// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors #ifdef GFLAGS #pragma once #include "db_stress_tool/db_stress_stat.h" // SyncPoint is not supported in Released Windows Mode. #if !(defined NDEBUG) || !defined(OS_WIN) #include "test_util/sync_point.h" #endif // !(defined NDEBUG) || !defined(OS_WIN) #include "util/gflags_compat.h" DECLARE_uint64(seed); DECLARE_int64(max_key); DECLARE_uint64(log2_keys_per_lock); DECLARE_int32(threads); DECLARE_int32(column_families); DECLARE_int32(nooverwritepercent); DECLARE_string(expected_values_path); DECLARE_int32(clear_column_family_one_in); DECLARE_bool(test_batches_snapshots); DECLARE_int32(compaction_thread_pool_adjust_interval); DECLARE_int32(continuous_verification_interval); DECLARE_int32(read_fault_one_in); DECLARE_int32(write_fault_one_in); DECLARE_int32(open_metadata_write_fault_one_in); DECLARE_int32(open_write_fault_one_in); namespace ROCKSDB_NAMESPACE { class StressTest; // State shared by all concurrent executions of the same benchmark. class SharedState { public: // indicates a key may have any value (or not be present) as an operation on // it is incomplete. static const uint32_t UNKNOWN_SENTINEL; // indicates a key should definitely be deleted static const uint32_t DELETION_SENTINEL; // Errors when reading filter blocks are ignored, so we use a thread // local variable updated via sync points to keep track of errors injected // while reading filter blocks in order to ignore the Get/MultiGet result // for those calls #if defined(ROCKSDB_SUPPORT_THREAD_LOCAL) #if defined(OS_SOLARIS) static __thread bool ignore_read_error; #else static thread_local bool ignore_read_error; #endif // OS_SOLARIS #else static bool ignore_read_error; #endif // ROCKSDB_SUPPORT_THREAD_LOCAL SharedState(Env* env, StressTest* stress_test) : cv_(&mu_), seed_(static_cast(FLAGS_seed)), max_key_(FLAGS_max_key), log2_keys_per_lock_(static_cast(FLAGS_log2_keys_per_lock)), num_threads_(FLAGS_threads), num_initialized_(0), num_populated_(0), vote_reopen_(0), num_done_(0), start_(false), start_verify_(false), num_bg_threads_(0), should_stop_bg_thread_(false), bg_thread_finished_(0), stress_test_(stress_test), verification_failure_(false), should_stop_test_(false), no_overwrite_ids_(FLAGS_column_families), values_(nullptr), printing_verification_results_(false) { // Pick random keys in each column family that will not experience // overwrite fprintf(stdout, "Choosing random keys with no overwrite\n"); Random64 rnd(seed_); // Start with the identity permutation. Subsequent iterations of // for loop below will start with perm of previous for loop int64_t* permutation = new int64_t[max_key_]; for (int64_t i = 0; i < max_key_; i++) { permutation[i] = i; } // Now do the Knuth shuffle int64_t num_no_overwrite_keys = (max_key_ * FLAGS_nooverwritepercent) / 100; // Only need to figure out first num_no_overwrite_keys of permutation no_overwrite_ids_.reserve(num_no_overwrite_keys); for (int64_t i = 0; i < num_no_overwrite_keys; i++) { int64_t rand_index = i + rnd.Next() % (max_key_ - i); // Swap i and rand_index; int64_t temp = permutation[i]; permutation[i] = permutation[rand_index]; permutation[rand_index] = temp; // Fill no_overwrite_ids_ with the first num_no_overwrite_keys of // permutation no_overwrite_ids_.insert(permutation[i]); } delete[] permutation; size_t expected_values_size = sizeof(std::atomic) * FLAGS_column_families * max_key_; bool values_init_needed = false; Status status; if (!FLAGS_expected_values_path.empty()) { if (!std::atomic{}.is_lock_free()) { status = Status::InvalidArgument( "Cannot use --expected_values_path on platforms without lock-free " "std::atomic"); } if (status.ok() && FLAGS_clear_column_family_one_in > 0) { status = Status::InvalidArgument( "Cannot use --expected_values_path on when " "--clear_column_family_one_in is greater than zero."); } uint64_t size = 0; if (status.ok()) { status = env->GetFileSize(FLAGS_expected_values_path, &size); } std::unique_ptr wfile; if (status.ok() && size == 0) { const EnvOptions soptions; status = env->NewWritableFile(FLAGS_expected_values_path, &wfile, soptions); } if (status.ok() && size == 0) { std::string buf(expected_values_size, '\0'); status = wfile->Append(buf); values_init_needed = true; } if (status.ok()) { status = env->NewMemoryMappedFileBuffer(FLAGS_expected_values_path, &expected_mmap_buffer_); } if (status.ok()) { assert(expected_mmap_buffer_->GetLen() == expected_values_size); values_ = static_cast*>( expected_mmap_buffer_->GetBase()); assert(values_ != nullptr); } else { fprintf(stderr, "Failed opening shared file '%s' with error: %s\n", FLAGS_expected_values_path.c_str(), status.ToString().c_str()); assert(values_ == nullptr); } } if (values_ == nullptr) { values_allocation_.reset( new std::atomic[FLAGS_column_families * max_key_]); values_ = &values_allocation_[0]; values_init_needed = true; } assert(values_ != nullptr); if (values_init_needed) { for (int i = 0; i < FLAGS_column_families; ++i) { for (int j = 0; j < max_key_; ++j) { Delete(i, j, false /* pending */); } } } if (FLAGS_test_batches_snapshots) { fprintf(stdout, "No lock creation because test_batches_snapshots set\n"); return; } long num_locks = static_cast(max_key_ >> log2_keys_per_lock_); if (max_key_ & ((1 << log2_keys_per_lock_) - 1)) { num_locks++; } fprintf(stdout, "Creating %ld locks\n", num_locks * FLAGS_column_families); key_locks_.resize(FLAGS_column_families); for (int i = 0; i < FLAGS_column_families; ++i) { key_locks_[i].resize(num_locks); for (auto& ptr : key_locks_[i]) { ptr.reset(new port::Mutex); } } if (FLAGS_compaction_thread_pool_adjust_interval > 0) { ++num_bg_threads_; fprintf(stdout, "Starting compaction_thread_pool_adjust_thread\n"); } if (FLAGS_continuous_verification_interval > 0) { ++num_bg_threads_; fprintf(stdout, "Starting continuous_verification_thread\n"); } #ifndef NDEBUG if (FLAGS_read_fault_one_in) { SyncPoint::GetInstance()->SetCallBack("FaultInjectionIgnoreError", IgnoreReadErrorCallback); SyncPoint::GetInstance()->EnableProcessing(); } #endif // NDEBUG } ~SharedState() { #ifndef NDEBUG if (FLAGS_read_fault_one_in) { SyncPoint::GetInstance()->ClearAllCallBacks(); SyncPoint::GetInstance()->DisableProcessing(); } #endif } port::Mutex* GetMutex() { return &mu_; } port::CondVar* GetCondVar() { return &cv_; } StressTest* GetStressTest() const { return stress_test_; } int64_t GetMaxKey() const { return max_key_; } uint32_t GetNumThreads() const { return num_threads_; } void IncInitialized() { num_initialized_++; } void IncOperated() { num_populated_++; } void IncDone() { num_done_++; } void IncVotedReopen() { vote_reopen_ = (vote_reopen_ + 1) % num_threads_; } bool AllInitialized() const { return num_initialized_ >= num_threads_; } bool AllOperated() const { return num_populated_ >= num_threads_; } bool AllDone() const { return num_done_ >= num_threads_; } bool AllVotedReopen() { return (vote_reopen_ == 0); } void SetStart() { start_ = true; } void SetStartVerify() { start_verify_ = true; } bool Started() const { return start_; } bool VerifyStarted() const { return start_verify_; } void SetVerificationFailure() { verification_failure_.store(true); } bool HasVerificationFailedYet() const { return verification_failure_.load(); } void SetShouldStopTest() { should_stop_test_.store(true); } bool ShouldStopTest() const { return should_stop_test_.load(); } port::Mutex* GetMutexForKey(int cf, int64_t key) { return key_locks_[cf][key >> log2_keys_per_lock_].get(); } void LockColumnFamily(int cf) { for (auto& mutex : key_locks_[cf]) { mutex->Lock(); } } void UnlockColumnFamily(int cf) { for (auto& mutex : key_locks_[cf]) { mutex->Unlock(); } } std::atomic& Value(int cf, int64_t key) const { return values_[cf * max_key_ + key]; } void ClearColumnFamily(int cf) { std::fill(&Value(cf, 0 /* key */), &Value(cf + 1, 0 /* key */), DELETION_SENTINEL); } // @param pending True if the update may have started but is not yet // guaranteed finished. This is useful for crash-recovery testing when the // process may crash before updating the expected values array. void Put(int cf, int64_t key, uint32_t value_base, bool pending) { if (!pending) { // prevent expected-value update from reordering before Write std::atomic_thread_fence(std::memory_order_release); } Value(cf, key).store(pending ? UNKNOWN_SENTINEL : value_base, std::memory_order_relaxed); if (pending) { // prevent Write from reordering before expected-value update std::atomic_thread_fence(std::memory_order_release); } } uint32_t Get(int cf, int64_t key) const { return Value(cf, key); } // @param pending See comment above Put() // Returns true if the key was not yet deleted. bool Delete(int cf, int64_t key, bool pending) { if (Value(cf, key) == DELETION_SENTINEL) { return false; } Put(cf, key, DELETION_SENTINEL, pending); return true; } // @param pending See comment above Put() // Returns true if the key was not yet deleted. bool SingleDelete(int cf, int64_t key, bool pending) { return Delete(cf, key, pending); } // @param pending See comment above Put() // Returns number of keys deleted by the call. int DeleteRange(int cf, int64_t begin_key, int64_t end_key, bool pending) { int covered = 0; for (int64_t key = begin_key; key < end_key; ++key) { if (Delete(cf, key, pending)) { ++covered; } } return covered; } bool AllowsOverwrite(int64_t key) { return no_overwrite_ids_.find(key) == no_overwrite_ids_.end(); } bool Exists(int cf, int64_t key) { // UNKNOWN_SENTINEL counts as exists. That assures a key for which overwrite // is disallowed can't be accidentally added a second time, in which case // SingleDelete wouldn't be able to properly delete the key. It does allow // the case where a SingleDelete might be added which covers nothing, but // that's not a correctness issue. uint32_t expected_value = Value(cf, key).load(); return expected_value != DELETION_SENTINEL; } uint32_t GetSeed() const { return seed_; } void SetShouldStopBgThread() { should_stop_bg_thread_ = true; } bool ShouldStopBgThread() { return should_stop_bg_thread_; } void IncBgThreadsFinished() { ++bg_thread_finished_; } bool BgThreadsFinished() const { return bg_thread_finished_ == num_bg_threads_; } bool ShouldVerifyAtBeginning() const { return expected_mmap_buffer_.get() != nullptr; } bool PrintingVerificationResults() { bool tmp = false; return !printing_verification_results_.compare_exchange_strong( tmp, true, std::memory_order_relaxed); } void FinishPrintingVerificationResults() { printing_verification_results_.store(false, std::memory_order_relaxed); } private: static void IgnoreReadErrorCallback(void*) { ignore_read_error = true; } port::Mutex mu_; port::CondVar cv_; const uint32_t seed_; const int64_t max_key_; const uint32_t log2_keys_per_lock_; const int num_threads_; long num_initialized_; long num_populated_; long vote_reopen_; long num_done_; bool start_; bool start_verify_; int num_bg_threads_; bool should_stop_bg_thread_; int bg_thread_finished_; StressTest* stress_test_; std::atomic verification_failure_; std::atomic should_stop_test_; // Keys that should not be overwritten std::unordered_set no_overwrite_ids_; std::atomic* values_; std::unique_ptr[]> values_allocation_; // Has to make it owned by a smart ptr as port::Mutex is not copyable // and storing it in the container may require copying depending on the impl. std::vector>> key_locks_; std::unique_ptr expected_mmap_buffer_; std::atomic printing_verification_results_; }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { uint32_t tid; // 0..n-1 Random rand; // Has different seeds for different threads SharedState* shared; Stats stats; struct SnapshotState { const Snapshot* snapshot; // The cf from which we did a Get at this snapshot int cf_at; // The name of the cf at the time that we did a read std::string cf_at_name; // The key with which we did a Get at this snapshot std::string key; // The status of the Get Status status; // The value of the Get std::string value; // optional state of all keys in the db std::vector* key_vec; std::string timestamp; }; std::queue> snapshot_queue; ThreadState(uint32_t index, SharedState* _shared) : tid(index), rand(1000 + index + _shared->GetSeed()), shared(_shared) {} }; } // namespace ROCKSDB_NAMESPACE #endif // GFLAGS