreadStatus::STAGE_PICK_MEMTABLES_TO_FLUSH); const auto& memlist = current_->memlist_; bool atomic_flush = false; for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) { MemTable* m = *it; if (!atomic_flush && m->atomic_flush_seqno_ != kMaxSequenceNumber) { atomic_flush = true; } if (max_memtable_id != nullptr && m->GetID() > *max_memtable_id) { break; } if (!m->flush_in_progress_) { assert(!m->flush_completed_); num_flush_not_started_--; if (num_flush_not_started_ == 0) { imm_flush_needed.store(false, std::memory_order_release); } m->flush_in_progress_ = true; // flushing will start very soon ret->push_back(m); } } if (!atomic_flush || num_flush_not_started_ == 0) { flush_requested_ = false; // start-flush request is complete } } void MemTableList::RollbackMemtableFlush(const autovector& mems, uint64_t /*file_number*/) { AutoThreadOperationStageUpdater stage_updater( ThreadStatus::STAGE_MEMTABLE_ROLLBACK); assert(!mems.empty()); // If the flush was not successful, then just reset state. // Maybe a succeeding attempt to flush will be successful. for (MemTable* m : mems) { assert(m->flush_in_progress_); assert(m->file_number_ == 0); m->flush_in_progress_ = false; m->flush_completed_ = false; m->edit_.Clear(); num_flush_not_started_++; } imm_flush_needed.store(true, std::memory_order_release); } // Try record a successful flush in the manifest file. It might just return // Status::OK letting a concurrent flush to do actual the recording.. Status MemTableList::TryInstallMemtableFlushResults( ColumnFamilyData* cfd, const MutableCFOptions& mutable_cf_options, const autovector& mems, LogsWithPrepTracker* prep_tracker, VersionSet* vset, InstrumentedMutex* mu, uint64_t file_number, autovector* to_delete, FSDirectory* db_directory, LogBuffer* log_buffer, std::list>* committed_flush_jobs_info, IOStatus* io_s) { AutoThreadOperationStageUpdater stage_updater( ThreadStatus::STAGE_MEMTABLE_INSTALL_FLUSH_RESULTS); mu->AssertHeld(); // Flush was successful // Record the status on the memtable object. Either this call or a call by a // concurrent flush thread will read the status and write it to manifest. for (size_t i = 0; i < mems.size(); ++i) { // All the edits are associated with the first memtable of this batch. assert(i == 0 || mems[i]->GetEdits()->NumEntries() == 0); mems[i]->flush_completed_ = true; mems[i]->file_number_ = file_number; } // if some other thread is already committing, then return Status s; if (commit_in_progress_) { TEST_SYNC_POINT("MemTableList::TryInstallMemtableFlushResults:InProgress"); return s; } // Only a single thread can be executing this piece of code commit_in_progress_ = true; // Retry until all completed flushes are committed. New flushes can finish // while the current thread is writing manifest where mutex is released. while (s.ok()) { auto& memlist = current_->memlist_; // The back is the oldest; if flush_completed_ is not set to it, it means // that we were assigned a more recent memtable. The memtables' flushes must // be recorded in manifest in order. A concurrent flush thread, who is // assigned to flush the oldest memtable, will later wake up and does all // the pending writes to manifest, in order. if (memlist.empty() || !memlist.back()->flush_completed_) { break; } // scan all memtables from the earliest, and commit those // (in that order) that have finished flushing. Memtables // are always committed in the order that they were created. uint64_t batch_file_number = 0; size_t batch_count = 0; autovector edit_list; autovector memtables_to_flush; // enumerate from the last (earliest) element to see how many batch finished for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) { MemTable* m = *it; if (!m->flush_completed_) { break; } if (it == memlist.rbegin() || batch_file_number != m->file_number_) { batch_file_number = m->file_number_; ROCKS_LOG_BUFFER(log_buffer, "[%s] Level-0 commit table #%" PRIu64 " started", cfd->GetName().c_str(), m->file_number_); edit_list.push_back(&m->edit_); memtables_to_flush.push_back(m); #ifndef ROCKSDB_LITE std::unique_ptr info = m->ReleaseFlushJobInfo(); if (info != nullptr) { committed_flush_jobs_info->push_back(std::move(info)); } #else (void)committed_flush_jobs_info; #endif // !ROCKSDB_LITE } batch_count++; } // TODO(myabandeh): Not sure how batch_count could be 0 here. if (batch_count > 0) { if (vset->db_options()->allow_2pc) { assert(edit_list.size() > 0); // We piggyback the information of earliest log file to keep in the // manifest entry for the last file flushed. edit_list.back()->SetMinLogNumberToKeep(PrecomputeMinLogNumberToKeep( vset, *cfd, edit_list, memtables_to_flush, prep_tracker)); } // this