// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef ROCKSDB_LITE #include "table/plain_table_reader.h" #include #include #include "db/dbformat.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "table/block.h" #include "table/filter_block.h" #include "table/format.h" #include "table/meta_blocks.h" #include "table/two_level_iterator.h" #include "table/plain_table_factory.h" #include "util/coding.h" #include "util/dynamic_bloom.h" #include "util/hash.h" #include "util/histogram.h" #include "util/murmurhash.h" #include "util/perf_context_imp.h" #include "util/stop_watch.h" namespace rocksdb { namespace { inline uint32_t GetSliceHash(const Slice& s) { return Hash(s.data(), s.size(), 397) ; } inline uint32_t GetBucketIdFromHash(uint32_t hash, uint32_t num_buckets) { return hash % num_buckets; } // Safely getting a uint32_t element from a char array, where, starting from // `base`, every 4 bytes are considered as an fixed 32 bit integer. inline uint32_t GetFixed32Element(const char* base, size_t offset) { return DecodeFixed32(base + offset * sizeof(uint32_t)); } } // namespace // Iterator to iterate IndexedTable class PlainTableIterator : public Iterator { public: explicit PlainTableIterator(PlainTableReader* table, bool use_prefix_seek); ~PlainTableIterator(); bool Valid() const; void SeekToFirst(); void SeekToLast(); void Seek(const Slice& target); void Next(); void Prev(); Slice key() const; Slice value() const; Status status() const; private: PlainTableReader* table_; bool use_prefix_seek_; uint32_t offset_; uint32_t next_offset_; IterKey key_; Slice value_; Status status_; // No copying allowed PlainTableIterator(const PlainTableIterator&) = delete; void operator=(const Iterator&) = delete; }; extern const uint64_t kPlainTableMagicNumber; PlainTableReader::PlainTableReader( const Options& options, unique_ptr&& file, const EnvOptions& storage_options, const InternalKeyComparator& icomparator, uint64_t file_size, int bloom_bits_per_key, double hash_table_ratio, size_t index_sparseness, const TableProperties* table_properties) : options_(options), soptions_(storage_options), file_(std::move(file)), internal_comparator_(icomparator), file_size_(file_size), kHashTableRatio(hash_table_ratio), kBloomBitsPerKey(bloom_bits_per_key), kIndexIntervalForSamePrefixKeys(index_sparseness), table_properties_(nullptr), data_end_offset_(table_properties->data_size), user_key_len_(table_properties->fixed_key_len) { assert(kHashTableRatio >= 0.0); } PlainTableReader::~PlainTableReader() { } Status PlainTableReader::Open( const Options& options, const EnvOptions& soptions, const InternalKeyComparator& internal_comparator, unique_ptr&& file, uint64_t file_size, unique_ptr* table_reader, const int bloom_bits_per_key, double hash_table_ratio, size_t index_sparseness) { assert(options.allow_mmap_reads); if (file_size > kMaxFileSize) { return Status::NotSupported("File is too large for PlainTableReader!"); } TableProperties* props = nullptr; auto s = ReadTableProperties(file.get(), file_size, kPlainTableMagicNumber, options.env, options.info_log.get(), &props); if (!s.ok()) { return s; } std::unique_ptr new_reader(new PlainTableReader( options, std::move(file), soptions, internal_comparator, file_size, bloom_bits_per_key, hash_table_ratio, index_sparseness, props)); // -- Populate Index s = new_reader->PopulateIndex(props); if (!s.ok()) { return s; } *table_reader = std::move(new_reader); return s; } void PlainTableReader::SetupForCompaction() { } Iterator* PlainTableReader::NewIterator(const ReadOptions& options) { return new PlainTableIterator(this, options_.prefix_extractor != nullptr); } struct PlainTableReader::IndexRecord { uint32_t hash; // hash of the prefix uint32_t offset; // offset of a row IndexRecord* next; }; // Helper class to track all the index records class PlainTableReader::IndexRecordList { public: explicit IndexRecordList(size_t num_records_per_group) : kNumRecordsPerGroup(num_records_per_group), current_group_(nullptr), num_records_in_current_group_(num_records_per_group) {} ~IndexRecordList() { for (size_t i = 0; i < groups_.size(); i++) { delete[] groups_[i]; } } void AddRecord(murmur_t hash, uint32_t