// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_iter.h" #include #include #include "db/filename.h" #include "db/dbformat.h" #include "rocksdb/env.h" #include "rocksdb/options.h" #include "rocksdb/iterator.h" #include "rocksdb/merge_operator.h" #include "port/port.h" #include "util/logging.h" #include "util/mutexlock.h" #include "util/perf_context_imp.h" namespace rocksdb { #if 0 static void DumpInternalIter(Iterator* iter) { for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey k; if (!ParseInternalKey(iter->key(), &k)) { fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str()); } else { fprintf(stderr, "@ '%s'\n", k.DebugString().c_str()); } } } #endif namespace { // Memtables and sstables that make the DB representation contain // (userkey,seq,type) => uservalue entries. DBIter // combines multiple entries for the same userkey found in the DB // representation into a single entry while accounting for sequence // numbers, deletion markers, overwrites, etc. class DBIter: public Iterator { public: // The following is grossly complicated. TODO: clean it up // Which direction is the iterator currently moving? // (1) When moving forward, the internal iterator is positioned at // the exact entry that yields this->key(), this->value() // (2) When moving backwards, the internal iterator is positioned // just before all entries whose user key == this->key(). enum Direction { kForward, kReverse }; DBIter(const std::string* dbname, Env* env, const Options& options, const Comparator* cmp, Iterator* iter, SequenceNumber s) : dbname_(dbname), env_(env), logger_(options.info_log), user_comparator_(cmp), user_merge_operator_(options.merge_operator.get()), iter_(iter), sequence_(s), direction_(kForward), valid_(false), current_entry_is_merged_(false), statistics_(options.statistics.get()) { RecordTick(statistics_, NO_ITERATORS, 1); max_skip_ = options.max_sequential_skip_in_iterations; } virtual ~DBIter() { RecordTick(statistics_, NO_ITERATORS, -1); delete iter_; } virtual bool Valid() const { return valid_; } virtual Slice key() const { assert(valid_); return saved_key_; } virtual Slice value() const { assert(valid_); return (direction_ == kForward && !current_entry_is_merged_) ? iter_->value() : saved_value_; } virtual Status status() const { if (status_.ok()) { return iter_->status(); } else { return status_; } } virtual void Next(); virtual void Prev(); virtual void Seek(const Slice& target); virtual void SeekToFirst(); virtual void SeekToLast(); private: inline void FindNextUserEntry(bool skipping); void FindNextUserEntryInternal(bool skipping); void FindPrevUserEntry(); bool ParseKey(ParsedInternalKey* key); void MergeValuesNewToOld(); inline void SaveKey(const Slice& k, std::string* dst) { dst->assign(k.data(), k.size()); } inline void ClearSavedValue() { if (saved_value_.capacity() > 1048576) { std::string empty; swap(empty, saved_value_); } else { saved_value_.clear(); } } const std::string* const dbname_; Env* const env_; shared_ptr logger_; const Comparator* const user_comparator_; const MergeOperator* const user_merge_operator_; Iterator* const iter_; SequenceNumber const sequence_; Status status_; std::string saved_key_; // == current key when direction_==kReverse std::string saved_value_; // == current raw value when direction_==kReverse std::string skip_key_; Direction direction_; bool valid_; bool current_entry_is_merged_; Statistics* statistics_; uint64_t max_skip_; // No copying allowed DBIter(const DBIter&); void operator=(const DBIter&); }; inline bool DBIter::ParseKey(ParsedInternalKey* ikey) { if (!ParseInternalKey(iter_->key(), ikey)) { status_ = Status::Corruption("corrupted internal key in DBIter"); Log(logger_, "corrupted internal key in DBIter: %s", iter_->key().ToString(true).c_str()); return false; } else { return true; } } void DBIter::Next() { assert(valid_); if (direction_ == kReverse) { // Switch directions? direction_ = kForward; // iter_ is pointing just before the entries for this->key(), // so advance into the range of entries for this->key() and then // use the normal skipping code below. if (!iter_->Valid()) { iter_->SeekToFirst(); } else { iter_->Next(); } if (!iter_->Valid()) { valid_ = false; saved_key_.clear(); return; } } // If the current value is merged, we might already hit end of iter_ if (!iter_->Valid()) { valid_ = false; return; } FindNextUserEntry(true /* skipping the current user key */); } // PRE: saved_key_ has