can release and reacquire the mutex. vset->SetIOStatusOK(); s = vset->LogAndApply(cfd, mutable_cf_options, edit_list, mu, db_directory); *io_s = vset->io_status(); // we will be changing the version in the next code path, // so we better create a new one, since versions are immutable InstallNewVersion(); // All the later memtables that have the same filenum // are part of the same batch. They can be committed now. uint64_t mem_id = 1; // how many memtables have been flushed. // commit new state only if the column family is NOT dropped. // The reason is as follows (refer to // ColumnFamilyTest.FlushAndDropRaceCondition). // If the column family is dropped, then according to LogAndApply, its // corresponding flush operation is NOT written to the MANIFEST. This // means the DB is not aware of the L0 files generated from the flush. // By committing the new state, we remove the memtable from the memtable // list. Creating an iterator on this column family will not be able to // read full data since the memtable is removed, and the DB is not aware // of the L0 files, causing MergingIterator unable to build child // iterators. RocksDB contract requires that the iterator can be created // on a dropped column family, and we must be able to // read full data as long as column family handle is not deleted, even if // the column family is dropped. if (s.ok() && !cfd->IsDropped()) { // commit new state while (batch_count-- > 0) { MemTable* m = current_->memlist_.back(); ROCKS_LOG_BUFFER(log_buffer, "[%s] Level-0 commit table #%" PRIu64 ": memtable #%" PRIu64 " done", cfd->GetName().c_str(), m->file_number_, mem_id); assert(m->file_number_ > 0); current_->Remove(m, to_delete); UpdateCachedValuesFromMemTableListVersion(); ResetTrimHistoryNeeded(); ++mem_id; } } else { for (auto it = current_->memlist_.rbegin(); batch_count-- > 0; ++it) { MemTable* m = *it; // commit failed. setup state so that we can flush again. ROCKS_LOG_BUFFER(log_buffer, "Level-0 commit table #%" PRIu64 ": memtable #%" PRIu64 " failed", m->file_number_, mem_id); m->flush_completed_ = false; m->flush_in_progress_ = false; m->edit_.Clear(); num_flush_not_started_++; m->file_number_ = 0; imm_flush_needed.store(true, std::memory_order_release); ++mem_id; } } } } commit_in_progress_ = false; return s; } // New memtables are inserted at the front of the list. void MemTableList::Add(MemTable* m, autovector* to_delete) { assert(static_cast(current_->memlist_.size()) >= num_flush_not_started_); InstallNewVersion(); // this method is used to move mutable memtable into an immutable list. // since mutable memtable is already refcounted by the DBImpl, // and when moving to the imutable list we don't unref it, // we don't have to ref the memtable here. we just take over the // reference from the DBImpl. current_->Add(m, to_delete); m->MarkImmutable(); num_flush_not_started_++; if (num_flush_not_started_ == 1) { imm_flush_needed.store(true, std::memory_order_release); } UpdateCachedValuesFromMemTableListVersion(); ResetTrimHistoryNeeded(); } void MemTableList::TrimHistory(autovector* to_delete, size_t usage) { InstallNewVersion(); current_->TrimHistory(to_delete, usage); UpdateCachedValuesFromMemTableListVersion(); ResetTrimHistoryNeeded(); } // Returns an estimate of the number of bytes of data in use. size_t MemTableList::ApproximateUnflushedMemTablesMemoryUsage() { size_t total_size = 0; for (auto& memtable : current_->memlist_) { total_size += memtable->ApproximateMemoryUsage(); } return total_size; } size_t MemTableList::ApproximateMemoryUsage() { return current_memory_usage_; } size_t MemTableList::ApproximateMemoryUsageExcludingLast() const { const size_t usage = current_memory_usage_excluding_last_.load(std::memory_order_relaxed); return usage; } bool MemTableList::HasHistory() const { const bool has_history = current_has_history_.load(std::memory_order_relaxed); return has_history; } void MemTableList::UpdateCachedValuesFromMemTableListVersion() { const size_t total_memtable_size = current_->ApproximateMemoryUsageExcludingLast(); current_memory_usage_excluding_last_.store(total_memtable_size, std::memory_order_relaxed); const bool has_history = current_->HasHistory(); current_has_history_.store(has_history, std::memory_order_relaxed); } uint64_t MemTableList::ApproximateOldestKeyTime() const { if (!current_->memlist_.empty()) { return current_->memlist_.back()->ApproximateOldestKeyTime(); } return std::numeric_limits::max(); } void MemTableList::InstallNewVersion() { if (current_->refs_ == 