// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/block_based/block_based_table_reader.h" #include #include #include #include #include #include #include "cache/simple_deleter.h" #include "db/dbformat.h" #include "db/pinned_iterators_manager.h" #include "file/file_prefetch_buffer.h" #include "file/random_access_file_reader.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/file_system.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "table/block_based/binary_search_index_reader.h" #include "table/block_based/block.h" #include "table/block_based/block_based_filter_block.h" #include "table/block_based/block_based_table_factory.h" #include "table/block_based/block_based_table_iterator.h" #include "table/block_based/block_prefix_index.h" #include "table/block_based/filter_block.h" #include "table/block_based/full_filter_block.h" #include "table/block_based/hash_index_reader.h" #include "table/block_based/partitioned_filter_block.h" #include "table/block_based/partitioned_index_reader.h" #include "table/block_fetcher.h" #include "table/format.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/meta_blocks.h" #include "table/multiget_context.h" #include "table/persistent_cache_helper.h" #include "table/sst_file_writer_collectors.h" #include "table/two_level_iterator.h" #include "monitoring/perf_context_imp.h" #include "test_util/sync_point.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "util/util.h" #include "util/xxhash.h" namespace ROCKSDB_NAMESPACE { extern const uint64_t kBlockBasedTableMagicNumber; extern const std::string kHashIndexPrefixesBlock; extern const std::string kHashIndexPrefixesMetadataBlock; typedef BlockBasedTable::IndexReader IndexReader; // Found that 256 KB readahead size provides the best performance, based on // experiments, for auto readahead. Experiment data is in PR #3282. const size_t BlockBasedTable::kMaxAutoReadaheadSize = 256 * 1024; BlockBasedTable::~BlockBasedTable() { delete rep_; } std::atomic BlockBasedTable::next_cache_key_id_(0); template class BlocklikeTraits; template <> class BlocklikeTraits { public: static BlockContents* Create(BlockContents&& contents, size_t /* read_amp_bytes_per_bit */, Statistics* /* statistics */, bool /* using_zstd */, const FilterPolicy* /* filter_policy */) { return new BlockContents(std::move(contents)); } static uint32_t GetNumRestarts(const BlockContents& /* contents */) { return 0; } }; template <> class BlocklikeTraits { public: static ParsedFullFilterBlock* Create(BlockContents&& contents, size_t /* read_amp_bytes_per_bit */, Statistics* /* statistics */, bool /* using_zstd */, const FilterPolicy* filter_policy) { return new ParsedFullFilterBlock(filter_policy, std::move(contents)); } static uint32_t GetNumRestarts(const ParsedFullFilterBlock& /* block */) { return 0; } }; template <> class BlocklikeTraits { public: static Block* Create(BlockContents&& contents, size_t read_amp_bytes_per_bit, Statistics* statistics, bool /* using_zstd */, const FilterPolicy* /* filter_policy */) { return new Block(std::move(contents), read_amp_bytes_per_bit, statistics); } static uint32_t GetNumRestarts(const Block& block) { return block.NumRestarts(); } }; template <> class BlocklikeTraits { public: static UncompressionDict* Create(BlockContents&& contents, size_t /* read_amp_bytes_per_bit */, Statistics* /* statistics */, bool using_zstd, const FilterPolicy* /* filter_policy */) { return new UncompressionDict(contents.data, std::move(contents.allocation), using_zstd); } static uint32_t GetNumRestarts(const UncompressionDict& /* dict */) { return 0; } }; namespace { // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // On failure return non-OK. // On success fill *result and return OK - caller owns *result // @param uncompression_dict Data for presetting the compression library's // dictionary. template Status ReadBlockFromFile( RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, std::unique_ptr* result, const ImmutableCFOptions& ioptions, bool do_uncompress, bool maybe_compressed, BlockType block_type, const UncompressionDict& uncompression_dict, const PersistentCacheOptions& cache_options, size_t read_amp_bytes_per_bit, MemoryAllocator* memory_allocator, bool for_compaction, bool using_zstd, const FilterPolicy* filter_policy) { assert(result); BlockContents contents; BlockFetcher block_fetcher( file, prefetch_buffer, footer, options, handle, &contents, ioptions, do_uncompress, maybe_compressed, block_type, uncompression_dict, cache_options, memory_allocator, nullptr, for_compaction); Status s = block_fetcher.ReadBlockContents(); if (s.ok()) { result->reset(BlocklikeTraits::Create( std::move(contents), read_amp_bytes_per_bit, ioptions.statistics, using_zstd, filter_policy)); } return s; } // Release the cached entry and decrement its ref count. // Do not force erase void ReleaseCachedEntry(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle, false /* force_erase */); } // For hash based index, return true if prefix_extractor and // prefix_extractor_block mismatch, false otherwise. This flag will be used // as total_order_seek via NewIndexIterator bool PrefixExtractorChanged(const TableProperties* table_properties, const SliceTransform* prefix_extractor) { // BlockBasedTableOptions::kHashSearch requires prefix_extractor to be set. // Turn off hash index in prefix_extractor is not set; if prefix_extractor // is set but prefix_extractor_block is not set, also disable hash index if (prefix_extractor == nullptr || table_properties == nullptr || table_properties->prefix_extractor_name.empty()) { return true; } // prefix_extractor and prefix_extractor_block are both non-empty if (table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) != 0) { return true; } else { return false; } } CacheAllocationPtr CopyBufferToHeap(MemoryAllocator* allocator, Slice& buf) { CacheAllocationPtr