// Copyright (c) 2021-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include #ifdef GFLAGS #include "db/wide/wide_column_serialization.h" #include "db_stress_tool/db_stress_common.h" #include "db_stress_tool/db_stress_shared_state.h" #include "db_stress_tool/expected_state.h" #include "rocksdb/trace_reader_writer.h" #include "rocksdb/trace_record_result.h" namespace ROCKSDB_NAMESPACE { void ExpectedValue::Put(bool pending) { if (pending) { SetPendingWrite(); } else { SetValueBase(NextValueBase()); ClearDeleted(); ClearPendingWrite(); } } bool ExpectedValue::Delete(bool pending) { if (!Exists()) { return false; } if (pending) { SetPendingDel(); } else { SetDelCounter(NextDelCounter()); SetDeleted(); ClearPendingDel(); } return true; } void ExpectedValue::SyncPut(uint32_t value_base) { assert(ExpectedValue::IsValueBaseValid(value_base)); SetValueBase(value_base); ClearDeleted(); ClearPendingWrite(); // This is needed in case crash happens during a pending delete of the key // assocated with this expected value ClearPendingDel(); } void ExpectedValue::SyncPendingPut() { Put(true /* pending */); } void ExpectedValue::SyncDelete() { Delete(false /* pending */); // This is needed in case crash happens during a pending write of the key // assocated with this expected value ClearPendingWrite(); } uint32_t ExpectedValue::GetFinalValueBase() const { return PendingWrite() ? NextValueBase() : GetValueBase(); } uint32_t ExpectedValue::GetFinalDelCounter() const { return PendingDelete() ? NextDelCounter() : GetDelCounter(); } bool ExpectedValueHelper::MustHaveNotExisted( ExpectedValue pre_read_expected_value, ExpectedValue post_read_expected_value) { const bool pre_read_expected_deleted = pre_read_expected_value.IsDeleted(); const uint32_t pre_read_expected_value_base = pre_read_expected_value.GetValueBase(); const uint32_t post_read_expected_final_value_base = post_read_expected_value.GetFinalValueBase(); const bool during_read_no_write_happened = (pre_read_expected_value_base == post_read_expected_final_value_base); return pre_read_expected_deleted && during_read_no_write_happened; } bool ExpectedValueHelper::MustHaveExisted( ExpectedValue pre_read_expected_value, ExpectedValue post_read_expected_value) { const bool pre_read_expected_not_deleted = !pre_read_expected_value.IsDeleted(); const uint32_t pre_read_expected_del_counter = pre_read_expected_value.GetDelCounter(); const uint32_t post_read_expected_final_del_counter = post_read_expected_value.GetFinalDelCounter(); const bool during_read_no_delete_happened = (pre_read_expected_del_counter == post_read_expected_final_del_counter); return pre_read_expected_not_deleted && during_read_no_delete_happened; } bool ExpectedValueHelper::InExpectedValueBaseRange( uint32_t value_base, ExpectedValue pre_read_expected_value, ExpectedValue post_read_expected_value) { assert(ExpectedValue::IsValueBaseValid(value_base)); const uint32_t pre_read_expected_value_base = pre_read_expected_value.GetValueBase(); const uint32_t post_read_expected_final_value_base = post_read_expected_value.GetFinalValueBase(); if (pre_read_expected_value_base <= post_read_expected_final_value_base) { const uint32_t lower_bound = pre_read_expected_value_base; const uint32_t upper_bound = post_read_expected_final_value_base; return lower_bound <= value_base && value_base <= upper_bound; } else { const uint32_t upper_bound_1 = post_read_expected_final_value_base; const uint32_t lower_bound_2 = pre_read_expected_value_base; const uint32_t upper_bound_2 = ExpectedValue::GetValueBaseMask(); return (value_base <= upper_bound_1) || (lower_bound_2 <= value_base && value_base <= upper_bound_2); } } ExpectedState::ExpectedState(size_t max_key, size_t num_column_families) : max_key_(max_key), num_column_families_(num_column_families), values_(nullptr) {} void ExpectedState::ClearColumnFamily(int cf) { const uint32_t del_mask = ExpectedValue::GetDelMask(); std::fill(&Value(cf, 0 /* key */), &Value(cf + 1, 0 /* key */), del_mask); } void ExpectedState::Precommit(int cf, int64_t key, const ExpectedValue& value) { Value(cf, key).store(value.Read()); // To prevent low-level instruction reordering that results // in db write happens before setting pending state in expected value std::atomic_thread_fence(std::memory_order_release); } PendingExpectedValue ExpectedState::PreparePut(int cf, int64_t key) { ExpectedValue expected_value = Load(cf, key); const ExpectedValue orig_expected_value = expected_value; expected_value.Put(true /* pending */); const ExpectedValue pending_expected_value = expected_value; expected_value.Put(false /* pending */); const ExpectedValue final_expected_value = expected_value; Precommit(cf, key, pending_expected_value); return PendingExpectedValue(&Value(cf, key), orig_expected_value, final_expected_value); } ExpectedValue ExpectedState::Get(int cf, int64_t key) { return Load(cf, key); } PendingExpectedValue ExpectedState::PrepareDelete(int cf, int64_t key, bool* prepared) { ExpectedValue expected_value = Load(cf, key); const ExpectedValue orig_expected_value = expected_value; bool res = expected_value.Delete(true /* pending */); if (prepared) { *prepared = res; } if (!res) { return PendingExpectedValue(&Value(cf, key), orig_expected_value, orig_expected_value); } const ExpectedValue pending_expected_value = expected_value; expected_value.Delete(false /* pending */); const ExpectedValue final_expected_value = expected_value; Precommit(cf, key, pending_expected_value); return PendingExpectedValue(&Value(cf, key), orig_expected_value, final_expected_value); } PendingExpectedValue ExpectedState::PrepareSingleDelete(int cf, int64_t key) { return PrepareDelete(cf, key); } std::vector ExpectedState::PrepareDeleteRange( int cf, int64_t begin_key, int64_t end_key) { std::vector pending_expected_values; for (int64_t key = begin_key; key < end_key; ++key) { bool prepared = false; PendingExpectedValue pending_expected_value = PrepareDelete(cf, key, &prepared); if (prepared) { pending_expected_values.push_back(pending_expected_value); } } return pending_expected_values; } bool ExpectedState::Exists(int cf, int64_t key) { return Load(cf, key).Exists(); } void ExpectedState::Reset() { const uint32_t del_mask = ExpectedValue::GetDelMask(); for (size_t i = 0; i < num_column_families_; ++i) { for (size_t j = 0; j < max_key_; ++j) { Value(static_cast(i), j).store(del_mask, std::memory_order_relaxed); } } } void ExpectedState::SyncPut(int cf, int64_t key, uint32_t value_base) { ExpectedValue expected_value = Load(cf, key); expected_value.SyncPut(value_base); Value(cf, key).store(expected_value.Read()); } void ExpectedState::SyncPendingPut(int cf, int64_t key) { ExpectedValue expected_value = Load(cf, key); expected_value.SyncPendingPut(); Value(cf, key).store(expected_value.Read()); } void ExpectedState::SyncDelete(int cf, int64_t key) { ExpectedValue expected_value = Load(cf, key); expected_value.SyncDelete(); Value(cf, key).store(expected_value.Read()); } void ExpectedState::SyncDeleteRange(int cf, int64_t begin_key, int64_t end_key) { for (int64_t key = begin_key; key < end_key; ++key) { SyncDelete(cf, key); } } FileExpectedState::FileExpectedState(std::string expected_state_file_path, size_t max_key, size_t num_column_families) : ExpectedState(max_key, num_column_families), expected_state_file_path_(expected_state_file_path) {} Status FileExpectedState::Open(bool create) { size_t expected_values_size = GetValuesLen(); Env* default_env = Env::Default(); Status status; if (create) { std::unique_ptr wfile; const EnvOptions soptions; status = default_env->NewWritableFile(expected_state_file_path_, &wfile, soptions); if (status.ok()) { std::string buf(expected_values_size, '\0'); status = wfile->Append(buf); } } if (status.ok()) { status = default_env->NewMemoryMappedFileBuffer( expected_state_file_path_, &expected_state_mmap_buffer_); } if (status.ok()) { assert(expected_state_mmap_buffer_->GetLen() == expected_values_size); values_ = static_cast*>( expected_state_mmap_buffer_->GetBase()); assert(values_ != nullptr); if (create) { Reset(); } } else { assert(values_ == nullptr); } return status; } AnonExpectedState::AnonExpectedState(size_t max_key, size_t num_column_families) : ExpectedState(max_key, num_column_families) {} #ifndef NDEBUG Status AnonExpectedState::Open(bool create) { #else Status AnonExpectedState::Open(bool /* create */) { #endif // AnonExpectedState only supports being freshly created. assert(create); values_allocation_.reset( new std::atomic[GetValuesLen() / sizeof(std::atomic)]); values_ = &values_allocation_[0]; Reset(); return Status::OK(); } ExpectedStateManager::ExpectedStateManager(size_t max_key, size_t num_column_families) : max_key_(max_key), num_column_families_(num_column_families), latest_(nullptr) {} ExpectedStateManager::~ExpectedStateManager() {} const std::string FileExpectedStateManager::kLatestBasename = "LATEST"; const std::string FileExpectedStateManager::kStateFilenameSuffix = ".state"; const std::string FileExpectedStateManager::kTraceFilenameSuffix = ".trace"; const std::string FileExpectedStateManager::kTempFilenamePrefix = "."; const std::string FileExpectedStateManager::kTempFilenameSuffix = ".tmp"; FileExpectedStateManager::FileExpectedStateManager( size_t max_key, size_t num_column_families, std::string expected_state_dir_path) : ExpectedStateManager(max_key, num_column_families), expected_state_dir_path_(std::move(expected_state_dir_path)) { assert(!expected_state_dir_path_.empty()); } Status FileExpectedStateManager::Open() { // Before doing anything, sync directory state with ours. That is, determine // `saved_seqno_`, and create any necessary missing files. std::vector expected_state_dir_children; Status s = Env::Default()->GetChildren(expected_state_dir_path_, &expected_state_dir_children); bool found_trace = false; if (s.ok()) { for (size_t i = 0; i < expected_state_dir_children.size(); ++i) { const auto& filename = expected_state_dir_children[i]; if (filename.size() >= kStateFilenameSuffix.size() && filename.rfind(kStateFilenameSuffix) == filename.size() - kStateFilenameSuffix.size() && filename.rfind(kLatestBasename, 0) == std::string::npos) { SequenceNumber found_seqno = ParseUint64( filename.substr(0, filename.size() - kStateFilenameSuffix.size())); if (saved_seqno_ == kMaxSequenceNumber || found_seqno > saved_seqno_) { saved_seqno_ = found_seqno; } } } // Check if crash happened after creating state file but before creating // trace file. if (saved_seqno_ != kMaxSequenceNumber) { std::string saved_seqno_trace_path = GetPathForFilename( std::to_string(saved_seqno_) + kTraceFilenameSuffix); Status exists_status = Env::Default()->FileExists(saved_seqno_trace_path); if (exists_status.ok()) { found_trace = true; } else if (exists_status.IsNotFound()) { found_trace = false; } else { s = exists_status; } } } if (s.ok() && saved_seqno_ != kMaxSequenceNumber && !found_trace) { // Create an empty trace file so later logic does not need to distinguish // missing vs. empty trace file. std::unique_ptr wfile; const EnvOptions soptions; std::string saved_seqno_trace_path = GetPathForFilename(std::to_string(saved_seqno_) + kTraceFilenameSuffix); s = Env::Default()->NewWritableFile(saved_seqno_trace_path, &wfile, soptions); } if (s.ok()) { s = Clean(); } std::string expected_state_file_path = GetPathForFilename(kLatestBasename + kStateFilenameSuffix); bool found = false; if (s.ok()) { Status exists_status = Env::Default()->FileExists(expected_state_file_path); if (exists_status.ok()) { found = true; } else if (exists_status.IsNotFound()) { found = false; } else { s = exists_status; } } if (!found) { // Initialize the file in a temp path and then rename it. That way, in case // this process is killed during setup, `Clean()` will take care of removing // the incomplete expected values