offset) { if (num_records_in_current_group_ == kNumRecordsPerGroup) { current_group_ = AllocateNewGroup(); num_records_in_current_group_ = 0; } auto& new_record = current_group_[num_records_in_current_group_++]; new_record.hash = hash; new_record.offset = offset; new_record.next = nullptr; } size_t GetNumRecords() const { return (groups_.size() - 1) * kNumRecordsPerGroup + num_records_in_current_group_; } IndexRecord* At(size_t index) { return &(groups_[index / kNumRecordsPerGroup][index % kNumRecordsPerGroup]); } private: IndexRecord* AllocateNewGroup() { IndexRecord* result = new IndexRecord[kNumRecordsPerGroup]; groups_.push_back(result); return result; } // Each group in `groups_` contains fix-sized records (determined by // kNumRecordsPerGroup). Which can help us minimize the cost if resizing // occurs. const size_t kNumRecordsPerGroup; IndexRecord* current_group_; // List of arrays allocated std::vector groups_; size_t num_records_in_current_group_; }; Status PlainTableReader::PopulateIndexRecordList(IndexRecordList* record_list, int* num_prefixes) const { Slice prev_key_prefix_slice; uint32_t prev_key_prefix_hash = 0; uint32_t pos = data_start_offset_; int num_keys_per_prefix = 0; bool is_first_record = true; HistogramImpl keys_per_prefix_hist; // Need map to be ordered to make sure sub indexes generated // are in order. *num_prefixes = 0; while (pos < data_end_offset_) { uint32_t key_offset = pos; ParsedInternalKey key; Slice value_slice; Status s = Next(&pos, &key, &value_slice); if (!s.ok()) { return s; } if (bloom_) { // total order mode and bloom filter is enabled. bloom_->AddHash(GetSliceHash(key.user_key)); } Slice key_prefix_slice = GetPrefix(key); if (is_first_record || prev_key_prefix_slice != key_prefix_slice) { ++(*num_prefixes); if (!is_first_record) { keys_per_prefix_hist.Add(num_keys_per_prefix); } num_keys_per_prefix = 0; prev_key_prefix_slice = key_prefix_slice; prev_key_prefix_hash = GetSliceHash(key_prefix_slice); } if (kIndexIntervalForSamePrefixKeys == 0 || num_keys_per_prefix++ % kIndexIntervalForSamePrefixKeys == 0) { // Add an index key for every kIndexIntervalForSamePrefixKeys keys record_list->AddRecord(prev_key_prefix_hash, key_offset); } is_first_record = false; } keys_per_prefix_hist.Add(num_keys_per_prefix); Log(options_.info_log, "Number of Keys per prefix Histogram: %s", keys_per_prefix_hist.ToString().c_str()); return Status::OK(); } void PlainTableReader::AllocateIndexAndBloom(int num_prefixes) { index_.reset(); if (options_.prefix_extractor.get() != nullptr) { uint32_t bloom_total_bits = num_prefixes * kBloomBitsPerKey; if (bloom_total_bits > 0) { bloom_.reset(new DynamicBloom(bloom_total_bits, options_.bloom_locality)); } } if (options_.prefix_extractor.get() == nullptr || kHashTableRatio <= 0) { // Fall back to pure binary search if the user fails to specify a prefix // extractor. index_size_ = 1; } else { double hash_table_size_multipier = 1.0 / kHashTableRatio; index_size_ = num_prefixes * hash_table_size_multipier + 1; } index_.reset(new uint32_t[index_size_]); } size_t PlainTableReader::BucketizeIndexesAndFillBloom( IndexRecordList* record_list, std::vector* hash_to_offsets, std::vector* entries_per_bucket) { bool first = true; uint32_t prev_hash = 0; size_t num_records = record_list->GetNumRecords(); for (size_t i = 0; i < num_records; i++) { IndexRecord* index_record = record_list->At(i); uint32_t cur_hash = index_record->hash; if (first || prev_hash != cur_hash) { prev_hash = cur_hash; first = false; if (bloom_ && !IsTotalOrderMode()) { bloom_->AddHash(cur_hash); } } uint32_t bucket = GetBucketIdFromHash(cur_hash, index_size_); IndexRecord* prev_bucket_head = (*hash_to_offsets)[bucket]; index_record->next = prev_bucket_head; (*hash_to_offsets)[bucket] = index_record; (*entries_per_bucket)[bucket]++; } size_t sub_index_size = 0; for (auto entry_count : *entries_per_bucket) { if (entry_count <= 1) { continue; } // Only buckets with more than 1 entry will have subindex. sub_index_size += VarintLength(entry_count); // total bytes needed to store these entries' in-file offsets. sub_index_size += entry_count * kOffsetLen; } return sub_index_size; } void