heap_buf; heap_buf = AllocateBlock(buf.size(), allocator); memcpy(heap_buf.get(), buf.data(), buf.size()); return heap_buf; } } // namespace void BlockBasedTable::UpdateCacheHitMetrics(BlockType block_type, GetContext* get_context, size_t usage) const { Statistics* const statistics = rep_->ioptions.statistics; PERF_COUNTER_ADD(block_cache_hit_count, 1); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, static_cast(rep_->level)); if (get_context) { ++get_context->get_context_stats_.num_cache_hit; get_context->get_context_stats_.num_cache_bytes_read += usage; } else { RecordTick(statistics, BLOCK_CACHE_HIT); RecordTick(statistics, BLOCK_CACHE_BYTES_READ, usage); } switch (block_type) { case BlockType::kFilter: PERF_COUNTER_ADD(block_cache_filter_hit_count, 1); if (get_context) { ++get_context->get_context_stats_.num_cache_filter_hit; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_HIT); } break; case BlockType::kCompressionDictionary: // TODO: introduce perf counter for compression dictionary hit count if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_hit; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_HIT); } break; case BlockType::kIndex: PERF_COUNTER_ADD(block_cache_index_hit_count, 1); if (get_context) { ++get_context->get_context_stats_.num_cache_index_hit; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_HIT); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_hit; } else { RecordTick(statistics, BLOCK_CACHE_DATA_HIT); } break; } } void BlockBasedTable::UpdateCacheMissMetrics(BlockType block_type, GetContext* get_context) const { Statistics* const statistics = rep_->ioptions.statistics; // TODO: introduce aggregate (not per-level) block cache miss count PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 1, static_cast(rep_->level)); if (get_context) { ++get_context->get_context_stats_.num_cache_miss; } else { RecordTick(statistics, BLOCK_CACHE_MISS); } // TODO: introduce perf counters for misses per block type switch (block_type) { case BlockType::kFilter: if (get_context) { ++get_context->get_context_stats_.num_cache_filter_miss; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_MISS); } break; case BlockType::kCompressionDictionary: if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_miss; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_MISS); } break; case BlockType::kIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_index_miss; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_MISS); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_miss; } else { RecordTick(statistics, BLOCK_CACHE_DATA_MISS); } break; } } void BlockBasedTable::UpdateCacheInsertionMetrics(BlockType block_type, GetContext* get_context, size_t usage) const { Statistics* const statistics = rep_->ioptions.statistics; // TODO: introduce perf counters for block cache insertions if (get_context) { ++get_context->get_context_stats_.num_cache_add; get_context->get_context_stats_.num_cache_bytes_write += usage; } else { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usage); } switch (block_type) { case BlockType::kFilter: if (get_context) { ++get_context->get_context_stats_.num_cache_filter_add; get_context->get_context_stats_.num_cache_filter_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_ADD); RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT, usage); } break; case BlockType::kCompressionDictionary: if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_add; get_context->get_context_stats_ .num_cache_compression_dict_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD); RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_BYTES_INSERT, usage); } break; case BlockType::kIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_index_add; get_context->get_context_stats_.num_cache_index_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, usage); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_add; get_context->get_context_stats_.num_cache_data_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_DATA_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, usage); } break; } } Cache::Handle* BlockBasedTable::GetEntryFromCache( Cache* block_cache, const Slice& key, BlockType block_type, GetContext* get_context) const { auto cache_handle = block_cache->Lookup(key, rep_->ioptions.statistics); if (cache_handle != nullptr) { UpdateCacheHitMetrics(block_type, get_context, block_cache->GetUsage(cache_handle)); } else { UpdateCacheMissMetrics(block_type, get_context); } return cache_handle; } // Helper function to setup the cache key's prefix for the Table. void BlockBasedTable::SetupCacheKeyPrefix(Rep* rep) { assert(kMaxCacheKeyPrefixSize >= 10); rep->cache_key_prefix_size = 0; rep->compressed_cache_key_prefix_size = 0; if (rep->table_options.block_cache != nullptr) { GenerateCachePrefix(rep->table_options.block_cache.get(), rep->file->file(), &rep->cache_key_prefix[0], &rep->cache_key_prefix_size); } if (rep->table_options.persistent_cache != nullptr) { GenerateCachePrefix(/*cache=*/nullptr, rep->file->file(), &rep->persistent_cache_key_prefix[0], &rep->persistent_cache_key_prefix_size); } if (rep->table_options.block_cache_compressed != nullptr) { GenerateCachePrefix(rep->table_options.block_cache_compressed.get(), rep->file->file(), &rep->compressed_cache_key_prefix[0], &rep->compressed_cache_key_prefix_size); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, FSRandomAccessFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (cc != nullptr && *size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, FSWritableFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (cc != nullptr && *size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } namespace { // Return True if table_properties has `user_prop_name` has a `true` value // or it doesn't contain this property (for backward compatible). bool