// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include <stdint.h> #include <algorithm> #include <random> #include "rocksdb/rocksdb_namespace.h" namespace ROCKSDB_NAMESPACE { // A very simple random number generator. Not especially good at // generating truly random bits, but good enough for our needs in this // package. class Random { private: enum : uint32_t { M = 2147483647L // 2^31-1 }; enum : uint64_t { A = 16807 // bits 14, 8, 7, 5, 2, 1, 0 }; uint32_t seed_; static uint32_t GoodSeed(uint32_t s) { return (s & M) != 0 ? (s & M) : 1; } public: // This is the largest value that can be returned from Next() enum : uint32_t { kMaxNext = M }; explicit Random(uint32_t s) : seed_(GoodSeed(s)) {} void Reset(uint32_t s) { seed_ = GoodSeed(s); } uint32_t Next() { // We are computing // seed_ = (seed_ * A) % M, where M = 2^31-1 // // seed_ must not be zero or M, or else all subsequent computed values // will be zero or M respectively. For all other values, seed_ will end // up cycling through every number in [1,M-1] uint64_t product = seed_ * A; // Compute (product % M) using the fact that ((x << 31) % M) == x. seed_ = static_cast<uint32_t>((product >> 31) + (product & M)); // The first reduction may overflow by 1 bit, so we may need to // repeat. mod == M is not possible; using > allows the faster // sign-bit-based test. if (seed_ > M) { seed_ -= M; } return seed_; } uint64_t Next64() { return (uint64_t{Next()} << 32) | Next(); } // Returns a uniformly distributed value in the range [0..n-1] // REQUIRES: n > 0 uint32_t Uniform(int n) { return Next() % n; } // Randomly returns true ~"1/n" of the time, and false otherwise. // REQUIRES: n > 0 bool OneIn(int n) { return Uniform(n) == 0; } // "Optional" one-in-n, where 0 or negative always returns false // (may or may not consume a random value) bool OneInOpt(int n) { return n > 0 && OneIn(n); } // Returns random bool that is true for the given percentage of // calls on average. Zero or less is always false and 100 or more // is always true (may or may not consume a random value) bool PercentTrue(int percentage) { return static_cast<int>(Uniform(100)) < percentage; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with exponential bias towards smaller numbers. uint32_t Skewed(int max_log) { return Uniform(1 << Uniform(max_log + 1)); } // Returns a random string of length "len" std::string RandomString(int len); // Generates a random string of len bytes using human-readable characters std::string HumanReadableString(int len); // Generates a random binary data std::string RandomBinaryString(int len); // Returns a Random instance for use by the current thread without // additional locking static Random* GetTLSInstance(); }; // A good 32-bit random number generator based on std::mt19937. // This exists in part to avoid compiler variance in warning about coercing // uint_fast32_t from mt19937 to uint32_t. class Random32 { private: std::mt19937 generator_; public: explicit Random32(uint32_t s) : generator_(s) {} // Generates the next random number uint32_t Next() { return static_cast<uint32_t>(generator_()); } // Returns a uniformly distributed value in the range [0..n-1] // REQUIRES: n > 0 uint32_t Uniform(uint32_t n) { return static_cast<uint32_t>( std::uniform_int_distribution<std::mt19937::result_type>( 0, n - 1)(generator_)); } // Returns an *almost* uniformly distributed value in the range [0..n-1]. // Much faster than Uniform(). // REQUIRES: n > 0 uint32_t Uniformish(uint32_t n) { // fastrange (without the header) return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32); } // Randomly returns true ~"1/n" of the time, and false otherwise. // REQUIRES: n > 0 bool OneIn(uint32_t n) { return Uniform(n) == 0; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with exponential bias towards smaller numbers. uint32_t Skewed(int max_log) { return Uniform(uint32_t{1} << Uniform(max_log + 1)); } // Reset the seed of the generator to the given value void Seed(uint32_t new_seed) { generator_.seed(new_seed); } }; // A good 64-bit random number generator based on std::mt19937_64 class Random64 { private: std::mt19937_64 generator_; public: explicit Random64(uint64_t s) : generator_(s) { } // Generates the next random number uint64_t Next() { return generator_(); } // Returns a uniformly distributed value in the range [0..n-1] // REQUIRES: n > 0 uint64_t Uniform(uint64_t n) { return std::uniform_int_distribution<uint64_t>(0, n - 1)(generator_); } // Randomly returns true ~"1/n" of the time, and false otherwise. // REQUIRES: n > 0 bool OneIn(uint64_t n) { return Uniform(n) == 0; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with exponential bias towards smaller numbers. uint64_t Skewed(int max_log) { return Uniform(uint64_t(1) << Uniform(max_log + 1)); } }; // A seeded replacement for removed std::random_shuffle template <class RandomIt> void RandomShuffle(RandomIt first, RandomIt last, uint32_t seed) { std::mt19937 rng(seed); std::shuffle(first, last, rng); } // A replacement for removed std::random_shuffle template <class RandomIt> void RandomShuffle(RandomIt first, RandomIt last) { RandomShuffle(first, last, std::random_device{}()); } } // namespace ROCKSDB_NAMESPACE