// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #ifndef GFLAGS #include int main() { fprintf(stderr, "Please install gflags to run rocksdb tools\n"); return 1; } #else #ifdef NUMA #include #include #endif #include #include #include #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "rocksdb/options.h" #include "rocksdb/cache.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/memtablerep.h" #include "rocksdb/write_batch.h" #include "rocksdb/slice.h" #include "rocksdb/filter_policy.h" #include "rocksdb/slice_transform.h" #include "rocksdb/perf_context.h" #include "port/port.h" #include "port/stack_trace.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/string_util.h" #include "util/statistics.h" #include "util/testutil.h" #include "util/xxhash.h" #include "hdfs/env_hdfs.h" #include "utilities/merge_operators.h" using GFLAGS::ParseCommandLineFlags; using GFLAGS::RegisterFlagValidator; using GFLAGS::SetUsageMessage; DEFINE_string(benchmarks, "fillseq," "fillsync," "fillrandom," "overwrite," "readrandom," "newiterator," "newiteratorwhilewriting," "seekrandom," "seekrandomwhilewriting," "readseq," "readreverse," "compact," "readrandom," "multireadrandom," "readseq," "readtocache," "readreverse," "readwhilewriting," "readrandomwriterandom," "updaterandom," "randomwithverify," "fill100K," "crc32c," "xxhash," "compress," "uncompress," "acquireload," "fillseekseq,", "Comma-separated list of operations to run in the specified order" "Actual benchmarks:\n" "\tfillseq -- write N values in sequential key" " order in async mode\n" "\tfillrandom -- write N values in random key order in async" " mode\n" "\toverwrite -- overwrite N values in random key order in" " async mode\n" "\tfillsync -- write N/100 values in random key order in " "sync mode\n" "\tfill100K -- write N/1000 100K values in random order in" " async mode\n" "\tdeleteseq -- delete N keys in sequential order\n" "\tdeleterandom -- delete N keys in random order\n" "\treadseq -- read N times sequentially\n" "\treadtocache -- 1 thread reading database sequentially\n" "\treadreverse -- read N times in reverse order\n" "\treadrandom -- read N times in random order\n" "\treadmissing -- read N missing keys in random order\n" "\treadhot -- read N times in random order from 1% section " "of DB\n" "\treadwhilewriting -- 1 writer, N threads doing random " "reads\n" "\treadrandomwriterandom -- N threads doing random-read, " "random-write\n" "\tprefixscanrandom -- prefix scan N times in random order\n" "\tupdaterandom -- N threads doing read-modify-write for random " "keys\n" "\tappendrandom -- N threads doing read-modify-write with " "growing values\n" "\tmergerandom -- same as updaterandom/appendrandom using merge" " operator. " "Must be used with merge_operator\n" "\treadrandommergerandom -- perform N random read-or-merge " "operations. Must be used with merge_operator\n" "\tnewiterator -- repeated iterator creation\n" "\tseekrandom -- N random seeks\n" "\tseekrandom -- 1 writer, N threads doing random seeks\n" "\tcrc32c -- repeated crc32c of 4K of data\n" "\txxhash -- repeated xxHash of 4K of data\n" "\tacquireload -- load N*1000 times\n" "\tfillseekseq -- write N values in sequential key, then read " "them by seeking to each key\n" "Meta operations:\n" "\tcompact -- Compact the entire DB\n" "\tstats -- Print DB stats\n" "\tlevelstats -- Print the number of files and bytes per level\n" "\tsstables -- Print sstable info\n" "\theapprofile -- Dump a heap profile (if supported by this" " port)\n"); DEFINE_int64(num, 1000000, "Number of key/values to place in database"); DEFINE_int64(numdistinct, 1000, "Number of distinct keys to use. Used in RandomWithVerify to " "read/write on fewer keys so that gets are more likely to find the" " key and puts are more likely to update the same key"); DEFINE_int64(merge_keys, -1, "Number of distinct keys to use for MergeRandom and " "ReadRandomMergeRandom. " "If negative, there will be FLAGS_num keys."); DEFINE_int32(num_column_families, 1, "Number of Column Families to use."); DEFINE_int64(reads, -1, "Number of read operations to do. " "If negative, do FLAGS_num reads."); DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality"); DEFINE_int64(seed, 0, "Seed base for random number generators. " "When 0 it is deterministic."); DEFINE_int32(threads, 1, "Number of concurrent threads to run."); DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run." " When 0 then num & reads determine the test duration"); DEFINE_int32(value_size, 100, "Size of each value"); DEFINE_int32(seek_nexts, 0, "How many times to call Next() after Seek() in " "fillseekseq and seekrandom"); DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator"); DEFINE_int64(batch_size, 1, "Batch size"); static bool ValidateKeySize(const char* flagname, int32_t value) { return true; } DEFINE_int32(key_size, 16, "size of each key"); DEFINE_int32(num_multi_db, 0, "Number of DBs used in the benchmark. 0 means single DB."); DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink" " to this fraction of their original size after compression"); DEFINE_bool(histogram, false, "Print histogram of operation timings"); DEFINE_bool(enable_numa, false, "Make operations aware of NUMA architecture and bind memory " "and cpus corresponding to nodes together. In NUMA, memory " "in same node as CPUs are closer when compared to memory in " "other nodes. Reads can be faster when the process is bound to " "CPU and memory of same node. Use \"$numactl --hardware\" command " "to see NUMA memory architecture."); DEFINE_int64(write_buffer_size, rocksdb::Options().write_buffer_size, "Number of bytes to buffer in memtable before compacting"); DEFINE_int32(max_write_buffer_number, rocksdb::Options().max_write_buffer_number, "The number of in-memory memtables. Each memtable is of size" "write_buffer_size."); DEFINE_int32(min_write_buffer_number_to_merge, rocksdb::Options().min_write_buffer_number_to_merge, "The minimum number of write buffers that will be merged together" "before writing to storage. This is cheap because it is an" "in-memory merge. If this feature is not enabled, then all these" "write buffers are flushed to L0 as separate files and this " "increases read amplification because a get request has to check" " in all of these files. Also, an in-memory merge may result in" " writing less data to storage if there are duplicate records " " in each of these individual write buffers."); DEFINE_int32(max_background_compactions, rocksdb::Options().max_background_compactions, "The maximum number of concurrent background compactions" " that can occur in parallel."); DEFINE_int32(max_background_flushes, rocksdb::Options().max_background_flushes, "The maximum number of concurrent background flushes" " that can occur in parallel."); static rocksdb::CompactionStyle FLAGS_compaction_style_e; DEFINE_int32(compaction_style, (int32_t) rocksdb::Options().compaction_style, "style of compaction: level-based vs universal"); DEFINE_int32(universal_size_ratio, 0, "Percentage flexibility while comparing file size" " (for universal compaction only)."); DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a" " single compaction run (for universal compaction only)."); DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact" " in universal style compaction"); DEFINE_int32(universal_max_size_amplification_percent, 0, "The max size amplification for universal style compaction"); DEFINE_int32(universal_compression_size_percent, -1, "The percentage of the database to compress for universal " "compaction. -1 means compress everything."); DEFINE_int64(cache_size, -1, "Number of bytes to use as a cache of uncompressed" "data. Negative means use default settings."); DEFINE_int32(block_size, static_cast(rocksdb::BlockBasedTableOptions().block_size), "Number of bytes in a block."); DEFINE_int32(block_restart_interval, rocksdb::BlockBasedTableOptions().block_restart_interval, "Number of keys between restart points " "for delta encoding of keys."); DEFINE_int64(compressed_cache_size, -1, "Number of bytes to use as a cache of compressed data."); DEFINE_int32(open_files, rocksdb::Options().max_open_files, "Maximum number of files to keep open at the same time" " (use default if == 0)"); DEFINE_int32(bloom_bits, -1, "Bloom filter bits per key. Negative means" " use default settings."); DEFINE_int32(memtable_bloom_bits, 0, "Bloom filter bits per key for memtable. " "Negative means no bloom filter."); DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing" " database. If you set this flag and also specify a benchmark that" " wants a fresh database, that benchmark will fail."); DEFINE_string(db, "", "Use the db with the following name."); static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) { if (value >= 20) { fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname, value); return false; } return true; } DEFINE_int32(cache_numshardbits, -1, "Number of shards for the block cache" " is 2 ** cache_numshardbits. Negative means use default settings." " This is applied only if FLAGS_cache_size is non-negative."); DEFINE_int32(cache_remove_scan_count_limit, 32, ""); DEFINE_bool(verify_checksum, false, "Verify checksum for every block read" " from storage"); DEFINE_bool(statistics, false, "Database statistics"); static class std::shared_ptr dbstats; DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do" " --num reads."); DEFINE_int32(writes_per_second, 0, "Per-thread rate limit on writes per second." " No limit when <= 0. Only for the readwhilewriting test."); DEFINE_bool(sync, false, "Sync all writes to disk"); DEFINE_bool(disable_data_sync, false, "If true, do not wait