file. std::string temp_expected_state_file_path = GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix); FileExpectedState temp_expected_state(temp_expected_state_file_path, max_key_, num_column_families_); if (s.ok()) { s = temp_expected_state.Open(true /* create */); } if (s.ok()) { s = Env::Default()->RenameFile(temp_expected_state_file_path, expected_state_file_path); } } if (s.ok()) { latest_.reset(new FileExpectedState(std::move(expected_state_file_path), max_key_, num_column_families_)); s = latest_->Open(false /* create */); } return s; } Status FileExpectedStateManager::SaveAtAndAfter(DB* db) { SequenceNumber seqno = db->GetLatestSequenceNumber(); std::string state_filename = std::to_string(seqno) + kStateFilenameSuffix; std::string state_file_temp_path = GetTempPathForFilename(state_filename); std::string state_file_path = GetPathForFilename(state_filename); std::string latest_file_path = GetPathForFilename(kLatestBasename + kStateFilenameSuffix); std::string trace_filename = std::to_string(seqno) + kTraceFilenameSuffix; std::string trace_file_path = GetPathForFilename(trace_filename); // Populate a tempfile and then rename it to atomically create ".state" // with contents from "LATEST.state" Status s = CopyFile(FileSystem::Default(), latest_file_path, state_file_temp_path, 0 /* size */, false /* use_fsync */, nullptr /* io_tracer */, Temperature::kUnknown); if (s.ok()) { s = FileSystem::Default()->RenameFile(state_file_temp_path, state_file_path, IOOptions(), nullptr /* dbg */); } SequenceNumber old_saved_seqno = 0; if (s.ok()) { old_saved_seqno = saved_seqno_; saved_seqno_ = seqno; } // If there is a crash now, i.e., after ".state" was created but before // ".trace" is created, it will be treated as if ".trace" were // present but empty. // Create ".trace" directly. It is initially empty so no need for // tempfile. std::unique_ptr trace_writer; if (s.ok()) { EnvOptions soptions; // Disable buffering so traces will not get stuck in application buffer. soptions.writable_file_max_buffer_size = 0; s = NewFileTraceWriter(Env::Default(), soptions, trace_file_path, &trace_writer); } if (s.ok()) { TraceOptions trace_opts; trace_opts.filter |= kTraceFilterGet; trace_opts.filter |= kTraceFilterMultiGet; trace_opts.filter |= kTraceFilterIteratorSeek; trace_opts.filter |= kTraceFilterIteratorSeekForPrev; trace_opts.preserve_write_order = true; s = db->StartTrace(trace_opts, std::move(trace_writer)); } // Delete old state/trace files. Deletion order does not matter since we only // delete after successfully saving new files, so old files will never be used // again, even if we crash. if (s.ok() && old_saved_seqno != kMaxSequenceNumber && old_saved_seqno != saved_seqno_) { s = Env::Default()->DeleteFile(GetPathForFilename( std::to_string(old_saved_seqno) + kStateFilenameSuffix)); } if (s.ok() && old_saved_seqno != kMaxSequenceNumber && old_saved_seqno != saved_seqno_) { s = Env::Default()->DeleteFile(GetPathForFilename( std::to_string(old_saved_seqno) + kTraceFilenameSuffix)); } return s; } bool FileExpectedStateManager::HasHistory() { return saved_seqno_ != kMaxSequenceNumber; } namespace { // An `ExpectedStateTraceRecordHandler` applies a configurable number of // write operation trace records to the configured expected state. It is used in // `FileExpectedStateManager::Restore()` to sync the expected state with the // DB's post-recovery state. class ExpectedStateTraceRecordHandler : public TraceRecord::Handler, public WriteBatch::Handler { public: ExpectedStateTraceRecordHandler(uint64_t max_write_ops, ExpectedState* state) : max_write_ops_(max_write_ops), state_(state), buffered_writes_(nullptr) {} ~ExpectedStateTraceRecordHandler() { assert(IsDone()); } // True if we have already reached the limit on write operations to apply. bool IsDone() { return num_write_ops_ == max_write_ops_; } Status Handle(const WriteQueryTraceRecord& record, std::unique_ptr* /* result */) override { if (IsDone()) { return Status::OK(); } WriteBatch batch(record.GetWriteBatchRep().ToString()); return batch.Iterate(this); } // Ignore reads. Status Handle(const GetQueryTraceRecord& /* record */, std::unique_ptr* /* result */) override { return Status::OK(); } // Ignore reads. Status Handle(const IteratorSeekQueryTraceRecord& /* record */, std::unique_ptr* /* result */) override { return Status::OK(); } // Ignore reads. Status Handle(const MultiGetQueryTraceRecord& /* record */, std::unique_ptr* /* result */) override { return Status::OK(); } // Below are the WriteBatch::Handler overrides. We could use a separate // object, but it's convenient and works to share state with the // `TraceRecord::Handler`. Status PutCF(uint32_t column_family_id, const Slice& key_with_ts, const Slice& value) override { Slice key = StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); uint64_t key_id; if (!GetIntVal(key.ToString(), &key_id)) { return Status::Corruption("unable to parse key", key.ToString()); } uint32_t value_base = GetValueBase(value); bool should_buffer_write = !(buffered_writes_ == nullptr); if (should_buffer_write) { return WriteBatchInternal::Put(buffered_writes_.get(), column_family_id, key, value); } state_->SyncPut(column_family_id, static_cast(key_id), value_base); ++num_write_ops_; return Status::OK(); } Status PutEntityCF(uint32_t column_family_id, const Slice& key_with_ts, const Slice& entity) override { Slice key = StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); uint64_t key_id = 0; if (!GetIntVal(key.ToString(), &key_id)) { return Status::Corruption("Unable to parse key", key.ToString()); } Slice entity_copy = entity; WideColumns columns; if (!WideColumnSerialization::Deserialize(entity_copy, columns).ok()) { return Status::Corruption("Unable to deserialize entity", entity.ToString(/* hex */ true)); } if (!VerifyWideColumns(columns)) { return Status::Corruption("Wide columns in entity inconsistent", entity.ToString(/* hex */ true)); } if (buffered_writes_) { return WriteBatchInternal::PutEntity(buffered_writes_.get(), column_family_id, key, columns); } assert(!columns.empty()); assert(columns.front().name() == kDefaultWideColumnName); const uint32_t value_base = GetValueBase(columns.front().value()); state_->SyncPut(column_family_id, static_cast(key_id), value_base); ++num_write_ops_; return Status::OK(); } Status DeleteCF(uint32_t column_family_id, const Slice& key_with_ts) override { Slice key = StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); uint64_t key_id; if (!GetIntVal(key.ToString(), &key_id)) { return Status::Corruption("unable to parse key", key.ToString()); } bool should_buffer_write = !(buffered_writes_ == nullptr); if (should_buffer_write) { return WriteBatchInternal::Delete(buffered_writes_.get(), column_family_id, key); } state_->SyncDelete(column_family_id, static_cast(key_id)); ++num_write_ops_; return Status::OK(); } Status SingleDeleteCF(uint32_t column_family_id, const Slice& key_with_ts) override { bool should_buffer_write = !(buffered_writes_ == nullptr); if (should_buffer_write) { Slice key = StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); Slice ts = ExtractTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); std::array key_with_ts_arr{{key, ts}}; return WriteBatchInternal::SingleDelete( buffered_writes_.get(), column_family_id, SliceParts(key_with_ts_arr.data(), 2)); } return DeleteCF(column_family_id, key_with_ts); } Status DeleteRangeCF(uint32_t column_family_id, const Slice& begin_key_with_ts, const Slice& end_key_with_ts) override { Slice begin_key = StripTimestampFromUserKey(begin_key_with_ts, FLAGS_user_timestamp_size); Slice end_key = StripTimestampFromUserKey(end_key_with_ts, FLAGS_user_timestamp_size); uint64_t begin_key_id, end_key_id; if (!GetIntVal(begin_key.ToString(), &begin_key_id)) { return Status::Corruption("unable to parse begin key", begin_key.ToString()); } if (!GetIntVal(end_key.ToString(), &end_key_id)) { return Status::Corruption("unable to parse end key", end_key.ToString()); } bool should_buffer_write = !