IsFeatureSupported(const TableProperties& table_properties, const std::string& user_prop_name, Logger* info_log) { auto& props = table_properties.user_collected_properties; auto pos = props.find(user_prop_name); // Older version doesn't have this value set. Skip this check. if (pos != props.end()) { if (pos->second == kPropFalse) { return false; } else if (pos->second != kPropTrue) { ROCKS_LOG_WARN(info_log, "Property %s has invalidate value %s", user_prop_name.c_str(), pos->second.c_str()); } } return true; } // Caller has to ensure seqno is not nullptr. Status GetGlobalSequenceNumber(const TableProperties& table_properties, SequenceNumber largest_seqno, SequenceNumber* seqno) { const auto& props = table_properties.user_collected_properties; const auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion); const auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno); *seqno = kDisableGlobalSequenceNumber; if (version_pos == props.end()) { if (seqno_pos != props.end()) { std::array msg_buf; // This is not an external sst file, global_seqno is not supported. snprintf( msg_buf.data(), msg_buf.max_size(), "A non-external sst file have global seqno property with value %s", seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } uint32_t version = DecodeFixed32(version_pos->second.c_str()); if (version < 2) { if (seqno_pos != props.end() || version != 1) { std::array msg_buf; // This is a v1 external sst file, global_seqno is not supported. snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno " "property with value %s", version, seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } // Since we have a plan to deprecate global_seqno, we do not return failure // if seqno_pos == props.end(). We rely on version_pos to detect whether the // SST is external. SequenceNumber global_seqno(0); if (seqno_pos != props.end()) { global_seqno = DecodeFixed64(seqno_pos->second.c_str()); } // SstTableReader open table reader with kMaxSequenceNumber as largest_seqno // to denote it is unknown. if (largest_seqno < kMaxSequenceNumber) { if (global_seqno == 0) { global_seqno = largest_seqno; } if (global_seqno != largest_seqno) { std::array msg_buf; snprintf( msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %s, while largest seqno in the file is %llu", version, seqno_pos->second.c_str(), static_cast(largest_seqno)); return Status::Corruption(msg_buf.data()); } } *seqno = global_seqno; if (global_seqno > kMaxSequenceNumber) { std::array msg_buf; snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %llu, which is greater than kMaxSequenceNumber", version, static_cast(global_seqno)); return Status::Corruption(msg_buf.data()); } return Status::OK(); } } // namespace Slice BlockBasedTable::GetCacheKey(const char* cache_key_prefix, size_t cache_key_prefix_size, const BlockHandle& handle, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset()); return Slice(cache_key, static_cast(end - cache_key)); } Status BlockBasedTable::Open( const ImmutableCFOptions& ioptions, const EnvOptions& env_options, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, std::unique_ptr&& file, uint64_t file_size, std::unique_ptr* table_reader, const SliceTransform* prefix_extractor, const bool prefetch_index_and_filter_in_cache, const bool skip_filters, const int level, const bool immortal_table, const SequenceNumber largest_seqno, TailPrefetchStats* tail_prefetch_stats, BlockCacheTracer* const block_cache_tracer) { table_reader->reset(); Status s; Footer footer; std::unique_ptr prefetch_buffer; // prefetch both index and filters, down to all partitions const bool prefetch_all = prefetch_index_and_filter_in_cache || level == 0; const bool preload_all = !table_options.cache_index_and_filter_blocks; if (!ioptions.allow_mmap_reads) { s = PrefetchTail(file.get(), file_size, tail_prefetch_stats, prefetch_all, preload_all, &prefetch_buffer); } else { // Should not prefetch for mmap mode. prefetch_buffer.reset(new FilePrefetchBuffer( nullptr, 0, 0, false /* enable */, true /* track_min_offset */)); } // Read in the following order: // 1. Footer // 2. [metaindex block] // 3. [meta block: properties] // 4. [meta block: range deletion tombstone] // 5. [meta block: compression dictionary] // 6. [meta block: index] // 7. [meta block: filter] s = ReadFooterFromFile(file.get(), prefetch_buffer.get(), file_size, &footer, kBlockBasedTableMagicNumber); if (!s.ok()) { return s; } if (!BlockBasedTableSupportedVersion(footer.version())) { return Status::Corruption( "Unknown Footer version. Maybe this file was created with newer " "version of RocksDB?"); } // We've successfully read the footer. We are ready to serve requests. // Better not mutate rep_ after the creation. eg. internal_prefix_transform // raw pointer will be used to create HashIndexReader, whose reset may // access a dangling pointer. BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch}; Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options, internal_comparator, skip_filters, level, immortal_table); rep->file = std::move(file); rep->footer = footer; rep->hash_index_allow_collision = table_options.hash_index_allow_collision; // We need to wrap data with internal_prefix_transform to make sure it can // handle prefix correctly. if (prefix_extractor != nullptr) { rep->internal_prefix_transform.reset( new InternalKeySliceTransform(prefix_extractor)); } SetupCacheKeyPrefix(rep); std::unique_ptr new_table( new BlockBasedTable(rep, block_cache_tracer)); // page cache options rep->persistent_cache_options = PersistentCacheOptions(rep->table_options.persistent_cache, std::string(rep->persistent_cache_key_prefix, rep->persistent_cache_key_prefix_size), rep->ioptions.statistics); // Meta-blocks are not dictionary compressed. Explicitly set the dictionary // handle to null, otherwise it may be seen as uninitialized during the