until data is" " synced to disk."); DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync"); DEFINE_bool(disable_wal, false, "If true, do not write WAL for write."); DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL"); DEFINE_int32(num_levels, 7, "The total number of levels"); DEFINE_int64(target_file_size_base, 2 * 1048576, "Target file size at level-1"); DEFINE_int32(target_file_size_multiplier, 1, "A multiplier to compute target level-N file size (N >= 2)"); DEFINE_uint64(max_bytes_for_level_base, 10 * 1048576, "Max bytes for level-1"); DEFINE_int32(max_bytes_for_level_multiplier, 10, "A multiplier to compute max bytes for level-N (N >= 2)"); static std::vector FLAGS_max_bytes_for_level_multiplier_additional_v; DEFINE_string(max_bytes_for_level_multiplier_additional, "", "A vector that specifies additional fanout per level"); DEFINE_int32(level0_stop_writes_trigger, 12, "Number of files in level-0" " that will trigger put stop."); DEFINE_int32(level0_slowdown_writes_trigger, 8, "Number of files in level-0" " that will slow down writes."); DEFINE_int32(level0_file_num_compaction_trigger, 4, "Number of files in level-0" " when compactions start"); static bool ValidateInt32Percent(const char* flagname, int32_t value) { if (value <= 0 || value>=100) { fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname, value); return false; } return true; } DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed" " as percentage) for the ReadRandomWriteRandom workload. The " "default value 90 means 90% operations out of all reads and writes" " operations are reads. In other words, 9 gets for every 1 put."); DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed" " as percentage) for the ReadRandomMergeRandom workload. The" " default value 70 means 70% out of all read and merge operations" " are merges. In other words, 7 merges for every 3 gets."); DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/" "deletes (used in RandomWithVerify only). RandomWithVerify " "calculates writepercent as (100 - FLAGS_readwritepercent - " "deletepercent), so deletepercent must be smaller than (100 - " "FLAGS_readwritepercent)"); DEFINE_uint64(delete_obsolete_files_period_micros, 0, "Option to delete " "obsolete files periodically. 0 means that obsolete files are" " deleted after every compaction run."); namespace { enum rocksdb::CompressionType StringToCompressionType(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "none")) return rocksdb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) return rocksdb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) return rocksdb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) return rocksdb::kBZip2Compression; else if (!strcasecmp(ctype, "lz4")) return rocksdb::kLZ4Compression; else if (!strcasecmp(ctype, "lz4hc")) return rocksdb::kLZ4HCCompression; fprintf(stdout, "Cannot parse compression type '%s'\n", ctype); return rocksdb::kSnappyCompression; //default value } } // namespace DEFINE_string(compression_type, "snappy", "Algorithm to use to compress the database"); static enum rocksdb::CompressionType FLAGS_compression_type_e = rocksdb::kSnappyCompression; DEFINE_int32(compression_level, -1, "Compression level. For zlib this should be -1 for the " "default level, or between 0 and 9."); static bool ValidateCompressionLevel(const char* flagname, int32_t value) { if (value < -1 || value > 9) { fprintf(stderr, "Invalid value for --%s: %d, must be between -1 and 9\n", flagname, value); return false; } return true; } static const bool FLAGS_compression_level_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_compression_level, &ValidateCompressionLevel); DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts" " from this level. Levels with number < min_level_to_compress are" " not compressed. Otherwise, apply compression_type to " "all levels."); static bool ValidateTableCacheNumshardbits(const char* flagname, int32_t value) { if (0 >= value || value > 20) { fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val <= 20\n", flagname, value); return false; } return true; } DEFINE_int32(table_cache_numshardbits, 4, ""); DEFINE_string(hdfs, "", "Name of hdfs environment"); // posix or hdfs environment static rocksdb::Env* FLAGS_env = rocksdb::Env::Default(); DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when " "this is greater than zero. When 0 the interval grows over time."); DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when" " this is greater than 0."); DEFINE_int32(perf_level, 0, "Level of perf collection"); static bool ValidateRateLimit(const char* flagname, double value) { static constexpr double EPSILON = 1e-10; if ( value < -EPSILON ) { fprintf(stderr, "Invalid value for --%s: %12.6f, must be >= 0.0\n", flagname, value); return false; } return true; } DEFINE_double(soft_rate_limit, 0.0, ""); DEFINE_double(hard_rate_limit, 0.0, "When not equal to 0 this make threads " "sleep at each stats reporting interval until the compaction" " score for all levels is less than or equal to this value."); DEFINE_int32(rate_limit_delay_max_milliseconds, 1000, "When hard_rate_limit is set then this is the max time a put will" " be stalled."); DEFINE_int32(max_grandparent_overlap_factor, 10, "Control maximum bytes of " "overlaps in grandparent (i.e., level+2) before we stop building a" " single file in a level->level+1 compaction."); DEFINE_bool(readonly, false, "Run read only benchmarks."); DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions"); DEFINE_int32(source_compaction_factor, 1, "Cap the size of data in level-K for" " a compaction run that compacts Level-K with Level-(K+1) (for" " K >= 1)"); DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds."); DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files" " in MB."); DEFINE_bool(bufferedio, rocksdb::EnvOptions().use_os_buffer, "Allow buffered io using OS buffers"); DEFINE_bool(mmap_read, rocksdb::EnvOptions().use_mmap_reads, "Allow reads to occur via mmap-ing files"); DEFINE_bool(mmap_write, rocksdb::EnvOptions().use_mmap_writes, "Allow writes to occur via mmap-ing files"); DEFINE_bool(advise_random_on_open, rocksdb::Options().advise_random_on_open, "Advise random access on table file open"); DEFINE_string(compaction_fadvice, "NORMAL", "Access pattern advice when a file is compacted"); static auto FLAGS_compaction_fadvice_e = rocksdb::Options().access_hint_on_compaction_start; DEFINE_bool(use_tailing_iterator, false, "Use tailing iterator to access a series of keys instead of get"); DEFINE_int64(iter_refresh_interval_us, -1, "How often to refresh iterators. Disable refresh when -1"); DEFINE_bool(use_adaptive_mutex, rocksdb::Options().use_adaptive_mutex, "Use adaptive mutex"); DEFINE_uint64(bytes_per_sync, rocksdb::Options().bytes_per_sync, "Allows OS to incrementally sync files to disk while they are" " being written, in the background. Issue one request for every" " bytes_per_sync written. 0 turns it off."); DEFINE_bool(filter_deletes, false, " On true, deletes use bloom-filter and drop" " the delete if key not present"); DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge" " operations on a key in the memtable"); static bool ValidatePrefixSize(const char* flagname, int32_t value) { if (value < 0 || value>=2000000000) { fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n", flagname, value); return false; } return true; } DEFINE_int32(prefix_size, 0, "control the prefix size for HashSkipList and " "plain table"); DEFINE_int64(keys_per_prefix, 0, "control average number of keys generated " "per prefix, 0 means no special handling of the prefix, " "i.e. use the prefix comes with the generated random number."); DEFINE_bool(enable_io_prio, false, "Lower the background flush/compaction " "threads' IO priority"); DEFINE_bool(identity_as_first_hash, false, "the first hash function of cuckoo " "table becomes an identity function. This is only valid when key " "is 8 bytes"); enum RepFactory { kSkipList, kPrefixHash, kVectorRep, kHashLinkedList, kCuckoo }; namespace { enum RepFactory StringToRepFactory(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "skip_list")) return kSkipList; else if (!strcasecmp(ctype, "prefix_hash")) return kPrefixHash; else if (!strcasecmp(ctype, "vector")) return kVectorRep; else if (!strcasecmp(ctype, "hash_linkedlist")) return kHashLinkedList; else if (!strcasecmp(ctype, "cuckoo")) return kCuckoo; fprintf(stdout, "Cannot parse memreptable %s\n", ctype); return kSkipList; } } // namespace static enum RepFactory FLAGS_rep_factory; DEFINE_string(memtablerep, "skip_list", ""); DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count"); DEFINE_bool(use_plain_table, false, "if use plain table " "instead of block-based table format"); DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format"); DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table."); DEFINE_bool(use_hash_search, false, "if use kHashSearch " "instead of kBinarySearch. " "This is valid if only we use BlockTable"); DEFINE_bool(use_block_based_filter, false, "if use kBlockBasedFilter " "instead of kFullFilter for filter block. " "This is valid if only we use BlockTable"); DEFINE_string(merge_operator, "", "The merge operator to use with the database." "If a new merge operator is specified, be sure to use fresh" " database The possible merge operators are defined in" " utilities/merge_operators.h"); DEFINE_int32(skip_list_lookahead, 0, "Used with skip_list memtablerep; try " "linear search first for this many steps from the previous " "position"); DEFINE_bool(report_file_operations, false, "if report number of file " "operations"); static const bool