(buffered_writes_ == nullptr); if (should_buffer_write) { return WriteBatchInternal::DeleteRange( buffered_writes_.get(), column_family_id, begin_key, end_key); } state_->SyncDeleteRange(column_family_id, static_cast(begin_key_id), static_cast(end_key_id)); ++num_write_ops_; return Status::OK(); } Status MergeCF(uint32_t column_family_id, const Slice& key_with_ts, const Slice& value) override { Slice key = StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size); bool should_buffer_write = !(buffered_writes_ == nullptr); if (should_buffer_write) { return WriteBatchInternal::Merge(buffered_writes_.get(), column_family_id, key, value); } return PutCF(column_family_id, key, value); } Status MarkBeginPrepare(bool = false) override { assert(!buffered_writes_); buffered_writes_.reset(new WriteBatch()); return Status::OK(); } Status MarkEndPrepare(const Slice& xid) override { assert(buffered_writes_); std::string xid_str = xid.ToString(); assert(xid_to_buffered_writes_.find(xid_str) == xid_to_buffered_writes_.end()); xid_to_buffered_writes_[xid_str].swap(buffered_writes_); buffered_writes_.reset(); return Status::OK(); } Status MarkCommit(const Slice& xid) override { std::string xid_str = xid.ToString(); assert(xid_to_buffered_writes_.find(xid_str) != xid_to_buffered_writes_.end()); assert(xid_to_buffered_writes_.at(xid_str)); Status s = xid_to_buffered_writes_.at(xid_str)->Iterate(this); xid_to_buffered_writes_.erase(xid_str); return s; } Status MarkRollback(const Slice& xid) override { std::string xid_str = xid.ToString(); assert(xid_to_buffered_writes_.find(xid_str) != xid_to_buffered_writes_.end()); assert(xid_to_buffered_writes_.at(xid_str)); xid_to_buffered_writes_.erase(xid_str); return Status::OK(); } private: uint64_t num_write_ops_ = 0; uint64_t max_write_ops_; ExpectedState* state_; std::unordered_map> xid_to_buffered_writes_; std::unique_ptr buffered_writes_; }; } // anonymous namespace Status FileExpectedStateManager::Restore(DB* db) { assert(HasHistory()); SequenceNumber seqno = db->GetLatestSequenceNumber(); if (seqno < saved_seqno_) { return Status::Corruption("DB is older than any restorable expected state"); } std::string state_filename = std::to_string(saved_seqno_) + kStateFilenameSuffix; std::string state_file_path = GetPathForFilename(state_filename); std::string latest_file_temp_path = GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix); std::string latest_file_path = GetPathForFilename(kLatestBasename + kStateFilenameSuffix); std::string trace_filename = std::to_string(saved_seqno_) + kTraceFilenameSuffix; std::string trace_file_path = GetPathForFilename(trace_filename); std::unique_ptr trace_reader; Status s = NewFileTraceReader(Env::Default(), EnvOptions(), trace_file_path, &trace_reader); if (s.ok()) { // We are going to replay on top of "`seqno`.state" to create a new // "LATEST.state". Start off by creating a tempfile so we can later make the // new "LATEST.state" appear atomically using `RenameFile()`. s = CopyFile(FileSystem::Default(), state_file_path, latest_file_temp_path, 0 /* size */, false /* use_fsync */, nullptr /* io_tracer */, Temperature::kUnknown); } { std::unique_ptr replayer; std::unique_ptr state; std::unique_ptr handler; if (s.ok()) { state.reset(new FileExpectedState(latest_file_temp_path, max_key_, num_column_families_)); s = state->Open(false /* create */); } if (s.ok()) { handler.reset(new ExpectedStateTraceRecordHandler(seqno - saved_seqno_, state.get())); // TODO(ajkr): An API limitation requires we provide `handles` although // they will be unused since we only use the replayer for reading records. // Just give a default CFH for now to satisfy the requirement. s = db->NewDefaultReplayer({db->DefaultColumnFamily()} /* handles */, std::move(trace_reader), &replayer); } if (s.ok()) { s = replayer->Prepare(); } for (;;) { std::unique_ptr record; s = replayer->Next(&record); if (!s.ok()) { break; } std::unique_ptr res; record->Accept(handler.get(), &res); } if (s.IsCorruption() && handler->IsDone()) { // There could be a corruption reading the tail record of the trace due to // `db_stress` crashing while writing it. It shouldn't matter as long as // we already found all the write ops we need to catch up the expected // state. s = Status::OK(); } if (s.IsIncomplete()) { // OK because `Status::Incomplete` is expected upon finishing all the // trace records. s = Status::OK(); } } if (s.ok()) { s = FileSystem::Default()->RenameFile(latest_file_temp_path, latest_file_path, IOOptions(), nullptr /* dbg */); } if (s.ok()) { latest_.reset(new FileExpectedState(latest_file_path, max_key_, num_column_families_)); s = latest_->Open(false /* create */); } // Delete old state/trace files. We must delete the state file first. // Otherwise, a crash-recovery immediately after deleting the trace file could // lead to `Restore()` unable to replay to `seqno`. if (s.ok()) { s = Env::Default()->DeleteFile(state_file_path); } if (s.ok()) { saved_seqno_ = kMaxSequenceNumber; s = Env::Default()->DeleteFile(trace_file_path); } return s; } Status FileExpectedStateManager::Clean() { std::vector expected_state_dir_children; Status s = Env::Default()->GetChildren(expected_state_dir_path_, &expected_state_dir_children); // An incomplete `Open()` or incomplete `SaveAtAndAfter()` could have left // behind invalid temporary files. An incomplete `SaveAtAndAfter()` could have // also left behind stale state/trace files. An incomplete `Restore()` could // have left behind stale trace files. for (size_t i = 0; s.ok() && i < expected_state_dir_children.size(); ++i) { const auto& filename = expected_state_dir_children[i]; if (filename.rfind(kTempFilenamePrefix, 0 /* pos */) == 0 && filename.size() >= kTempFilenameSuffix.size() && filename.rfind(kTempFilenameSuffix) == filename.size() - kTempFilenameSuffix.size()) { // Delete all temp files. s = Env::Default()->DeleteFile(GetPathForFilename(filename)); } else if (filename.size() >= kStateFilenameSuffix.size() && filename.rfind(kStateFilenameSuffix) == filename.size() - kStateFilenameSuffix.size() && filename.rfind(kLatestBasename, 0) == std::string::npos && ParseUint64(filename.substr( 0, filename.size() - kStateFilenameSuffix.size())) < saved_seqno_) { assert(saved_seqno_ != kMaxSequenceNumber); // Delete stale state files. s = Env::Default()->DeleteFile(GetPathForFilename(filename)); } else if (filename.size() >= kTraceFilenameSuffix.size() && filename.rfind(kTraceFilenameSuffix) == filename.size() - kTraceFilenameSuffix.size() && ParseUint64(filename.substr( 0, filename.size() - kTraceFilenameSuffix.size())) < saved_seqno_) { // Delete stale trace files. s = Env::Default()->DeleteFile(GetPathForFilename(filename)); } } return s; } std::string FileExpectedStateManager::GetTempPathForFilename( const std::string& filename) { assert(!expected_state_dir_path_.empty()); std::string expected_state_dir_path_slash = expected_state_dir_path_.back() == '/' ? expected_state_dir_path_ : expected_state_dir_path_ + "/"; return expected_state_dir_path_slash + kTempFilenamePrefix + filename + kTempFilenameSuffix; } std::string FileExpectedStateManager::GetPathForFilename( const std::string& filename) { assert(!expected_state_dir_path_.empty()); std::string expected_state_dir_path_slash = expected_state_dir_path_.back() == '/' ? expected_state_dir_path_ : expected_state_dir_path_ + "/"; return expected_state_dir_path_slash + filename; } AnonExpectedStateManager::AnonExpectedStateManager(size_t max_key, size_t num_column_families) : ExpectedStateManager(max_key, num_column_families) {} Status AnonExpectedStateManager::Open() { latest_.reset(new AnonExpectedState(max_key_, num_column_families_)); return latest_->Open(true /* create */); } } // namespace ROCKSDB_NAMESPACE #endif // GFLAGS