below // meta-block reads. rep->compression_dict_handle = BlockHandle::NullBlockHandle(); // Read metaindex std::unique_ptr metaindex; std::unique_ptr metaindex_iter; s = new_table->ReadMetaIndexBlock(prefetch_buffer.get(), &metaindex, &metaindex_iter); if (!s.ok()) { return s; } // Populates table_properties and some fields that depend on it, // such as index_type. s = new_table->ReadPropertiesBlock(prefetch_buffer.get(), metaindex_iter.get(), largest_seqno); if (!s.ok()) { return s; } s = new_table->ReadRangeDelBlock(prefetch_buffer.get(), metaindex_iter.get(), internal_comparator, &lookup_context); if (!s.ok()) { return s; } s = new_table->PrefetchIndexAndFilterBlocks( prefetch_buffer.get(), metaindex_iter.get(), new_table.get(), prefetch_all, table_options, level, &lookup_context); if (s.ok()) { // Update tail prefetch stats assert(prefetch_buffer.get() != nullptr); if (tail_prefetch_stats != nullptr) { assert(prefetch_buffer->min_offset_read() < file_size); tail_prefetch_stats->RecordEffectiveSize( static_cast(file_size) - prefetch_buffer->min_offset_read()); } *table_reader = std::move(new_table); } return s; } Status BlockBasedTable::PrefetchTail( RandomAccessFileReader* file, uint64_t file_size, TailPrefetchStats* tail_prefetch_stats, const bool prefetch_all, const bool preload_all, std::unique_ptr* prefetch_buffer) { size_t tail_prefetch_size = 0; if (tail_prefetch_stats != nullptr) { // Multiple threads may get a 0 (no history) when running in parallel, // but it will get cleared after the first of them finishes. tail_prefetch_size = tail_prefetch_stats->GetSuggestedPrefetchSize(); } if (tail_prefetch_size == 0) { // Before read footer, readahead backwards to prefetch data. Do more // readahead if we're going to read index/filter. // TODO: This may incorrectly select small readahead in case partitioned // index/filter is enabled and top-level partition pinning is enabled. // That's because we need to issue readahead before we read the properties, // at which point we don't yet know the index type. tail_prefetch_size = prefetch_all || preload_all ? 512 * 1024 : 4 * 1024; } size_t prefetch_off; size_t prefetch_len; if (file_size < tail_prefetch_size) { prefetch_off = 0; prefetch_len = static_cast(file_size); } else { prefetch_off = static_cast(file_size - tail_prefetch_size); prefetch_len = tail_prefetch_size; } TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::TailPrefetchLen", &tail_prefetch_size); Status s; // TODO should not have this special logic in the future. if (!file->use_direct_io()) { prefetch_buffer->reset(new FilePrefetchBuffer( nullptr, 0, 0, false /* enable */, true /* track_min_offset */)); s = file->Prefetch(prefetch_off, prefetch_len); } else { prefetch_buffer->reset(new FilePrefetchBuffer( nullptr, 0, 0, true /* enable */, true /* track_min_offset */)); s = (*prefetch_buffer)->Prefetch(file, prefetch_off, prefetch_len); } return s; } Status BlockBasedTable::TryReadPropertiesWithGlobalSeqno( FilePrefetchBuffer* prefetch_buffer, const Slice& handle_value, TableProperties** table_properties) { assert(table_properties != nullptr); // If this is an external SST file ingested with write_global_seqno set to // true, then we expect the checksum mismatch because checksum was written // by SstFileWriter, but its global seqno in the properties block may have // been changed during ingestion. In this case, we read the properties // block, copy it to a memory buffer, change the global seqno to its // original value, i.e. 0, and verify the checksum again. BlockHandle props_block_handle; CacheAllocationPtr tmp_buf; Status s = ReadProperties(handle_value, rep_->file.get(), prefetch_buffer, rep_->footer, rep_->ioptions, table_properties, false /* verify_checksum */, &props_block_handle, &tmp_buf, false /* compression_type_missing */, nullptr /* memory_allocator */); if (s.ok() && tmp_buf) { const auto seqno_pos_iter = (*table_properties) ->properties_offsets.find( ExternalSstFilePropertyNames::kGlobalSeqno); size_t block_size = static_cast(props_block_handle.size()); if (seqno_pos_iter != (*table_properties)->properties_offsets.end()) { uint64_t global_seqno_offset = seqno_pos_iter->second; EncodeFixed64( tmp_buf.get() + global_seqno_offset - props_block_handle.offset(), 0); } uint32_t value = DecodeFixed32(tmp_buf.get() + block_size + 1); s = ROCKSDB_NAMESPACE::VerifyChecksum(rep_->footer.checksum(), tmp_buf.get(), block_size + 1, value); } return s; } Status BlockBasedTable::ReadPropertiesBlock( FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const SequenceNumber largest_seqno) { bool found_properties_block = true; Status s; s = SeekToPropertiesBlock(meta_iter, &found_properties_block); if (!s.ok()) { ROCKS_LOG_WARN(rep_->ioptions.info_log, "Error when seeking to properties block from file: %s", s.ToString().c_str()); } else if (found_properties_block) { s = meta_iter->status(); TableProperties* table_properties = nullptr; if (s.ok()) { s = ReadProperties( meta_iter->value(), rep_->file.get(), prefetch_buffer, rep_->footer, rep_->ioptions, &table_properties, true /* verify_checksum */, nullptr /* ret_block_handle */, nullptr /* ret_block_contents */, false /* compression_type_missing */, nullptr /* memory_allocator */); } if (s.IsCorruption()) { s = TryReadPropertiesWithGlobalSeqno(prefetch_buffer, meta_iter->value(), &table_properties); } std::unique_ptr props_guard; if (table_properties != nullptr) { props_guard.reset(table_properties); } if (!s.ok()) { ROCKS_LOG_WARN(rep_->ioptions.info_log, "Encountered error while reading data from properties " "block %s", s.ToString().c_str()); } else { assert(table_properties != nullptr); rep_->table_properties.reset(props_guard.release()); rep_->blocks_maybe_compressed = rep_->table_properties->compression_name != CompressionTypeToString(kNoCompression); rep_->blocks_definitely_zstd_compressed = (rep_->table_properties->compression_name == CompressionTypeToString(kZSTD) || rep_->table_properties->compression_name == CompressionTypeToString(kZSTDNotFinalCompression)); } } else { ROCKS_LOG_ERROR(rep_->ioptions.info_log, "Cannot find Properties block from file."); } #ifndef ROCKSDB_LITE if (rep_->table_properties) { ParseSliceTransform(rep_->table_properties->prefix_extractor_name, &(rep_->table_prefix_extractor)); } #endif // ROCKSDB_LITE // Read the table properties, if provided. if (rep_->table_properties) { rep_->whole_key_filtering &= IsFeatureSupported(*(rep_->table_properties), BlockBasedTablePropertyNames::kWholeKeyFiltering, rep_->ioptions.info_log); rep_->prefix_filtering &= IsFeatureSupported(*(rep_->table_properties), BlockBasedTablePropertyNames::kPrefixFiltering, rep_->ioptions.info_log); rep_->index_key_includes_seq = rep_->table_properties->index_key_is_user_key == 0; rep_->index_value_is_full = rep_->table_properties->index_value_is_delta_encoded == 0; // Update index_type with the true type. // If table properties don't contain index type, we assume that the table // is in very old format and has kBinarySearch index type. auto& props = rep_->table_properties->user_collected_properties; auto pos = props.find(BlockBasedTablePropertyNames::kIndexType); if (pos != props.end()) { rep_->index_type = static_cast( DecodeFixed32(pos->second.c_str())); } rep_->index_has_first_key = rep_->index_type == BlockBasedTableOptions::kBinarySearchWithFirstKey; s = GetGlobalSequenceNumber(*(rep_->table_properties), largest_seqno, &(rep_->global_seqno)); if (!s.ok()) { ROCKS_LOG_ERROR(rep_->ioptions.info_log, "%s", s.ToString().c_str()); } } return s; } Status BlockBasedTable::ReadRangeDelBlock( FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const InternalKeyComparator& internal_comparator, BlockCacheLookupContext* lookup_context) { Status s; bool found_range_del_block; BlockHandle range_del_handle; s = SeekToRangeDelBlock(meta_iter, &found_range_del_block, &range_del_handle); if (!s.ok()) { ROCKS_LOG_WARN( rep_->ioptions.info_log, "Error when seeking to range delete tombstones block from file: %s", s.ToString().c_str()); } else if (found_range_del_block && !range_del_handle.IsNull()) { ReadOptions read_options; std::unique_ptr iter(NewDataBlockIterator( read_options, range_del_handle, /*input_iter=*/nullptr, BlockType::kRangeDeletion, /*get_context=*/nullptr, lookup_context, Status(), prefetch_buffer)); assert(iter != nullptr); s = iter->status(); if (!s.ok()) { ROCKS_LOG_WARN( rep_->ioptions.info_log, "Encountered error while reading data from range del block %s", s.ToString().c_str()); } else { rep_->fragmented_range_dels = std::make_shared(std::move(iter), internal_comparator); } } return s; } Status BlockBasedTable::PrefetchIndexAndFilterBlocks( FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, BlockBasedTable* new_table, bool prefetch_all, const BlockBasedTableOptions& table_options, const int level, BlockCacheLookupContext* lookup_context) { Status s; // Find filter handle and filter type if (rep_->filter_policy) { for (auto filter_type : {Rep::FilterType::kFullFilter, Rep::FilterType::kPartitionedFilter, Rep::FilterType::kBlockFilter}) { std::string prefix; switch (filter_type) { case Rep::FilterType::kFullFilter: prefix = kFullFilterBlockPrefix; break; case Rep::FilterType::kPartitionedFilter: prefix = kPartitionedFilterBlockPrefix; break; case Rep::FilterType::kBlockFilter: prefix = kFilterBlockPrefix; break; default: assert(0); } std::string filter_block_key = prefix; filter_block_key.append(rep_->filter_policy->Name()); if (FindMetaBlock(meta_iter, filter_block_key, &rep_->filter_handle) .ok()) { rep_->filter_type = filter_type; break; } } } // Find compression dictionary handle bool found_compression_dict = false; s = SeekToCompressionDictBlock(meta_iter, &found_compression_dict, &rep_->compression_dict_handle); if (!s.ok()) { return s; } BlockBasedTableOptions::IndexType index_type = rep_->index_type; const bool use_cache = table_options.cache_index_and_filter_blocks; // pin both index and filters, down to all partitions const bool pin_all = rep_->table_options.pin_l0_filter_and_index_blocks_in_cache && level == 0; // prefetch the first level of index const bool prefetch_index = prefetch_all || (table_options.pin_top_level_index_and_filter && index_type == BlockBasedTableOptions::kTwoLevelIndexSearch); // pin the first level of index const bool pin_index = pin_all || (table_options.pin_top_level_index_and_filter && index_type == BlockBasedTableOptions::kTwoLevelIndexSearch); std::unique_ptr index_reader; s = new_table->CreateIndexReader(prefetch_buffer, meta_iter, use_cache, prefetch_index, pin_index, lookup_context, &index_reader); if (!s.ok()) { return s; } rep_->index_reader = std::move(index_reader); // The partitions of partitioned index are always stored in cache. They // are hence follow the configuration for pin and prefetch regardless of // the value of cache_index_and_filter_blocks if (prefetch_all) { rep_->index_reader->CacheDependencies(pin_all); } // prefetch the first level of filter const bool prefetch_filter = prefetch_all || (table_options.pin_top_level_index_and_filter && rep_->filter_type == Rep::FilterType::kPartitionedFilter); // Partition fitlers cannot be enabled without partition indexes assert(!prefetch_filter || prefetch_index); // pin the first level of filter const bool pin_filter = pin_all || (table_options.pin_top_level_index_and_filter && rep_->filter_type == Rep::FilterType::kPartitionedFilter); if (rep_->filter_policy) { auto filter = new_table->CreateFilterBlockReader( prefetch_buffer, use_cache, prefetch_filter, pin_filter, lookup_context); if (filter) { // Refer to the comment above about paritioned indexes always being cached if (prefetch_all) { filter->CacheDependencies(pin_all); } rep_->filter = std::move(filter); } } if (!rep_->compression_dict_handle.IsNull()) { std::unique_ptr uncompression_dict_reader; s = UncompressionDictReader::Create(this, prefetch_buffer, use_cache, prefetch_all, pin_all, lookup_context, &uncompression_dict_reader); if (!s.ok()) { return s; } rep_->uncompression_dict_reader = std::move(uncompression_dict_reader); } assert(s.ok()); return s; } void BlockBasedTable::SetupForCompaction() { switch (rep_->ioptions.