FLAGS_soft_rate_limit_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_soft_rate_limit, &ValidateRateLimit); static const bool FLAGS_hard_rate_limit_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_hard_rate_limit, &ValidateRateLimit); static const bool FLAGS_prefix_size_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize); static const bool FLAGS_key_size_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize); static const bool FLAGS_cache_numshardbits_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_cache_numshardbits, &ValidateCacheNumshardbits); static const bool FLAGS_readwritepercent_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent); DEFINE_int32(disable_seek_compaction, false, "Not used, left here for backwards compatibility"); static const bool FLAGS_deletepercent_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent); static const bool FLAGS_table_cache_numshardbits_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits); namespace rocksdb { namespace { struct ReportFileOpCounters { std::atomic open_counter_; std::atomic read_counter_; std::atomic append_counter_; std::atomic bytes_read_; std::atomic bytes_written_; }; // A special Env to records and report file operations in db_bench class ReportFileOpEnv : public EnvWrapper { public: explicit ReportFileOpEnv(Env* base) : EnvWrapper(base) { reset(); } void reset() { counters_.open_counter_ = 0; counters_.read_counter_ = 0; counters_.append_counter_ = 0; counters_.bytes_read_ = 0; counters_.bytes_written_ = 0; } Status NewSequentialFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) { class CountingFile : public SequentialFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} virtual Status Read(size_t n, Slice* result, char* scratch) { counters_->read_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Read(n, result, scratch); counters_->bytes_read_.fetch_add(result->size(), std::memory_order_relaxed); return rv; } virtual Status Skip(uint64_t n) { return target_->Skip(n); } }; Status s = target()->NewSequentialFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } Status NewRandomAccessFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) { class CountingFile : public RandomAccessFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { counters_->read_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Read(offset, n, result, scratch); counters_->bytes_read_.fetch_add(result->size(), std::memory_order_relaxed); return rv; } }; Status s = target()->NewRandomAccessFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } Status NewWritableFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) { class CountingFile : public WritableFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} Status Append(const Slice& data) { counters_->append_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Append(data); counters_->bytes_written_.fetch_add(data.size(), std::memory_order_relaxed); return rv; } Status Close() { return target_->Close(); } Status Flush() { return target_->Flush(); } Status Sync() { return target_->Sync(); } }; Status s = target()->NewWritableFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } // getter ReportFileOpCounters* counters() { return &counters_; } private: ReportFileOpCounters counters_; }; } // namespace // Helper for quickly generating random data. class RandomGenerator { private: std::string data_; unsigned int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(unsigned int len) { assert(len <= data_.size()); if (pos_ + len > data_.size()) { pos_ = 0; } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static void AppendWithSpace(std::string* str, Slice msg) { if (msg.empty()) return; if (!str->empty()) { str->push_back(' '); } str->append(msg.data(), msg.size()); } struct DBWithColumnFamilies { std::vector cfh; DB* db; DBWithColumnFamilies() : db(nullptr) { cfh.clear(); } }; class Stats { private: int id_; double start_; double finish_; double seconds_; int64_t done_; int64_t last_report_done_; int64_t next_report_; int64_t bytes_; double last_op_finish_; double last_report_finish_; HistogramImpl hist_; std::string message_; bool exclude_from_merge_; public: Stats() { Start(-1); } void Start(int id) { id_ = id; next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100; last_op_finish_ = start_; hist_.Clear(); done_ = 0; last_report_done_ = 0; bytes_ = 0; seconds_ = 0; start_ = FLAGS_env->NowMicros(); finish_ = start_; last_report_finish_ = start_; message_.clear(); // When set, stats from this thread won't be merged with others. exclude_from_merge_ = false; } void Merge(const Stats& other) { if (other.exclude_from_merge_) return; hist_.Merge(other.hist_); done_ += other.done_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; // Just keep the messages from one thread if (message_.empty()) message_ = other.message_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); } void SetId(int id) { id_ = id; } void SetExcludeFromMerge() { exclude_from_merge_ = true; } void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops) { if (FLAGS_histogram) { double now = FLAGS_env->NowMicros(); double micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000 && !FLAGS_stats_interval) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_ += num_ops; if (done_ >= next_report_) { if (!FLAGS_stats_interval) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, ""); fflush(stderr); } else { double now = FLAGS_env->NowMicros(); fprintf(stderr, "%s ... thread %d: (%" PRIu64 ",%" PRIu64 ") ops and " "(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(), id_, done_ - last_report_done_, done_, (done_ - last_report_done_) / ((now - last_report_finish_) / 1000000.0), done_ / ((now - start_) / 1000000.0), (now - last_report_finish_) / 1000000.0, (now - start_) / 1000000.0); if (FLAGS_stats_per_interval) { std::string stats; if (db_with_cfh && db_with_cfh->cfh.size()) { for (size_t i = 0; i < db_with_cfh->cfh.size(); ++i) { if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats", &stats)) fprintf(stderr, "%s\n", stats.c_str()); } } else if (db && db->GetProperty("rocksdb.stats", &stats)) { fprintf(stderr, "%s\n", stats.c_str()); } } fflush(stderr); next_report_ += FLAGS_stats_interval; last_report_finish_ = now; last_report_done_ = done_; } } } void AddBytes(int64_t n) { bytes_ += n; } void Report(const Slice& name) { // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedOps(). if (done_ < 1) done_ = 1; std::string extra; if (bytes_ > 0) { // Rate is computed on actual elapsed time, not the sum of per-thread // elapsed times. double elapsed = (finish_ - start_) * 1e-6; char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / elapsed); extra = rate; } AppendWithSpace(&extra, message_); double elapsed = (finish_ - start_) * 1e-6; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n", name.ToString().c_str(), elapsed * 1e6 / done_, (long)throughput, (extra.empty() ? "" : " "), extra.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } if (FLAGS_report_file_operations) { ReportFileOpEnv* env = static_cast(FLAGS_env); ReportFileOpCounters* counters = env->counters(); fprintf(stdout, "Num files opened: %d\n", counters->open_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num Read(): %d\n", counters->read_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num Append(): %d\n", counters->append_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num bytes read: %" PRIu64 "\n", counters->bytes_read_.load(std::memory_order_relaxed)); fprintf(stdout, "Num bytes written: %" PRIu64 "\n", counters->bytes_written_.load(std::memory_order_relaxed)); env->reset(); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. struct SharedState { port::Mutex mu; port::CondVar cv; int total; int perf_level; // Each thread goes through the following states: // (1) initializing // (2) waiting for others to be initialized // (3) running // (4) done long num_initialized; long num_done; bool start; SharedState() : cv(&mu), perf_level(FLAGS_perf_level) { } }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { int tid; // 0..n-1 when running in n threads Random64 rand; // Has different seeds for different threads Stats stats; SharedState* shared; /* implicit */ ThreadState(int index) : tid(index), rand((FLAGS_seed ? FLAGS_seed : 1000) + index) { } }; class Duration { public: Duration(int max_seconds, int64_t max_ops) { max_seconds_ = max_seconds; max_ops_= max_ops; ops_ = 0; start_at_ = FLAGS_env->NowMicros(); } bool Done(int64_t increment) { if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops ops_ += increment; if (max_seconds_) { // Recheck every appx 1000 ops (exact iff increment is factor of 1000) if ((ops_/1000) != ((ops_-increment)/1000)) { double now = FLAGS_env->NowMicros(); return ((now - start_at_) / 1000000.0) >= max_seconds_; } else { return false; } } else { return ops_ > max_ops_; } } private: int max_seconds_; int64_t max_ops_; int64_t ops_; double start_at_; }; class Benchmark { private: std::shared_ptr cache_; std::shared_ptr compressed_cache_; std::shared_ptr filter_policy_; const SliceTransform* prefix_extractor_; DBWithColumnFamilies db_; std::vector multi_dbs_; int64_t num_; int value_size_; int key_size_; int prefix_size_; int64_t keys_per_prefix_; int64_t entries_per_batch_; WriteOptions write_options_; int64_t reads_; int64_t writes_; int64_t readwrites_; int64_t merge_keys_; bool report_file_operations_; bool SanityCheck() { if (FLAGS_compression_ratio > 1) { fprintf(stderr, "compression_ratio should be between 0 and 1\n"); return false; } return true; } void PrintHeader() { PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %" PRIu64 "\n", num_); fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size); fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(FLAGS_key_size + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); fprintf(stdout, "Write rate limit: %d\n", FLAGS_writes_per_second); if (FLAGS_enable_numa) { fprintf(stderr, "Running in NUMA enabled mode.