1) { // we're the only one using the version, just keep using it } else { // somebody else holds the current version, we need to create new one MemTableListVersion* version = current_; current_ = new MemTableListVersion(¤t_memory_usage_, current_); current_->Ref(); version->Unref(); } } uint64_t MemTableList::PrecomputeMinLogContainingPrepSection( const autovector& memtables_to_flush) { uint64_t min_log = 0; for (auto& m : current_->memlist_) { // Assume the list is very short, we can live with O(m*n). We can optimize // if the performance has some problem. bool should_skip = false; for (MemTable* m_to_flush : memtables_to_flush) { if (m == m_to_flush) { should_skip = true; break; } } if (should_skip) { continue; } auto log = m->GetMinLogContainingPrepSection(); if (log > 0 && (min_log == 0 || log < min_log)) { min_log = log; } } return min_log; } // Commit a successful atomic flush in the manifest file. Status InstallMemtableAtomicFlushResults( const autovector* imm_lists, const autovector& cfds, const autovector& mutable_cf_options_list, const autovector*>& mems_list, VersionSet* vset, InstrumentedMutex* mu, const autovector& file_metas, autovector* to_delete, FSDirectory* db_directory, LogBuffer* log_buffer) { AutoThreadOperationStageUpdater stage_updater( ThreadStatus::STAGE_MEMTABLE_INSTALL_FLUSH_RESULTS); mu->AssertHeld(); size_t num = mems_list.size(); assert(cfds.size() == num); if (imm_lists != nullptr) { assert(imm_lists->size() == num); } for (size_t k = 0; k != num; ++k) { #ifndef NDEBUG const auto* imm = (imm_lists == nullptr) ? cfds[k]->imm() : imm_lists->at(k); if (!mems_list[k]->empty()) { assert((*mems_list[k])[0]->GetID() == imm->GetEarliestMemTableID()); } #endif assert(nullptr != file_metas[k]); for (size_t i = 0; i != mems_list[k]->size(); ++i) { assert(i == 0 || (*mems_list[k])[i]->GetEdits()->NumEntries() == 0); (*mems_list[k])[i]->SetFlushCompleted(true); (*mems_list[k])[i]->SetFileNumber(file_metas[k]->fd.GetNumber()); } } Status s; autovector> edit_lists; uint32_t num_entries = 0; for (const auto mems : mems_list) { assert(mems != nullptr); autovector edits; assert(!mems->empty()); edits.emplace_back((*mems)[0]->GetEdits()); ++num_entries; edit_lists.emplace_back(edits); } // Mark the version edits as an atomic group if the number of version edits // exceeds 1. if (cfds.size() > 1) { for (auto& edits : edit_lists) { assert(edits.size() == 1); edits[0]->MarkAtomicGroup(--num_entries); } assert(0 == num_entries); } // this can release and reacquire the mutex. s = vset->LogAndApply(cfds, mutable_cf_options_list, edit_lists, mu, db_directory); for (size_t k = 0; k != cfds.size(); ++k) { auto* imm = (imm_lists == nullptr) ? cfds[k]->imm() : imm_lists->at(k); imm->InstallNewVersion(); } if (s.ok() || s.IsColumnFamilyDropped()) { for (size_t i = 0; i != cfds.size(); ++i) { if (cfds[i]->IsDropped()) { continue; } auto* imm = (imm_lists == nullptr) ? cfds[i]->imm() : imm_lists->at(i); for (auto m : *mems_list[i]) { assert(m->GetFileNumber() > 0); uint64_t mem_id = m->GetID(); ROCKS_LOG_BUFFER(log_buffer, "[%s] Level-0 commit table #%" PRIu64 ": memtable #%" PRIu64 " done", cfds[i]->GetName().c_str(), m->GetFileNumber(), mem_id); imm->current_->Remove(m, to_delete); imm->UpdateCachedValuesFromMemTableListVersion(); imm->ResetTrimHistoryNeeded(); } } } else { for (size_t i = 0; i != cfds.size(); ++i) { auto* imm = (imm_lists == nullptr) ? cfds[i]->imm() : imm_lists->at(i); for (auto m : *mems_list[i]) { uint64_t mem_id = m->GetID(); ROCKS_LOG_BUFFER(log_buffer, "[%s] Level-0 commit table #%" PRIu64 ": memtable #%" PRIu64 " failed", cfds[i]->GetName().c_str(), m->GetFileNumber(), mem_id); m->SetFlushCompleted(false); m->SetFlushInProgress(false); m->GetEdits()->Clear(); m->SetFileNumber(0); imm->num_flush_not_started_++; } imm->imm_flush_needed.store(true, std::memory_order_release); } } return s; } void MemTableList::RemoveOldMemTables(uint64_t log_number, autovector* to_delete) { assert(to_delete != nullptr); InstallNewVersion(); auto& memlist = current_->memlist_; autovector old_memtables; for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) { MemTable* mem = *it; if (mem->GetNextLogNumber() > log_number) { break; } old_memtables.push_back(mem); } for (auto it = old_memtables.begin(); it != old_memtables.end(); ++it) { MemTable* mem = *it; current_->Remove(mem, to_delete); --num_flush_not_started_; if (0 == num_flush_not_started_) { imm_flush_needed.store(false, std::memory_order_release); } } UpdateCachedValuesFromMemTableListVersion(); ResetTrimHistoryNeeded(); } } // namespace ROCKSDB_NAMESPACE