the current user key if skipping // POST: saved_key_ should have the next user key if valid_, // if the current entry is a result of merge // current_entry_is_merged_ => true // saved_value_ => the merged value // // NOTE: In between, saved_key_ can point to a user key that has // a delete marker inline void DBIter::FindNextUserEntry(bool skipping) { StopWatchNano timer(env_, false); StartPerfTimer(&timer); FindNextUserEntryInternal(skipping); BumpPerfTime(&perf_context.find_next_user_entry_time, &timer); } // Actual implementation of DBIter::FindNextUserEntry() void DBIter::FindNextUserEntryInternal(bool skipping) { // Loop until we hit an acceptable entry to yield assert(iter_->Valid()); assert(direction_ == kForward); current_entry_is_merged_ = false; uint64_t num_skipped = 0; do { ParsedInternalKey ikey; if (ParseKey(&ikey) && ikey.sequence <= sequence_) { if (skipping && user_comparator_->Compare(ikey.user_key, saved_key_) <= 0) { num_skipped++; // skip this entry BumpPerfCount(&perf_context.internal_key_skipped_count); } else { skipping = false; switch (ikey.type) { case kTypeDeletion: // Arrange to skip all upcoming entries for this key since // they are hidden by this deletion. SaveKey(ikey.user_key, &saved_key_); skipping = true; num_skipped = 0; BumpPerfCount(&perf_context.internal_delete_skipped_count); break; case kTypeValue: valid_ = true; SaveKey(ikey.user_key, &saved_key_); return; case kTypeMerge: // By now, we are sure the current ikey is going to yield a value SaveKey(ikey.user_key, &saved_key_); current_entry_is_merged_ = true; valid_ = true; MergeValuesNewToOld(); // Go to a different state machine return; case kTypeLogData: assert(false); break; } } } // If we have sequentially iterated via numerous keys and still not // found the next user-key, then it is better to seek so that we can // avoid too many key comparisons. We seek to the last occurence of // our current key by looking for sequence number 0. if (skipping && num_skipped > max_skip_) { num_skipped = 0; std::string last_key; AppendInternalKey(&last_key, ParsedInternalKey(Slice(saved_key_), 0, kValueTypeForSeek)); iter_->Seek(last_key); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); } else { iter_->Next(); } } while (iter_->Valid()); valid_ = false; } // Merge values of the same user key starting from the current iter_ position // Scan from the newer entries to older entries. // PRE: iter_->key() points to the first merge type entry // saved_key_ stores the user key // POST: saved_value_ has the merged value for the user key // iter_ points to the next entry (or invalid) void DBIter::MergeValuesNewToOld() { if (!user_merge_operator_) { Log(logger_, "Options::merge_operator is null."); throw std::logic_error("DBIter::MergeValuesNewToOld() with" " Options::merge_operator null"); } // Start the merge process by pushing the first operand std::deque operands; operands.push_front(iter_->value().ToString()); std::string merge_result; // Temporary string to hold merge result later ParsedInternalKey ikey; for (iter_->Next(); iter_->Valid(); iter_->Next()) { if (!ParseKey(&ikey)) { // skip corrupted key continue; } if (user_comparator_->Compare(ikey.user_key, saved_key_) != 0) { // hit the next user key, stop right here break; } if (kTypeDeletion == ikey.type) { // hit a delete with the same user key, stop right here // iter_ is positioned after delete iter_->Next(); break; } if (kTypeValue == ikey.type) { // hit a put, merge the put value with operands and store the // final result in saved_value_. We are done! // ignore corruption if there is any. const Slice value = iter_->value(); user_merge_operator_->FullMerge(ikey.user_key, &value, operands, &saved_value_, logger_.get()); // iter_ is positioned after put iter_->Next(); return; } if (kTypeMerge == ikey.type) { // hit a merge, add the value as an operand and run associative merge. // when complete, add result to operands and continue. const Slice& value = iter_->value(); operands.push_front(value.ToString()); while(operands.size() >= 2) { // Call user associative-merge until it returns false if (user_merge_operator_->PartialMerge(ikey.user_key, Slice(operands[0]), Slice(operands[1]), &merge_result, logger_.get())) { operands.pop_front(); swap(operands.front(), merge_result); } else { // Associative merge returns false ==> stack the operands break; } } } } // we either exhausted all internal keys under this user key, or hit // a deletion