\n"); #ifndef NUMA fprintf(stderr, "NUMA is not defined in the system.\n"); exit(1); #else if (numa_available() == -1) { fprintf(stderr, "NUMA is not supported by the system.\n"); exit(1); } #endif } switch (FLAGS_compression_type_e) { case rocksdb::kNoCompression: fprintf(stdout, "Compression: none\n"); break; case rocksdb::kSnappyCompression: fprintf(stdout, "Compression: snappy\n"); break; case rocksdb::kZlibCompression: fprintf(stdout, "Compression: zlib\n"); break; case rocksdb::kBZip2Compression: fprintf(stdout, "Compression: bzip2\n"); break; case rocksdb::kLZ4Compression: fprintf(stdout, "Compression: lz4\n"); break; case rocksdb::kLZ4HCCompression: fprintf(stdout, "Compression: lz4hc\n"); break; } switch (FLAGS_rep_factory) { case kPrefixHash: fprintf(stdout, "Memtablerep: prefix_hash\n"); break; case kSkipList: fprintf(stdout, "Memtablerep: skip_list\n"); break; case kVectorRep: fprintf(stdout, "Memtablerep: vector\n"); break; case kHashLinkedList: fprintf(stdout, "Memtablerep: hash_linkedlist\n"); break; case kCuckoo: fprintf(stdout, "Memtablerep: cuckoo\n"); break; } fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level); PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif if (FLAGS_compression_type_e != rocksdb::kNoCompression) { // The test string should not be too small. const int len = FLAGS_block_size; char* text = (char*) malloc(len+1); bool result = true; const char* name = nullptr; std::string compressed; memset(text, (int) 'y', len); text[len] = '\0'; switch (FLAGS_compression_type_e) { case kSnappyCompression: result = port::Snappy_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "Snappy"; break; case kZlibCompression: result = port::Zlib_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "Zlib"; break; case kBZip2Compression: result = port::BZip2_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "BZip2"; break; case kLZ4Compression: result = port::LZ4_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "LZ4"; break; case kLZ4HCCompression: result = port::LZ4HC_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "LZ4HC"; break; case kNoCompression: assert(false); // cannot happen break; } if (!result) { fprintf(stdout, "WARNING: %s compression is not enabled\n", name); } else if (name && compressed.size() >= strlen(text)) { fprintf(stdout, "WARNING: %s compression is not effective\n", name); } free(text); } } // Current the following isn't equivalent to OS_LINUX. #if defined(__linux) static Slice TrimSpace(Slice s) { unsigned int start = 0; while (start < s.size() && isspace(s[start])) { start++; } unsigned int limit = s.size(); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } #endif void PrintEnvironment() { fprintf(stderr, "LevelDB: version %d.%d\n", kMajorVersion, kMinorVersion); #if defined(__linux) time_t now = time(nullptr); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != nullptr) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != nullptr) { const char* sep = strchr(line, ':'); if (sep == nullptr) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } public: Benchmark() : cache_(FLAGS_cache_size >= 0 ? (FLAGS_cache_numshardbits >= 1 ? NewLRUCache(FLAGS_cache_size, FLAGS_cache_numshardbits, FLAGS_cache_remove_scan_count_limit) : NewLRUCache(FLAGS_cache_size)) : nullptr), compressed_cache_(FLAGS_compressed_cache_size >= 0 ? (FLAGS_cache_numshardbits >= 1 ? NewLRUCache(FLAGS_compressed_cache_size, FLAGS_cache_numshardbits) : NewLRUCache(FLAGS_compressed_cache_size)) : nullptr), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits, FLAGS_use_block_based_filter) : nullptr), prefix_extractor_(NewFixedPrefixTransform(FLAGS_prefix_size)), num_(FLAGS_num), value_size_(FLAGS_value_size), key_size_(FLAGS_key_size), prefix_size_(FLAGS_prefix_size), keys_per_prefix_(FLAGS_keys_per_prefix), entries_per_batch_(1), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes), readwrites_((FLAGS_writes < 0 && FLAGS_reads < 0)? FLAGS_num : ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads) ), merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys), report_file_operations_(FLAGS_report_file_operations) { if (report_file_operations_) { if (!FLAGS_hdfs.empty()) { fprintf(stderr, "--hdfs and --report_file_operations cannot be enabled " "at the same time"); exit(1); } FLAGS_env = new ReportFileOpEnv(rocksdb::Env::Default()); } if (FLAGS_prefix_size > FLAGS_key_size) { fprintf(stderr, "prefix size is larger than key size"); exit(1); } std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]); } } if (!FLAGS_use_existing_db) { DestroyDB(FLAGS_db, Options()); } } ~Benchmark() { std::for_each(db_.cfh.begin(), db_.cfh.end(), [](ColumnFamilyHandle* cfh) { delete cfh; }); delete db_.db; delete prefix_extractor_; } Slice AllocateKey() { return Slice(new char[key_size_], key_size_); } // Generate key according to the given specification and random number. // The resulting key will have the following format (if keys_per_prefix_ // is positive), extra trailing bytes are either cut off or paddd with '0'. // The prefix value is derived from key value. // ---------------------------- // | prefix 00000 | key 00000 | // ---------------------------- // If keys_per_prefix_ is 0, the key is simply a binary representation of // random number followed by trailing '0's // ---------------------------- // | key 00000 | // ---------------------------- void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) { char* start = const_cast(key->data()); char* pos = start; if (keys_per_prefix_ > 0) { int64_t num_prefix = num_keys / keys_per_prefix_; int64_t prefix = v % num_prefix; int bytes_to_fill = std::min(prefix_size_, 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&prefix), bytes_to_fill); } if (prefix_size_ > 8) { // fill the rest with 0s memset(pos + 8, '0', prefix_size_ - 8); } pos += prefix_size_; } int bytes_to_fill = std::min(key_size_ - static_cast(pos - start), 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&v), bytes_to_fill); } pos += bytes_to_fill; if (key_size_ > pos - start) { memset(pos, '0', key_size_ - (pos - start)); } } std::string GetDbNameForMultiple(std::string base_name, size_t id) { return base_name + std::to_string(id); } std::string ColumnFamilyName(int i) { if (i == 0) { return kDefaultColumnFamilyName; } else { char name[100]; snprintf(name, sizeof(name), "column_family_name_%06d", i); return std::string(name); } } void Run() { if (!SanityCheck()) { exit(1); } PrintHeader(); Open(); const char* benchmarks = FLAGS_benchmarks.c_str(); while (benchmarks != nullptr) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == nullptr) { name = benchmarks; benchmarks = nullptr; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } // Sanitize parameters num_ = FLAGS_num; reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads); writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes); value_size_ = FLAGS_value_size; key_size_ = FLAGS_key_size; entries_per_batch_ = FLAGS_batch_size; write_options_ = WriteOptions(); if (FLAGS_sync) { write_options_.sync = true; } write_options_.disableWAL = FLAGS_disable_wal; void (Benchmark::*method)(ThreadState*) = nullptr; bool fresh_db = false; int num_threads = FLAGS_threads; if (name == Slice("fillseq")) { fresh_db = true; method = &Benchmark::WriteSeq; } else if (name == Slice("fillbatch")) { fresh_db = true; entries_per_batch_ = 1000; method = &Benchmark::WriteSeq; } else if (name == Slice("fillrandom")) { fresh_db = true; method = &Benchmark::WriteRandom; } else if (name == Slice("filluniquerandom")) { fresh_db = true; if (num_threads > 1) { fprintf(stderr, "filluniquerandom multithreaded not supported" ", use 1 thread"); num_threads = 1; } method = &Benchmark::WriteUniqueRandom; } else if (name == Slice("overwrite")) { fresh_db = false; method = &Benchmark::WriteRandom; } else if (name == Slice("fillsync")) { fresh_db = true; num_ /= 1000; write_options_.sync = true; method = &Benchmark::WriteRandom; } else if (name == Slice("fill100K")) { fresh_db = true; num_ /= 1000; value_size_ = 100 * 1000; method = &Benchmark::WriteRandom; } else if (name == Slice("readseq")) { method = &Benchmark::ReadSequential; } else if (name == Slice("readtocache")) { method = &Benchmark::ReadSequential; num_threads = 1; reads_ = num_; } else if (name == Slice("readreverse")) { method = &Benchmark::ReadReverse; } else if (name == Slice("readrandom")) { method = &Benchmark::ReadRandom; } else if (name == Slice("readrandomfast")) { method = &Benchmark::ReadRandomFast; } else if (name == Slice("multireadrandom")) { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); method = &Benchmark::MultiReadRandom; } else if (name == Slice("readmissing")) { ++key_size_; method = &Benchmark::ReadRandom; } else if (name == Slice("newiterator")) { method = &Benchmark::IteratorCreation; } else if (name == Slice("newiteratorwhilewriting")) { num_threads++; // Add extra thread for writing method = &Benchmark::IteratorCreationWhileWriting; } else if (name == Slice("seekrandom")) { method = &Benchmark::SeekRandom; } else if (name == Slice("seekrandomwhilewriting")) { num_threads++; // Add extra thread for writing method = &Benchmark::SeekRandomWhileWriting; } else if (name == Slice("readrandomsmall")) { reads_ /= 1000; method = &Benchmark::ReadRandom; } else if (name == Slice("deleteseq")) { method = &Benchmark::DeleteSeq; } else if (name == Slice("deleterandom")) { method = &Benchmark::DeleteRandom; } else if (name == Slice("readwhilewriting")) { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileWriting; } else if (name == Slice("readrandomwriterandom")) { method = &Benchmark::ReadRandomWriteRandom; } else if (name == Slice("readrandommergerandom")) { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.ToString().c_str()); exit(1); } method = &Benchmark::ReadRandomMergeRandom; } else if (name == Slice("updaterandom")) { method = &Benchmark::UpdateRandom; } else if (name == Slice("appendrandom")) { method = &Benchmark::AppendRandom; } else if (name == Slice("mergerandom")) { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.ToString().c_str()); exit(1); } method = &Benchmark::MergeRandom; } else if (name == Slice("randomwithverify")) { method = &Benchmark::RandomWithVerify; } else if (name == Slice("fillseekseq")) { method = &Benchmark::WriteSeqSeekSeq; } else if (name == Slice("compact")) { method = &Benchmark::Compact; } else if (name == Slice("crc32c")) { method = &Benchmark::Crc32c; } else if (name == Slice("xxhash")) { method = &Benchmark::xxHash; } else if (name == Slice("acquireload")) { method = &Benchmark::AcquireLoad; } else if (name == Slice("compress")) { method = &Benchmark::Compress; } else if (name == Slice("uncompress")) { method = &Benchmark::Uncompress; } else if (name == Slice("stats")) { PrintStats("rocksdb.stats"); } else if (name == Slice("levelstats")) { PrintStats("rocksdb.levelstats"); } else if (name == Slice("sstables")) { PrintStats("rocksdb.sstables"); } else { if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); exit(1); } } if (fresh_db) { if (FLAGS_use_existing_db) { fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n", name.ToString().c_str()); method = nullptr; } else { if (db_.db != nullptr) { std::for_each(db_.cfh.begin(), db_.cfh.end(), [](ColumnFamilyHandle* cfh) { delete cfh; }); delete db_.db; db_.db = nullptr; db_.cfh.clear(); DestroyDB(FLAGS_db, Options()); } for (size_t i = 0; i < multi_dbs_.size(); i++) { delete multi_dbs_[i].db; DestroyDB(GetDbNameForMultiple(FLAGS_db, i), Options()); } multi_dbs_.clear(); } Open(); } if (method != nullptr) { fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); RunBenchmark(num_threads, name, method); } } if (FLAGS_statistics) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } } private: struct ThreadArg { Benchmark* bm; SharedState* shared; ThreadState* thread; void (Benchmark::*method)(ThreadState*); }; static void ThreadBody(void* v) { ThreadArg* arg = reinterpret_cast(v); SharedState* shared = arg->shared; ThreadState* thread = arg->thread; { MutexLock l(&shared->mu); shared->num_initialized++; if (shared->num_initialized >= shared->total) { shared->cv.SignalAll(); } while (!shared->start) { shared->cv.Wait(); } } SetPerfLevel(static_cast (shared->perf_level)); thread->stats.Start(thread->tid); (arg->bm->*(arg->method))(thread); thread->stats.Stop(); { MutexLock l(&shared->mu); shared->num_done++; if (shared->num_done >= shared->total) { shared->cv.SignalAll(); } } } void RunBenchmark(int n, Slice name, void (Benchmark::*method)(ThreadState*)) { SharedState shared; shared.total = n; shared.num_initialized = 0; shared.num_done = 0; shared.start = false; ThreadArg* arg = new ThreadArg[n]; for (int i = 0; i < n; i++) { #ifdef NUMA if (FLAGS_enable_numa) { // Performs a local allocation of memory to threads in numa node. int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA. numa_exit_on_error = 1; int numa_node = i % n_nodes; bitmask* nodes = numa_allocate_nodemask(); numa_bitmask_clearall(nodes); numa_bitmask_setbit(nodes, numa_node); // numa_bind() call binds the process to the node and these // properties are passed on to the thread that is created in // StartThread method called later in the loop. numa_bind(nodes); numa_set_strict(1); numa_free_nodemask(nodes); } #endif arg[i].bm = this; arg[i].method = method; arg[i].shared = &shared; arg[i].thread = new ThreadState(i); arg[i].thread->shared = &shared; FLAGS_env->StartThread(ThreadBody, &arg[i]); } shared.mu.Lock(); while (shared.num_initialized < n) { shared.cv.Wait(); } shared.start = true; shared.cv.SignalAll(); while (shared.num_done < n) { shared.cv.Wait(); } shared.mu.Unlock(); // Stats for some threads can be excluded. Stats merge_stats; for (int i = 0; i < n; i++) { merge_stats.Merge(arg[i].thread->stats); } merge_stats.Report(name); for (int i = 0; i < n; i++) { delete arg[i].thread; } delete[] arg; } void Crc32c(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; uint32_t crc = 0; while (bytes < 500 * 1048576) { crc = crc32c::Value(data.data(), size); thread->stats.FinishedOps(nullptr, nullptr, 1); bytes += size; } // Print so result is not dead fprintf(stderr, "... crc=0x%x\r", static_cast(crc)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void xxHash(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; unsigned int xxh32 = 0; while (bytes < 500 * 1048576) { xxh32 = XXH32(data.data(), size, 0); thread->stats.FinishedOps(nullptr, nullptr, 1); bytes += size; } // Print so result is not dead fprintf(stderr, "... xxh32=0x%x\r", static_cast(xxh32)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void AcquireLoad(ThreadState* thread) { int dummy; std::atomic ap(&dummy); int count = 0; void *ptr = nullptr; thread->stats.AddMessage("(each op is 1000 loads)"); while (count < 100000) { for (int i = 0; i < 1000; i++) { ptr = ap.load(std::memory_order_acquire); } count++; thread->stats.FinishedOps(nullptr, nullptr, 1); } if (ptr == nullptr) exit(1); // Disable unused variable warning. } void Compress(ThreadState *thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; // Compress 1G while (ok && bytes < int64_t(1) << 30) { switch (FLAGS_compression_type_e) { case rocksdb::kSnappyCompression: ok = port::Snappy_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kZlibCompression: ok = port::Zlib_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kBZip2Compression: ok = port::BZip2_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kLZ4Compression: ok = port::LZ4_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kLZ4HCCompression: ok = port::LZ4HC_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; default: ok = false; } produced += compressed.size(); bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { char buf[100]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); thread->stats.AddMessage(buf); thread->stats.AddBytes(bytes); } } void Uncompress(ThreadState *thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); std::string compressed; bool ok; switch (FLAGS_compression_type_e) { case rocksdb::kSnappyCompression: ok = port::Snappy_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kZlibCompression: ok = port::Zlib_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kBZip2Compression: ok = port::BZip2_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kLZ4Compression: ok = port::LZ4_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; case rocksdb::kLZ4HCCompression: ok = port::LZ4HC_Compress(Options().compression_opts, input.data(), input.size(), &compressed); break; default: ok = false; } int64_t bytes = 0; int decompress_size; while (ok && bytes < 1024 * 1048576) { char *uncompressed = nullptr; switch (FLAGS_compression_type_e) { case rocksdb::kSnappyCompression: // allocate here to make comparison fair uncompressed = new char[input.size()]; ok = port::Snappy_Uncompress(compressed.data(), compressed.size(), uncompressed); break; case rocksdb::kZlibCompression: uncompressed = port::Zlib_Uncompress( compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; case rocksdb::kBZip2Compression: uncompressed = port::BZip2_Uncompress( compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; case rocksdb::kLZ4Compression: uncompressed = port::LZ4_Uncompress( compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; case rocksdb::kLZ4HCCompression: uncompressed = port::LZ4_Uncompress( compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; default: ok = false; } delete[] uncompressed; bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { thread->stats.AddBytes(bytes); } } void Open() { assert(db_.db == nullptr); Options options; options.create_if_missing = !FLAGS_use_existing_db; options.create_missing_column_families = FLAGS_num_column_families > 1; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_background_compactions = FLAGS_max_background_compactions; options.max_background_flushes = FLAGS_max_background_flushes; options.compaction_style = FLAGS_compaction_style_e; if (FLAGS_prefix_size != 0) { options.prefix_extractor.reset( NewFixedPrefixTransform(FLAGS_prefix_size)); } if (FLAGS_use_uint64_comparator) { options.comparator = test::Uint64Comparator(); if (FLAGS_key_size != 8) { fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n"); exit(1); } } options.memtable_prefix_bloom_bits = FLAGS_memtable_bloom_bits; options.bloom_locality = FLAGS_bloom_locality; options.max_open_files = FLAGS_open_files; options.statistics = dbstats; if (FLAGS_enable_io_prio) { FLAGS_env->LowerThreadPoolIOPriority(Env::LOW); FLAGS_env->LowerThreadPoolIOPriority(Env::HIGH); } options.env = FLAGS_env; options.disableDataSync = FLAGS_disable_data_sync; options.use_fsync = FLAGS_use_fsync; options.wal_dir = FLAGS_wal_dir; options.num_levels = FLAGS_num_levels; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options.filter_deletes = FLAGS_filter_deletes; if ((FLAGS_prefix_size == 0) && (FLAGS_rep_factory == kPrefixHash || FLAGS_rep_factory == kHashLinkedList)) { fprintf(stderr, "prefix_size should be non-zero if PrefixHash or " "HashLinkedList memtablerep is used\n"); exit(1); } switch (FLAGS_rep_factory) { case kSkipList: options.memtable_factory.reset(new SkipListFactory( FLAGS_skip_list_lookahead)); break; #ifndef ROCKSDB_LITE case kPrefixHash: options.memtable_factory.reset( NewHashSkipListRepFactory(FLAGS_hash_bucket_count)); break; case kHashLinkedList: options.memtable_factory.reset(NewHashLinkListRepFactory( FLAGS_hash_bucket_count)); break; case kVectorRep: options.memtable_factory.reset( new VectorRepFactory ); break; case kCuckoo: options.memtable_factory.reset(NewHashCuckooRepFactory( options.write_buffer_size, FLAGS_key_size + FLAGS_value_size)); break; #else default: fprintf(stderr, "Only skip list is supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } if (FLAGS_use_plain_table) { #ifndef ROCKSDB_LITE if (FLAGS_rep_factory != kPrefixHash && FLAGS_rep_factory != kHashLinkedList) { fprintf(stderr, "Waring: plain table is used with skipList\n"); } if (!FLAGS_mmap_read && !FLAGS_mmap_write) { fprintf(stderr, "plain table format requires mmap to operate\n"); exit(1); } int bloom_bits_per_key = FLAGS_bloom_bits; if (bloom_bits_per_key < 0) { bloom_bits_per_key = 0; } PlainTableOptions plain_table_options; plain_table_options.user_key_len = FLAGS_key_size; plain_table_options.bloom_bits_per_key = bloom_bits_per_key; plain_table_options.hash_table_ratio = 0.75; options.table_factory = std::shared_ptr( NewPlainTableFactory(plain_table_options)); #else fprintf(stderr, "Plain table is not supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } else if (FLAGS_use_cuckoo_table) { #ifndef ROCKSDB_LITE if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) { fprintf(stderr, "Invalid cuckoo_hash_ratio\n"); exit(1); } rocksdb::CuckooTableOptions table_options; table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio; table_options.identity_as_first_hash = FLAGS_identity_as_first_hash; options.table_factory = std::shared_ptr( NewCuckooTableFactory(table_options)); #else fprintf(stderr, "Cuckoo table is not supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } else { BlockBasedTableOptions block_based_options; if (FLAGS_use_hash_search) { if (FLAGS_prefix_size == 0) { fprintf(stderr, "prefix_size not assigned when enable use_hash_search \n"); exit(1); } block_based_options.index_type = BlockBasedTableOptions::kHashSearch; } else { block_based_options.index_type = BlockBasedTableOptions::kBinarySearch; } if (cache_ == nullptr) { block_based_options.no_block_cache = true; } block_based_options.block_cache = cache_; block_based_options.block_cache_compressed = compressed_cache_; block_based_options.block_size = FLAGS_block_size; block_based_options.block_restart_interval = FLAGS_block_restart_interval; block_based_options.filter_policy = filter_policy_; options.table_factory.reset( NewBlockBasedTableFactory(block_based_options)); } if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) { if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() != (unsigned int)FLAGS_num_levels) { fprintf(stderr, "Insufficient number of fanouts specified %d\n", (int)FLAGS_max_bytes_for_level_multiplier_additional_v.size()); exit(1); } options.max_bytes_for_level_multiplier_additional = FLAGS_max_bytes_for_level_multiplier_additional_v; } options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.compression = FLAGS_compression_type_e; options.compression_opts.level = FLAGS_compression_level; options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds; options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB; if (FLAGS_min_level_to_compress >= 0) { assert(FLAGS_min_level_to_compress <= FLAGS_num_levels); options.compression_per_level.resize(FLAGS_num_levels); for (int i = 0; i < FLAGS_min_level_to_compress; i++) { options.compression_per_level[i] = kNoCompression; } for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) { options.compression_per_level[i] = FLAGS_compression_type_e; } } options.delete_obsolete_files_period_micros = FLAGS_delete_obsolete_files_period_micros; options.soft_rate_limit = FLAGS_soft_rate_limit; options.hard_rate_limit = FLAGS_hard_rate_limit; options.rate_limit_delay_max_milliseconds = FLAGS_rate_limit_delay_max_milliseconds; options.table_cache_numshardbits = FLAGS_table_cache_numshardbits; options.max_grandparent_overlap_factor = FLAGS_max_grandparent_overlap_factor; options.disable_auto_compactions = FLAGS_disable_auto_compactions; options.source_compaction_factor = FLAGS_source_compaction_factor; // fill storage options options.allow_os_buffer = FLAGS_bufferedio; options.allow_mmap_reads = FLAGS_mmap_read; options.allow_mmap_writes = FLAGS_mmap_write; options.advise_random_on_open = FLAGS_advise_random_on_open; options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e; options.use_adaptive_mutex = FLAGS_use_adaptive_mutex; options.bytes_per_sync = FLAGS_bytes_per_sync; // merge operator options options.merge_operator = MergeOperators::CreateFromStringId( FLAGS_merge_operator); if (options.merge_operator == nullptr && !FLAGS_merge_operator.empty()) { fprintf(stderr, "invalid merge operator: %s\n", FLAGS_merge_operator.c_str()); exit(1); } options.max_successive_merges = FLAGS_max_successive_merges; // set universal style compaction configurations, if applicable if (FLAGS_universal_size_ratio != 0) { options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; } if (FLAGS_universal_min_merge_width != 0) { options.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; } if (FLAGS_universal_max_merge_width != 0) { options.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; } if (FLAGS_universal_max_size_amplification_percent != 0) { options.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; } if (FLAGS_universal_compression_size_percent != -1) { options.compaction_options_universal.compression_size_percent = FLAGS_universal_compression_size_percent; } if (FLAGS_num_multi_db <= 1) { OpenDb(options, FLAGS_db, &db_); } else { multi_dbs_.clear(); multi_dbs_.resize(FLAGS_num_multi_db); for (int i = 0; i < FLAGS_num_multi_db; i++) { OpenDb(options, GetDbNameForMultiple(FLAGS_db, i), &multi_dbs_[i]); } } if (FLAGS_min_level_to_compress >= 0) { options.compression_per_level.clear(); } } void OpenDb(const Options& options, const std::string& db_name, DBWithColumnFamilies* db) { Status s; // Open with column families if necessary. if (FLAGS_num_column_families > 1) { db->cfh.resize(FLAGS_num_column_families); std::vector column_families; for (int i = 0; i < FLAGS_num_column_families; i++) { column_families.push_back(ColumnFamilyDescriptor( ColumnFamilyName(i), ColumnFamilyOptions(options))); } if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh, &db->db); } else { s = DB::Open(options, db_name, column_families, &db->cfh, &db->db); } } else if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, &db->db); } else { s = DB::Open(options, db_name, &db->db); } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM }; void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); } void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); } void WriteUniqueRandom(ThreadState* thread) { DoWrite(thread, UNIQUE_RANDOM); } class KeyGenerator { public: KeyGenerator(Random64* rand, WriteMode mode, uint64_t num, uint64_t num_per_set = 64 * 1024) : rand_(rand), mode_(mode), num_(num), next_(0) { if (mode_ == UNIQUE_RANDOM) { // NOTE: if memory consumption of this approach becomes a concern, // we can either break it into pieces and only random shuffle a section // each time. Alternatively, use a bit map implementation // (https://reviews.facebook.net/differential/diff/54627/) values_.resize(num_); for (uint64_t i = 0; i < num_; ++i) { values_[i] = i; } std::shuffle( values_.begin(), values_.end(), std::default_random_engine(static_cast(FLAGS_seed))); } } uint64_t Next() { switch (mode_) { case SEQUENTIAL: return next_++; case RANDOM: return rand_->Next() % num_; case UNIQUE_RANDOM: return values_[next_++]; } assert(false); return std::numeric_limits::max(); } private: Random64* rand_; WriteMode mode_; const uint64_t num_; uint64_t next_; std::vector values_; }; DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; } DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) { return SelectDBWithCfh(thread->rand.Next()); } DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) { if (db_.db != nullptr) { return &db_; } else { return &multi_dbs_[rand_int % multi_dbs_.size()]; } } void DoWrite(ThreadState* thread, WriteMode write_mode) { const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0; const int64_t num_ops = writes_ == 0 ? num_ : writes_; size_t num_key_gens = 1; if (db_.db == nullptr) { num_key_gens = multi_dbs_.size(); } std::vector> key_gens(num_key_gens); Duration duration(test_duration, num_ops * num_key_gens); for (size_t i = 0; i < num_key_gens; i++) { key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode, num_ops)); } if (num_ != FLAGS_num) { char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_); thread->stats.AddMessage(msg); } RandomGenerator gen; WriteBatch batch; Status s; int64_t bytes = 0; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); while (!duration.Done(entries_per_batch_)) { size_t id = thread->rand.Next() % num_key_gens; DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id); batch.Clear(); for (int64_t j = 0; j < entries_per_batch_; j++) { int64_t rand_num = key_gens[id]->Next(); GenerateKeyFromInt(rand_num, FLAGS_num, &key); if (FLAGS_num_column_families <= 1) { batch.Put(key, gen.Generate(value_size_)); } else { // We use same rand_num as seed for key