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->file()->Hint(FSRandomAccessFile::kNormal); break; case Options::SEQUENTIAL: rep_->file->file()->Hint(FSRandomAccessFile::kSequential); break; case Options::WILLNEED: rep_->file->file()->Hint(FSRandomAccessFile::kWillNeed); break; default: assert(false); } } std::shared_ptr BlockBasedTable::GetTableProperties() const { return rep_->table_properties; } size_t BlockBasedTable::ApproximateMemoryUsage() const { size_t usage = 0; if (rep_->filter) { usage += rep_->filter->ApproximateMemoryUsage(); } if (rep_->index_reader) { usage += rep_->index_reader->ApproximateMemoryUsage(); } if (rep_->uncompression_dict_reader) { usage += rep_->uncompression_dict_reader->ApproximateMemoryUsage(); } return usage; } // Load the meta-index-block from the file. On success, return the loaded // metaindex // block and its iterator. Status BlockBasedTable::ReadMetaIndexBlock( FilePrefetchBuffer* prefetch_buffer, std::unique_ptr* metaindex_block, std::unique_ptr* iter) { // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. std::unique_ptr metaindex; Status s = ReadBlockFromFile( rep_->file.get(), prefetch_buffer, rep_->footer, ReadOptions(), rep_->footer.metaindex_handle(), &metaindex, rep_->ioptions, true /* decompress */, true /*maybe_compressed*/, BlockType::kMetaIndex, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options, 0 /* read_amp_bytes_per_bit */, GetMemoryAllocator(rep_->table_options), false /* for_compaction */, rep_->blocks_definitely_zstd_compressed, nullptr /* filter_policy */); if (!s.ok()) { ROCKS_LOG_ERROR(rep_->ioptions.info_log, "Encountered error while reading data from properties" " block %s", s.ToString().c_str()); return s; } *metaindex_block = std::move(metaindex); // meta block uses bytewise comparator. iter->reset(metaindex_block->get()->NewDataIterator( BytewiseComparator(), BytewiseComparator(), kDisableGlobalSequenceNumber)); return Status::OK(); } template Status BlockBasedTable::GetDataBlockFromCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, const ReadOptions& read_options, CachableEntry* block, const UncompressionDict& uncompression_dict, BlockType block_type, GetContext* get_context) const { const size_t read_amp_bytes_per_bit = block_type == BlockType::kData ? rep_->table_options.read_amp_bytes_per_bit : 0; assert(block); assert(block->IsEmpty()); Status s; BlockContents* compressed_block = nullptr; Cache::Handle* block_cache_compressed_handle = nullptr; // Lookup uncompressed cache first if (block_cache != nullptr) { auto cache_handle = GetEntryFromCache(block_cache, block_cache_key, block_type, get_context); if (cache_handle != nullptr) { block->SetCachedValue( reinterpret_cast(block_cache->Value(cache_handle)), block_cache, cache_handle); return s; } } // If not found, search from the compressed block cache. assert(block->IsEmpty()); if (block_cache_compressed == nullptr) { return s; } assert(!compressed_block_cache_key.empty()); block_cache_compressed_handle = block_cache_compressed->Lookup(compressed_block_cache_key); Statistics* statistics = rep_->ioptions.statistics; // if we found in the compressed cache, then uncompress and insert into // uncompressed cache if (block_cache_compressed_handle == nullptr) { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS); return s; } // found compressed block RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT); compressed_block = reinterpret_cast( block_cache_compressed->Value(block_cache_compressed_handle)); CompressionType compression_type = compressed_block->get_compression_type(); assert(compression_type != kNoCompression); // Retrieve the uncompressed contents into a new buffer BlockContents contents; UncompressionContext context(compression_type); UncompressionInfo info(context, uncompression_dict, compression_type); s = UncompressBlockContents( info, compressed_block->data.data(), compressed_block->data.size(), &contents, rep_->table_options.format_version, rep_->ioptions, GetMemoryAllocator(rep_->table_options)); // Insert uncompressed block into block cache if (s.ok()) { std::unique_ptr block_holder( BlocklikeTraits::Create( std::move(contents), read_amp_bytes_per_bit, statistics, rep_->blocks_definitely_zstd_compressed, rep_->table_options.filter_policy.get())); // uncompressed block if (block_cache != nullptr && block_holder->own_bytes() && read_options.fill_cache) { size_t charge = block_holder->ApproximateMemoryUsage(); Cache::Handle* cache_handle = nullptr; s = block_cache->Insert(block_cache_key, block_holder.get(), charge, SimpleDeleter::GetInstance(), &cache_handle); if (s.ok()) { assert(cache_handle != nullptr); block->SetCachedValue(block_holder.release(), block_cache, cache_handle); UpdateCacheInsertionMetrics(block_type, get_context, charge); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); } } else { block->SetOwnedValue(block_holder.release()); } } // Release hold on compressed cache entry block_cache_compressed->Release(block_cache_compressed_handle); return s; } template Status BlockBasedTable::PutDataBlockToCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, CachableEntry* cached_block, BlockContents* raw_block_contents, CompressionType raw_block_comp_type, const UncompressionDict& uncompression_dict, MemoryAllocator* memory_allocator, BlockType block_type, GetContext* get_context) const { const