PlainTableReader::FillIndexes( const size_t kSubIndexSize, const std::vector& hash_to_offsets, const std::vector& entries_per_bucket) { Log(options_.info_log, "Reserving %zu bytes for plain table's sub_index", kSubIndexSize); sub_index_.reset(new char[kSubIndexSize]); size_t sub_index_offset = 0; for (int i = 0; i < index_size_; i++) { uint32_t num_keys_for_bucket = entries_per_bucket[i]; switch (num_keys_for_bucket) { case 0: // No key for bucket index_[i] = data_end_offset_; break; case 1: // point directly to the file offset index_[i] = hash_to_offsets[i]->offset; break; default: // point to second level indexes. index_[i] = sub_index_offset | kSubIndexMask; char* prev_ptr = &sub_index_[sub_index_offset]; char* cur_ptr = EncodeVarint32(prev_ptr, num_keys_for_bucket); sub_index_offset += (cur_ptr - prev_ptr); char* sub_index_pos = &sub_index_[sub_index_offset]; IndexRecord* record = hash_to_offsets[i]; int j; for (j = num_keys_for_bucket - 1; j >= 0 && record; j--, record = record->next) { EncodeFixed32(sub_index_pos + j * sizeof(uint32_t), record->offset); } assert(j == -1 && record == nullptr); sub_index_offset += kOffsetLen * num_keys_for_bucket; assert(sub_index_offset <= kSubIndexSize); break; } } assert(sub_index_offset == kSubIndexSize); Log(options_.info_log, "hash table size: %d, suffix_map length %zu", index_size_, kSubIndexSize); } Status PlainTableReader::PopulateIndex(TableProperties* props) { assert(props != nullptr); table_properties_.reset(props); // options.prefix_extractor is requried for a hash-based look-up. if (options_.prefix_extractor.get() == nullptr && kHashTableRatio != 0) { return Status::NotSupported( "PlainTable requires a prefix extractor enable prefix hash mode."); } // Get mmapped memory to file_data_. Status s = file_->Read(0, file_size_, &file_data_, nullptr); if (!s.ok()) { return s; } IndexRecordList record_list(kRecordsPerGroup); // First, read the whole file, for every kIndexIntervalForSamePrefixKeys rows // for a prefix (starting from the first one), generate a record of (hash, // offset) and append it to IndexRecordList, which is a data structure created // to store them. int num_prefixes; // Allocate bloom filter here for total order mode. if (IsTotalOrderMode()) { uint32_t num_bloom_bits = table_properties_->num_entries * kBloomBitsPerKey; if (num_bloom_bits > 0) { bloom_.reset(new DynamicBloom(num_bloom_bits, options_.bloom_locality)); } } s = PopulateIndexRecordList(&record_list, &num_prefixes); if (!s.ok()) { return s; } // Calculated hash table and bloom filter size and allocate memory for indexes // and bloom filter based on the number of prefixes. AllocateIndexAndBloom(num_prefixes); // Bucketize all the index records to a temp data structure, in which for // each bucket, we generate a linked list of IndexRecord, in reversed order. std::vector hash_to_offsets(index_size_, nullptr); std::vector entries_per_bucket(index_size_, 0); size_t sub_index_size_needed = BucketizeIndexesAndFillBloom( &record_list, &hash_to_offsets, &entries_per_bucket); // From the temp data structure, populate indexes. FillIndexes(sub_index_size_needed, hash_to_offsets, entries_per_bucket); // Fill two table properties. // TODO(sdong): after we have the feature of storing index in file, this // properties need to be populated to index_size instead. props->user_collected_properties["plain_table_hash_table_size"] = std::to_string(index_size_ * 4U); props->user_collected_properties["plain_table_sub_index_size"] = std::to_string(sub_index_size_needed); return Status::OK(); } Status PlainTableReader::GetOffset(const Slice& target, const Slice& prefix, uint32_t prefix_hash, bool& prefix_matched, uint32_t* offset) const { prefix_matched = false; int bucket = GetBucketIdFromHash(prefix_hash, index_size_); uint32_t bucket_value = index_[bucket]; if (bucket_value == data_end_offset_) { *offset = data_end_offset_; return Status::OK(); } else if ((bucket_value & kSubIndexMask) == 0) { // point directly to the file *offset = bucket_value; return Status::OK(); } // point to sub-index, need to do a binary search uint32_t low = 0; uint64_t prefix_index_offset = bucket_value ^ kSubIndexMask; const char* index_ptr = &sub_index_[prefix_index_offset]; uint32_t upper_bound = 0; const char* base_ptr = GetVarint32Ptr(index_ptr, index_ptr + 4, &upper_bound); uint32_t high = upper_bound; ParsedInternalKey mid_key; ParsedInternalKey parsed_target; if (!ParseInternalKey(target, &parsed_target)) { return Status::Corruption(Slice()); } // The key is between [low, high). Do a binary search between it. while (high - low > 1) { uint32_t mid = (high + low) / 2; uint32_t file_offset = GetFixed32Element(base_ptr, mid); size_t tmp; Status s = ReadKey(file_data_.data() + file_offset, &mid_key, &tmp); if (!s.ok()) { return s; } int cmp_result = internal_comparator_.Compare(mid_key, parsed_target); if (cmp_result < 0) { low = mid; } else { if (cmp_result == 0) { // Happen to have found the exact key or target is smaller than the // first key after base_offset. prefix_matched = true; *offset = file_offset; return Status::OK(); } else { high = mid; } } } // Both of the key at the position low or low+1 could share the same // prefix as target. We need to rule out one of them to avoid to go // to the wrong prefix. ParsedInternalKey low_key; size_t tmp; uint32_t low_key_offset = GetFixed32Element(base_ptr, low); Status s = ReadKey(file_data_.data() + low_key_offset, &low_key, &tmp); if (GetPrefix(low_key) == prefix) { prefix_matched = true; *offset = low_key_offset; } else if (low + 1 < upper_bound) { // There is possible a next prefix, return it prefix_matched = false; *offset = GetFixed32Element(base_ptr, low + 1); } else { // target is larger than a key of the last prefix in this bucket // but with a different prefix. Key does not exist. *offset = data_end_offset_; } return Status::OK(); } bool PlainTableReader::MatchBloom(uint32_t hash) const { return bloom_.get() == nullptr || bloom_->MayContainHash(hash); } Slice PlainTableReader::GetPrefix(const ParsedInternalKey& target) const { return GetPrefixFromUserKey(target.user_key); } Status PlainTableReader::ReadKey(const char* start, ParsedInternalKey* key, size_t* bytes_read) const { const char* key_ptr = nullptr; *bytes_read = 0; size_t user_key_size = 0; if (IsFixedLength()) { user_key_size = user_key_len_; key_ptr = start; } else { uint32_t tmp_size = 0; key_ptr = GetVarint32Ptr(start, file_data_.data() + data_end_offset_, &tmp_size); if (key_ptr == nullptr) { return Status::Corruption( "Unexpected EOF when reading the next key's size"); } user_key_size = (size_t)tmp_size; *bytes_read = key_ptr - start; } if (key_ptr + user_key_size + 1 >= file_data_.data() + data_end_offset_) { return Status::Corruption("Unexpected EOF when reading the next key"); } if (*(key_ptr + user_key_size) == PlainTableFactory::kValueTypeSeqId0) { // Special encoding for the row with seqID=0 key->user_key = Slice(key_ptr, user_key_size); key->sequence = 0; key->type = kTypeValue; *bytes_read += user_key_size + 1; } else { if (start + user_key_size + 8 >= file_data_.data() + data_end_offset_) { return Status::Corruption( "Unexpected EOF when reading internal bytes of the next key"); } if (!ParseInternalKey(Slice(key_ptr, user_key_size + 8), key)) { return Status::Corruption( Slice("Incorrect value type found when reading the next key")); } *bytes_read += user_key_size + 8; } return Status::OK(); } Status PlainTableReader::Next(uint32_t* offset, ParsedInternalKey* key, Slice* value) const { if (*offset == data_end_offset_) { *offset = data_end_offset_; return Status::OK(); } if (*offset > data_end_offset_) { return Status::Corruption("Offset is out of file size"); } const char* start = file_data_.data() + *offset; size_t bytes_for_key; Status s = ReadKey(start, key, &bytes_for_key); if (!s.ok()) { return s; } uint32_t value_size; const char* value_ptr = GetVarint32Ptr( start + bytes_for_key, file_data_.data() + data_end_offset_, &value_size); if (value_ptr == nullptr) { return Status::Corruption( "Unexpected EOF when reading the next value's size."); } *offset = *offset + (value_ptr - start) + value_size; if (*offset > data_end_offset_) { return Status::Corruption("Unexpected EOF when reading the next value. "); } *value = Slice(value_ptr, value_size); return Status::OK(); } Status PlainTableReader::Get(const