and column family so that we // can deterministically find the cfh corresponding to a particular // key while reading the key. batch.Put(db_with_cfh->cfh[rand_num % db_with_cfh->cfh.size()], key, gen.Generate(value_size_)); } bytes += value_size_ + key_size_; } s = db_with_cfh->db->Write(write_options_, &batch); thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, entries_per_batch_); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } } thread->stats.AddBytes(bytes); } void ReadSequential(ThreadState* thread) { if (db_.db != nullptr) { ReadSequential(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadSequential(thread, db_with_cfh.db); } } } void ReadSequential(ThreadState* thread, DB* db) { ReadOptions options(FLAGS_verify_checksum, true); options.tailing = FLAGS_use_tailing_iterator; Iterator* iter = db->NewIterator(options); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1); ++i; } delete iter; thread->stats.AddBytes(bytes); } void ReadReverse(ThreadState* thread) { if (db_.db != nullptr) { ReadReverse(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadReverse(thread, db_with_cfh.db); } } } void ReadReverse(ThreadState* thread, DB* db) { Iterator* iter = db->NewIterator(ReadOptions(FLAGS_verify_checksum, true)); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1); ++i; } delete iter; thread->stats.AddBytes(bytes); } void ReadRandomFast(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t nonexist = 0; ReadOptions options(FLAGS_verify_checksum, true); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); std::string value; DB* db = SelectDBWithCfh(thread)->db; int64_t pot = 1; while (pot < FLAGS_num) { pot <<= 1; } Duration duration(FLAGS_duration, reads_); do { for (int i = 0; i < 100; ++i) { int64_t key_rand = thread->rand.Next() & (pot - 1); GenerateKeyFromInt(key_rand, FLAGS_num, &key); ++read; if (db->Get(options, key, &value).ok()) { ++found; } if (key_rand >= FLAGS_num) { ++nonexist; } } thread->stats.FinishedOps(nullptr, db, 100); } while (!duration.Done(100)); char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found, " "issued %" PRIu64 " non-exist keys)\n", found, read, nonexist); thread->stats.AddMessage(msg); if (FLAGS_perf_level > 0) { thread->stats.AddMessage(perf_context.ToString()); } } void ReadRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; ReadOptions options(FLAGS_verify_checksum, true); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); std::string value; Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); // We use same key_rand as seed for key and column family so that we can // deterministically find the cfh corresponding to a particular key, as it // is done in DoWrite method. int64_t key_rand = thread->rand.Next() % FLAGS_num; GenerateKeyFromInt(key_rand, FLAGS_num, &key); read++; Status s; if (FLAGS_num_column_families > 1) { s = db_with_cfh->db->Get(options, db_with_cfh->cfh[key_rand % db_with_cfh->cfh.size()], key, &value); } else { s = db_with_cfh->db->Get(options, key, &value); } if (s.ok()) { found++; } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddMessage(msg); if (FLAGS_perf_level > 0) { thread->stats.AddMessage(perf_context.ToString()); } } // Calls MultiGet over a list of keys from a random distribution. // Returns the total number of keys found. void MultiReadRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; ReadOptions options(FLAGS_verify_checksum, true); std::vector keys; std::vector values(entries_per_batch_); while (static_cast(keys.size()) < entries_per_batch_) { keys.push_back(AllocateKey()); } Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DB* db = SelectDB(thread); for (int64_t i = 0; i < entries_per_batch_; ++i) { GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &keys[i]); } std::vector statuses = db->MultiGet(options, keys, &values); assert(static_cast(statuses.size()) == entries_per_batch_); read += entries_per_batch_; for (int64_t i = 0; i < entries_per_batch_; ++i) { if (statuses[i].ok()) { ++found; } } thread->stats.FinishedOps(nullptr, db, entries_per_batch_); } for (auto& k : keys) { delete k.data(); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found, read); thread->stats.AddMessage(msg); } void IteratorCreation(ThreadState* thread) { Duration duration(FLAGS_duration, reads_); ReadOptions options(FLAGS_verify_checksum, true); while (!duration.Done(1)) { DB* db = SelectDB(thread); Iterator* iter = db->NewIterator(options); delete iter; thread->stats.FinishedOps(nullptr, db, 1); } } void IteratorCreationWhileWriting(ThreadState* thread) { if (thread->tid > 0) { IteratorCreation(thread); } else { BGWriter(thread); } } void SeekRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; ReadOptions options(FLAGS_verify_checksum, true); options.tailing = FLAGS_use_tailing_iterator; Iterator* single_iter = nullptr; std::vector multi_iters; if (db_.db != nullptr) { single_iter = db_.db->NewIterator(options); } else { for (const auto& db_with_cfh : multi_dbs_) { multi_iters.push_back(db_with_cfh.db->NewIterator(options)); } } uint64_t last_refresh = FLAGS_env->NowMicros(); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); Duration duration(FLAGS_duration, reads_); char value_buffer[256]; while (!duration.Done(1)) { if (!FLAGS_use_tailing_iterator && FLAGS_iter_refresh_interval_us >= 0) { uint64_t now = FLAGS_env->NowMicros(); if (now - last_refresh > (uint64_t)FLAGS_iter_refresh_interval_us) { if (db_.db != nullptr) { delete single_iter; single_iter = db_.db->NewIterator(options); } else { for (auto iter : multi_iters) { delete iter; } multi_iters.clear(); for (const auto& db_with_cfh : multi_dbs_) { multi_iters.push_back(db_with_cfh.db->NewIterator(options)); } } } last_refresh = now; } // Pick a Iterator to use Iterator* iter_to_use = single_iter; if (single_iter == nullptr) { iter_to_use = multi_iters[thread->rand.Next() % multi_iters.size()]; } GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); iter_to_use->Seek(key); read++; if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) { found++; } for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) { // Copy out iterator's value to make sure we read them. Slice value = iter_to_use->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); iter_to_use->Next(); assert(iter_to_use->status().ok()); } thread->stats.FinishedOps(&db_, db_.db, 1); } delete single_iter; for (auto iter : multi_iters) { delete iter; } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddMessage(msg); if (FLAGS_perf_level > 0) { thread->stats.AddMessage(perf_context.ToString()); } } void SeekRandomWhileWriting(ThreadState* thread) { if (thread->tid > 0) { SeekRandom(thread); } else { BGWriter(thread); } } void DoDelete(ThreadState* thread, bool seq) { WriteBatch batch; Duration duration(seq ? 0 : FLAGS_duration, num_); int64_t i = 0; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); while (!duration.Done(entries_per_batch_)) { DB* db = SelectDB(thread); batch.Clear(); for (int64_t j = 0; j < entries_per_batch_; ++j) { const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num); GenerateKeyFromInt(k, FLAGS_num, &key); batch.Delete(key); } auto s = db->Write(write_options_, &batch); thread->stats.FinishedOps(nullptr, db, entries_per_batch_); if (!s.ok()) { fprintf(stderr, "del error: %s\n", s.ToString().c_str()); exit(1); } i += entries_per_batch_; } } void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); } void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); } void ReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGWriter(thread); } } void BGWriter(ThreadState* thread) { // Special thread that keeps writing until other threads are done. RandomGenerator gen; double last = FLAGS_env->NowMicros(); int writes_per_second_by_10 = 0; int num_writes = 0; // --writes_per_second rate limit is enforced per 100 milliseconds // intervals to avoid a burst of writes at the start of each second. if (FLAGS_writes_per_second > 0) writes_per_second_by_10 = FLAGS_writes_per_second / 10; // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); while (true) { DB* db = SelectDB(thread); { MutexLock l(&thread->shared->mu); if (thread->shared->num_done + 1 >= thread->shared->num_initialized) { // Other threads have finished break; } } GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Status s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(&db_, db_.db, 1); ++num_writes; if (writes_per_second_by_10 && num_writes >= writes_per_second_by_10) { double now = FLAGS_env->NowMicros(); double usecs_since_last = now - last; num_writes = 0; last = now; if (usecs_since_last < 100000.0) { FLAGS_env->SleepForMicroseconds(100000.0 - usecs_since_last); last = FLAGS_env->NowMicros(); } } } } // Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key, const Slice& value) { std::string suffixes[3] = {"2", "1", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Put(keys[i], value); } s = db->Write(writeoptions, &batch); return s; } // Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status DeleteMany(DB* db, const WriteOptions& writeoptions, const Slice& key) { std::string suffixes[3] = {"1", "2", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Delete(keys[i]); } s = db->Write(writeoptions, &batch); return s; } // Given a key K and value V, this gets values for K+"0", K+"1" and K+"2" // in the same snapshot, and verifies that all the values are identical. // ASSUMES that PutMany was used to put (K, V) into the DB. Status GetMany(DB* db, const ReadOptions& readoptions, const Slice& key, std::string* value) { std::string suffixes[3] = {"0", "1", "2"}; std::string keys[3]; Slice key_slices[3]; std::string values[3]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db->GetSnapshot(); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; key_slices[i] = keys[i]; s = db->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; } else { values[i] = *value; } } db->ReleaseSnapshot(readoptionscopy.snapshot); if ((values[0] != values[1]) || (values[1] != values[2])) { fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[1].c_str(), values[2].