ImmutableCFOptions& ioptions = rep_->ioptions; const uint32_t format_version = rep_->table_options.format_version; const size_t read_amp_bytes_per_bit = block_type == BlockType::kData ? rep_->table_options.read_amp_bytes_per_bit : 0; const Cache::Priority priority = rep_->table_options.cache_index_and_filter_blocks_with_high_priority && (block_type == BlockType::kFilter || block_type == BlockType::kCompressionDictionary || block_type == BlockType::kIndex) ? Cache::Priority::HIGH : Cache::Priority::LOW; assert(cached_block); assert(cached_block->IsEmpty()); Status s; Statistics* statistics = ioptions.statistics; std::unique_ptr block_holder; if (raw_block_comp_type != kNoCompression) { // Retrieve the uncompressed contents into a new buffer BlockContents uncompressed_block_contents; UncompressionContext context(raw_block_comp_type); UncompressionInfo info(context, uncompression_dict, raw_block_comp_type); s = UncompressBlockContents(info, raw_block_contents->data.data(), raw_block_contents->data.size(), &uncompressed_block_contents, format_version, ioptions, memory_allocator); if (!s.ok()) { return s; } block_holder.reset(BlocklikeTraits::Create( std::move(uncompressed_block_contents), read_amp_bytes_per_bit, statistics, rep_->blocks_definitely_zstd_compressed, rep_->table_options.filter_policy.get())); } else { block_holder.reset(BlocklikeTraits::Create( std::move(*raw_block_contents), read_amp_bytes_per_bit, statistics, rep_->blocks_definitely_zstd_compressed, rep_->table_options.filter_policy.get())); } // Insert compressed block into compressed block cache. // Release the hold on the compressed cache entry immediately. if (block_cache_compressed != nullptr && raw_block_comp_type != kNoCompression && raw_block_contents != nullptr && raw_block_contents->own_bytes()) { #ifndef NDEBUG assert(raw_block_contents->is_raw_block); #endif // NDEBUG // We cannot directly put raw_block_contents because this could point to // an object in the stack. BlockContents* block_cont_for_comp_cache = new BlockContents(std::move(*raw_block_contents)); s = block_cache_compressed->Insert( compressed_block_cache_key, block_cont_for_comp_cache, block_cont_for_comp_cache->ApproximateMemoryUsage(), SimpleDeleter::GetInstance()); if (s.ok()) { // Avoid the following code to delete this cached block. RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD); } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD_FAILURES); delete block_cont_for_comp_cache; } } // insert into uncompressed block cache if (block_cache != nullptr && block_holder->own_bytes()) { size_t charge = block_holder->ApproximateMemoryUsage(); Cache::Handle* cache_handle = nullptr; s = block_cache->Insert(block_cache_key, block_holder.get(), charge, SimpleDeleter::GetInstance(), &cache_handle, priority); if (s.ok()) { assert(cache_handle != nullptr); cached_block->SetCachedValue(block_holder.release(), block_cache, cache_handle); UpdateCacheInsertionMetrics(block_type, get_context, charge); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); } } else { cached_block->SetOwnedValue(block_holder.release()); } return s; } std::unique_ptr BlockBasedTable::CreateFilterBlockReader( FilePrefetchBuffer* prefetch_buffer, bool use_cache, bool prefetch, bool pin, BlockCacheLookupContext* lookup_context) { auto& rep = rep_; auto filter_type = rep->filter_type; if (filter_type == Rep::FilterType::kNoFilter) { return std::unique_ptr(); } assert(rep->filter_policy); switch (filter_type) { case Rep::FilterType::kPartitionedFilter: return PartitionedFilterBlockReader::Create( this, prefetch_buffer, use_cache, prefetch, pin, lookup_context); case Rep::FilterType::kBlockFilter: return BlockBasedFilterBlockReader::Create( this, prefetch_buffer, use_cache, prefetch, pin, lookup_context); case Rep::FilterType::kFullFilter: return FullFilterBlockReader::Create(this, prefetch_buffer, use_cache, prefetch, pin, lookup_context); default: // filter_type is either kNoFilter (exited the function at the first if), // or it must be covered in this switch block assert(false); return std::unique_ptr(); } } // disable_prefix_seek should be set to true when prefix_extractor found in SST // differs from the one in mutable_cf_options and index type is HashBasedIndex InternalIteratorBase* BlockBasedTable::NewIndexIterator( const ReadOptions& read_options, bool disable_prefix_seek, IndexBlockIter* input_iter, GetContext* get_context, BlockCacheLookupContext* lookup_context) const { assert(rep_ != nullptr); assert(rep_->index_reader != nullptr); // We don't return pinned data from index blocks, so no need // to set `block_contents_pinned`. return rep_->index_reader->NewIterator(read_options, disable_prefix_seek, input_iter, get_context, lookup_context); } template <> DataBlockIter* BlockBasedTable::InitBlockIterator( const Rep* rep, Block* block, BlockType block_type, DataBlockIter* input_iter, bool block_contents_pinned) { return block->NewDataIterator( &rep->internal_comparator, rep->internal_comparator.user_comparator(), rep->get_global_seqno(block_type), input_iter, rep->ioptions.statistics, block_contents_pinned); } template <> IndexBlockIter* BlockBasedTable::InitBlockIterator( const Rep* rep, Block* block, BlockType block_type, IndexBlockIter* input_iter, bool block_contents_pinned) { return block->NewIndexIterator( &rep->internal_comparator, rep->internal_comparator.user_comparator(), rep->get_global_seqno(block_type), input_iter, rep->ioptions.statistics, /* total_order_seek */ true, rep->index_has_first_key, rep->index_key_includes_seq, rep->index_value_is_full, block_contents_pinned); } // If contents is nullptr, this function looks up the block caches for the // data block referenced by handle, and read the block from disk if necessary. // If contents is non-null, it skips the cache lookup and disk read, since // the caller has already read