ReadOptions& ro, const Slice& target, void* arg, bool (*saver)(void*, const ParsedInternalKey&, const Slice&, bool), void (*mark_key_may_exist)(void*)) { // Check bloom filter first. Slice prefix_slice; uint32_t prefix_hash; if (IsTotalOrderMode()) { // Match whole user key for bloom filter check. if (!MatchBloom(GetSliceHash(GetUserKey(target)))) { return Status::OK(); } // in total order mode, there is only one bucket 0, and we always use empty // prefix. prefix_slice = Slice(); prefix_hash = 0; } else { prefix_slice = GetPrefix(target); prefix_hash = GetSliceHash(prefix_slice); if (!MatchBloom(prefix_hash)) { return Status::OK(); } } uint32_t offset; bool prefix_match; Status s = GetOffset(target, prefix_slice, prefix_hash, prefix_match, &offset); if (!s.ok()) { return s; } ParsedInternalKey found_key; ParsedInternalKey parsed_target; if (!ParseInternalKey(target, &parsed_target)) { return Status::Corruption(Slice()); } Slice found_value; while (offset < data_end_offset_) { Status s = Next(&offset, &found_key, &found_value); if (!s.ok()) { return s; } if (!prefix_match) { // Need to verify prefix for the first key found if it is not yet // checked. if (GetPrefix(found_key) != prefix_slice) { return Status::OK(); } prefix_match = true; } if (internal_comparator_.Compare(found_key, parsed_target) >= 0) { if (!(*saver)(arg, found_key, found_value, true)) { break; } } } return Status::OK(); } uint64_t PlainTableReader::ApproximateOffsetOf(const Slice& key) { return 0; } PlainTableIterator::PlainTableIterator(PlainTableReader* table, bool use_prefix_seek) : table_(table), use_prefix_seek_(use_prefix_seek) { next_offset_ = offset_ = table_->data_end_offset_; } PlainTableIterator::~PlainTableIterator() { } bool PlainTableIterator::Valid() const { return offset_ < table_->data_end_offset_ && offset_ >= table_->data_start_offset_; } void PlainTableIterator::SeekToFirst() { next_offset_ = table_->data_start_offset_; if (next_offset_ >= table_->data_end_offset_) { next_offset_ = offset_ = table_->data_end_offset_; } else { Next(); } } void PlainTableIterator::SeekToLast() { assert(false); status_ = Status::NotSupported("SeekToLast() is not supported in PlainTable"); } void PlainTableIterator::Seek(const Slice& target) { // If the user doesn't set prefix seek option and we are not able to do a // total Seek(). assert failure. if (!use_prefix_seek_ && table_->index_size_ > 1) { assert(false); status_ = Status::NotSupported( "PlainTable cannot issue non-prefix seek unless in total order mode."); offset_ = next_offset_ = table_->data_end_offset_; return; } Slice prefix_slice = table_->GetPrefix(target); uint32_t prefix_hash = 0; // Bloom filter is ignored in total-order mode. if (!table_->IsTotalOrderMode()) { prefix_hash = GetSliceHash(prefix_slice); if (!table_->MatchBloom(prefix_hash)) { offset_ = next_offset_ = table_->data_end_offset_; return; } } bool prefix_match; status_ = table_->GetOffset(target, prefix_slice, prefix_hash, prefix_match, &next_offset_); if (!status_.ok()) { offset_ = next_offset_ = table_->data_end_offset_; return; } if (next_offset_ < table_-> data_end_offset_) { for (Next(); status_.ok() && Valid(); Next()) { if (!prefix_match) { // Need to verify the first key's prefix if (table_->GetPrefix(key()) != prefix_slice) { offset_ = next_offset_ = table_->data_end_offset_; break; } prefix_match = true; } if (table_->internal_comparator_.Compare(key(), target) >= 0) { break; } } } else { offset_ = table_->data_end_offset_; } } void PlainTableIterator::Next() { offset_ = next_offset_; if (offset_ < table_->data_end_offset_) { Slice tmp_slice; ParsedInternalKey parsed_key; status_ = table_->Next(&next_offset_, &parsed_key, &value_); if (status_.ok()) { // Make a copy in this case. TODO optimize. key_.SetInternalKey(parsed_key); } else { offset_ = next_offset_ = table_->data_end_offset_; } } } void PlainTableIterator::Prev() { assert(false); } Slice PlainTableIterator::key() const { assert(Valid()); return key_.GetKey(); } Slice PlainTableIterator::value() const { assert(Valid()); return value_; } Status PlainTableIterator::status() const { return status_; } } // namespace rocksdb #endif // ROCKSDB_LITE