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } return s; } // Differs from readrandomwriterandom in the following ways: // (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs. // (b) Does deletes as well (per FLAGS_deletepercent) // (c) In order to achieve high % of 'found' during lookups, and to do // multiple writes (including puts and deletes) it uses upto // FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys. // (d) Does not have a MultiGet option. void RandomWithVerify(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int delete_weight = 0; int64_t gets_done = 0; int64_t puts_done = 0; int64_t deletes_done = 0; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // the number of iterations is the larger of read_ or write_ for (int64_t i = 0; i < readwrites_; i++) { DB* db = SelectDB(thread); if (get_weight == 0 && put_weight == 0 && delete_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; delete_weight = FLAGS_deletepercent; put_weight = 100 - get_weight - delete_weight; } GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct, FLAGS_numdistinct, &key); if (get_weight > 0) { // do all the gets first Status s = GetMany(db, options, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "getmany error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; gets_done++; } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = PutMany(db, write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "putmany error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; puts_done++; } else if (delete_weight > 0) { Status s = DeleteMany(db, write_options_, key); if (!s.ok()) { fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str()); exit(1); } delete_weight--; deletes_done++; } thread->stats.FinishedOps(&db_, db_.db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" \ PRIu64 " found:%" PRIu64 ")", gets_done, puts_done, deletes_done, readwrites_, found); thread->stats.AddMessage(msg); } // This is different from ReadWhileWriting because it does not use // an extra thread. void ReadRandomWriteRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int64_t reads_done = 0; int64_t writes_done = 0; Duration duration(FLAGS_duration, readwrites_); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); if (get_weight == 0 && put_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; put_weight = 100 - get_weight; } if (get_weight > 0) { // do all the gets first Status s = db->Get(options, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; reads_done++; } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; writes_done++; } thread->stats.FinishedOps(nullptr, db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "( reads:%" PRIu64 " writes:%" PRIu64 \ " total:%" PRIu64 " found:%" PRIu64 ")", reads_done, writes_done, readwrites_, found); thread->stats.AddMessage(msg); } // // Read-modify-write for random keys void UpdateRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; Duration duration(FLAGS_duration, readwrites_); Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); if (db->Get(options, key, &value).ok()) { found++; } Status s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(nullptr, db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddMessage(msg); } // Read-modify-write for random keys. // Each operation causes the key grow by value_size (simulating an append). // Generally used for benchmarking against merges of similar type void AppendRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); // Get the existing value if (db->Get(options, key, &value).ok()) { found++; } else { // If not existing, then just assume an empty string of data value.clear(); } // Update the value (by appending data) Slice operand = gen.Generate(value_size_); if (value.size() > 0) { // Use a delimeter to match the semantics for StringAppendOperator value.append(1,','); } value.append(operand.data(), operand.size()); // Write back to the database Status s = db->Put(write_options_, key, value); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(nullptr, db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddMessage(msg); } // Read-modify-write for random keys (using MergeOperator) // The merge operator to use should be defined by FLAGS_merge_operator // Adjust FLAGS_value_size so that the keys are reasonable for this operator // Assumes that the merge operator is non-null (i.e.: is well-defined) // // For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8 // to simulate random additions over 64-bit integers using merge. // // The number of merges on the same key can be controlled by adjusting // FLAGS_merge_keys. void MergeRandom(ThreadState* thread) { RandomGenerator gen; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key); Status s = db->Merge(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(nullptr, db, 1); } // Print some statistics char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_); thread->stats.AddMessage(msg); } // Read and merge random keys. The amount of reads and merges are controlled // by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct // keys (and thus also the number of reads and merges on the same key) can be // adjusted with FLAGS_merge_keys. // // As with MergeRandom, the merge operator to use should be defined by // FLAGS_merge_operator. void ReadRandomMergeRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t num_hits = 0; int64_t num_gets = 0; int64_t num_merges = 0; size_t max_length = 0; Slice key = AllocateKey(); std::unique_ptr key_guard(key.data()); // the number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key); bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent; if (do_merge) { Status s = db->Merge(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } num_merges++; } else { Status s = db->Get(options, key, &value); if (value.length() > max_length) max_length = value.length(); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { num_hits++; } num_gets++; } thread->stats.FinishedOps(nullptr, db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64 " hits:%" \ PRIu64 " maxlength:%zu)", num_gets, num_merges, readwrites_, num_hits, max_length); thread->stats.AddMessage(msg); } void WriteSeqSeekSeq(ThreadState* thread) { writes_ = FLAGS_num; DoWrite(thread, SEQUENTIAL); // exclude writes from the ops/sec calculation thread->stats.Start(thread->tid); DB* db = SelectDB(thread); std::unique_ptr iter( db->NewIterator(ReadOptions(FLAGS_verify_checksum, true))); Slice key = AllocateKey(); for (int64_t i = 0; i < FLAGS_num; ++i) { GenerateKeyFromInt(i, FLAGS_num, &key); iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1); for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) { iter->Next(); GenerateKeyFromInt(++i, FLAGS_num, &key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1); } iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1); } } void Compact(ThreadState* thread) { DB* db = SelectDB(thread); db->CompactRange(nullptr, nullptr); } void PrintStats(const char* key) { if (db_.db != nullptr) { PrintStats(db_.db, key, false); } for (const auto& db_with_cfh : multi_dbs_) { PrintStats(db_with_cfh.db, key, true); } } void PrintStats(DB* db, const char* key, bool print_header = false) { if (print_header) { fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str()); } std::string stats; if (!db->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "\n%s\n", stats.c_str()); } }; } // namespace rocksdb int main(int argc, char** argv) { rocksdb::port::InstallStackTraceHandler(); SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) + " [OPTIONS]..."); ParseCommandLineFlags(&argc, &argv, true); FLAGS_compaction_style_e = (rocksdb::CompactionStyle) FLAGS_compaction_style; if (FLAGS_statistics) { dbstats = rocksdb::CreateDBStatistics(); } std::vector fanout = rocksdb::StringSplit( FLAGS_max_bytes_for_level_multiplier_additional, ','); for (unsigned int j= 0; j < fanout.size(); j++) { FLAGS_max_bytes_for_level_multiplier_additional_v.push_back( std::stoi(fanout[j])); } FLAGS_compression_type_e = StringToCompressionType(FLAGS_compression_type.c_str()); if (!FLAGS_hdfs.empty()) { FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs); } if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE")) FLAGS_compaction_fadvice_e = rocksdb::Options::NONE; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL")) FLAGS_compaction_fadvice_e = rocksdb::Options::NORMAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL")) FLAGS_compaction_fadvice_e = rocksdb::Options::SEQUENTIAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED")) FLAGS_compaction_fadvice_e = rocksdb::Options::WILLNEED; else { fprintf(stdout, "Unknown compaction fadvice:%s\n", FLAGS_compaction_fadvice.c_str()); } FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str()); // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); FLAGS_env->SetBackgroundThreads(FLAGS_max_background_flushes, rocksdb::Env::Priority::HIGH); // Choose a location for the test database if none given with --db= if (FLAGS_db.empty()) { std::string default_db_path; rocksdb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbbench"; FLAGS_db = default_db_path; } rocksdb::Benchmark benchmark; benchmark.Run(); return 0; } #endif // GFLAGS