marker. // feed null as the existing value to the merge operator, such that // client can differentiate this scenario and do things accordingly. user_merge_operator_->FullMerge(saved_key_, nullptr, operands, &saved_value_, logger_.get()); } void DBIter::Prev() { assert(valid_); // Throw an exception now if merge_operator is provided // TODO: support backward iteration if (user_merge_operator_) { Log(logger_, "Prev not supported yet if merge_operator is provided"); throw std::logic_error("DBIter::Prev backward iteration not supported" " if merge_operator is provided"); } if (direction_ == kForward) { // Switch directions? // iter_ is pointing at the current entry. Scan backwards until // the key changes so we can use the normal reverse scanning code. assert(iter_->Valid()); // Otherwise valid_ would have been false SaveKey(ExtractUserKey(iter_->key()), &saved_key_); while (true) { iter_->Prev(); if (!iter_->Valid()) { valid_ = false; saved_key_.clear(); ClearSavedValue(); return; } if (user_comparator_->Compare(ExtractUserKey(iter_->key()), saved_key_) < 0) { break; } } direction_ = kReverse; } FindPrevUserEntry(); } void DBIter::FindPrevUserEntry() { assert(direction_ == kReverse); uint64_t num_skipped = 0; ValueType value_type = kTypeDeletion; if (iter_->Valid()) { do { ParsedInternalKey ikey; bool saved_key_cleared = false; if (ParseKey(&ikey) && ikey.sequence <= sequence_) { if ((value_type != kTypeDeletion) && user_comparator_->Compare(ikey.user_key, saved_key_) < 0) { // We encountered a non-deleted value in entries for previous keys, break; } value_type = ikey.type; if (value_type == kTypeDeletion) { saved_key_.clear(); ClearSavedValue(); saved_key_cleared = true; } else { Slice raw_value = iter_->value(); if (saved_value_.capacity() > raw_value.size() + 1048576) { std::string empty; swap(empty, saved_value_); } SaveKey(ExtractUserKey(iter_->key()), &saved_key_); saved_value_.assign(raw_value.data(), raw_value.size()); } } num_skipped++; // If we have sequentially iterated via numerous keys and still not // found the prev user-key, then it is better to seek so that we can // avoid too many key comparisons. We seek to the first occurence of // our current key by looking for max sequence number. if (!saved_key_cleared && num_skipped > max_skip_) { num_skipped = 0; std::string last_key; AppendInternalKey(&last_key, ParsedInternalKey(Slice(saved_key_), kMaxSequenceNumber, kValueTypeForSeek)); iter_->Seek(last_key); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); } else { iter_->Prev(); } } while (iter_->Valid()); } if (value_type == kTypeDeletion) { // End valid_ = false; saved_key_.clear(); ClearSavedValue(); direction_ = kForward; } else { valid_ = true; } } void DBIter::Seek(const Slice& target) { saved_key_.clear(); AppendInternalKey( &saved_key_, ParsedInternalKey(target, sequence_, kValueTypeForSeek)); StopWatchNano internal_seek_timer(env_, false); StartPerfTimer(&internal_seek_timer); iter_->Seek(saved_key_); BumpPerfTime(&perf_context.seek_internal_seek_time, &internal_seek_timer); if (iter_->Valid()) { direction_ = kForward; ClearSavedValue(); FindNextUserEntry(false /*not skipping */); } else { valid_ = false; } } void DBIter::SeekToFirst() { direction_ = kForward; ClearSavedValue(); StopWatchNano internal_seek_timer(env_, false); StartPerfTimer(&internal_seek_timer); iter_->SeekToFirst(); BumpPerfTime(&perf_context.seek_internal_seek_time, &internal_seek_timer); if (iter_->Valid()) { FindNextUserEntry(false /* not skipping */); } else { valid_ = false; } } void DBIter::SeekToLast() { // Throw an exception for now if merge_operator is provided // TODO: support backward iteration if (user_merge_operator_) { Log(logger_, "SeekToLast not supported yet if merge_operator is provided"); throw std::logic_error("DBIter::SeekToLast: backward iteration not" " supported if merge_operator is provided"); } direction_ = kReverse; ClearSavedValue(); StopWatchNano internal_seek_timer(env_, false); StartPerfTimer(&internal_seek_timer); iter_->SeekToLast(); BumpPerfTime(&perf_context.seek_internal_seek_time, &internal_seek_timer); FindPrevUserEntry(); } } // anonymous namespace Iterator* NewDBIterator( const std::string* dbname, Env* env, const Options& options, const Comparator *user_key_comparator, Iterator* internal_iter, const SequenceNumber& sequence) { return new DBIter(dbname, env, options, user_key_comparator, internal_iter, sequence); } } // namespace rocksdb