it. In both cases, if ro.fill_cache is true, // it inserts the block into the block cache. template Status BlockBasedTable::MaybeReadBlockAndLoadToCache( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, BlockContents* contents) const { assert(block_entry != nullptr); const bool no_io = (ro.read_tier == kBlockCacheTier); Cache* block_cache = rep_->table_options.block_cache.get(); // No point to cache compressed blocks if it never goes away Cache* block_cache_compressed = rep_->immortal_table ? nullptr : rep_->table_options.block_cache_compressed.get(); // First, try to get the block from the cache // // If either block cache is enabled, we'll try to read from it. Status s; char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; char compressed_cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice key /* key to the block cache */; Slice ckey /* key to the compressed block cache */; bool is_cache_hit = false; if (block_cache != nullptr || block_cache_compressed != nullptr) { // create key for block cache if (block_cache != nullptr) { key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, handle, cache_key); } if (block_cache_compressed != nullptr) { ckey = GetCacheKey(rep_->compressed_cache_key_prefix, rep_->compressed_cache_key_prefix_size, handle, compressed_cache_key); } if (!contents) { s = GetDataBlockFromCache(key, ckey, block_cache, block_cache_compressed, ro, block_entry, uncompression_dict, block_type, get_context); if (block_entry->GetValue()) { // TODO(haoyu): Differentiate cache hit on uncompressed block cache and // compressed block cache. is_cache_hit = true; } } // Can't find the block from the cache. If I/O is allowed, read from the // file. if (block_entry->GetValue() == nullptr && !no_io && ro.fill_cache) { Statistics* statistics = rep_->ioptions.statistics; const bool maybe_compressed = block_type != BlockType::kFilter && block_type != BlockType::kCompressionDictionary && rep_->blocks_maybe_compressed; const bool do_uncompress = maybe_compressed && !block_cache_compressed; CompressionType raw_block_comp_type; BlockContents raw_block_contents; if (!contents) { StopWatch sw(rep_->ioptions.env, statistics, READ_BLOCK_GET_MICROS); BlockFetcher block_fetcher( rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle, &raw_block_contents, rep_->ioptions, do_uncompress, maybe_compressed, block_type, uncompression_dict, rep_->persistent_cache_options, GetMemoryAllocator(rep_->table_options), GetMemoryAllocatorForCompressedBlock(rep_->table_options)); s = block_fetcher.ReadBlockContents(); raw_block_comp_type = block_fetcher.get_compression_type(); contents = &raw_block_contents; } else { raw_block_comp_type = contents->get_compression_type(); } if (s.ok()) { // If filling cache is allowed and a cache is configured, try to put the // block to the cache. s = PutDataBlockToCache( key, ckey, block_cache, block_cache_compressed, block_entry, contents, raw_block_comp_type, uncompression_dict, GetMemoryAllocator(rep_->table_options), block_type, get_context); } } } // Fill lookup_context. if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled() && lookup_context) { size_t usage = 0; uint64_t nkeys = 0; if (block_entry->GetValue()) { // Approximate the number of keys in the block using restarts. nkeys = rep_->table_options.block_restart_interval * BlocklikeTraits::GetNumRestarts(*block_entry->GetValue()); usage = block_entry->GetValue()->ApproximateMemoryUsage(); } TraceType trace_block_type = TraceType::kTraceMax; switch (block_type) { case BlockType::kData: trace_block_type = TraceType::kBlockTraceDataBlock; break; case BlockType::kFilter: trace_block_type = TraceType::kBlockTraceFilterBlock; break; case BlockType::kCompressionDictionary: trace_block_type = TraceType::kBlockTraceUncompressionDictBlock; break; case BlockType::kRangeDeletion: trace_block_type = TraceType::kBlockTraceRangeDeletionBlock; break; case BlockType::kIndex: trace_block_type = TraceType::kBlockTraceIndexBlock; break; default: // This cannot happen. assert(false); break; } bool no_insert = no_io || !ro.fill_cache; if (BlockCacheTraceHelper::IsGetOrMultiGetOnDataBlock( trace_block_type, lookup_context->caller)) { // Defer logging the access to Get() and MultiGet() to trace additional // information, e.g., referenced_key_exist_in_block. // Make a copy of the block key here since it will be logged later. lookup_context->FillLookupContext( is_cache_hit, no_insert, trace_block_type, /*block_size=*/usage, /*block_key=*/key.ToString(), nkeys); } else { // Avoid making copy of block_key and cf_name when constructing the access // record. BlockCacheTraceRecord access_record( rep_->ioptions.env->NowMicros(), /*block_key=*/"", trace_block_type, /*block_size=*/usage, rep_->cf_id_for_tracing(), /*cf_name=*/"", rep_->level_for_tracing(), rep_->sst_number_for_tracing(), lookup_context->caller, is_cache_hit, no_insert, lookup_context->get_id, lookup_context->get_from_user_specified_snapshot, /*referenced_key=*/""); block_cache_tracer_->WriteBlockAccess(access_record, key, rep_->cf_name_for_tracing(), lookup_context->referenced_key); } } assert(s.ok() || block_entry->GetValue() == nullptr); return s; } // This function reads multiple data blocks from disk using Env::MultiRead() // and optionally inserts them into the block cache. It uses the scratch // buffer provided by the caller, which is contiguous. If scratch is a nullptr // it allocates a separate buffer for each block. Typically, if the blocks // need to be uncompressed and there is no compressed block cache, callers // can allocate a temporary scratch buffer in order to minimize memory // allocations. // If options.fill_cache is true, it inserts the blocks into cache. If its // false and scratch is non-null and the blocks are uncompressed, it copies // the buffers to heap. In any case, the CachableEntry returned will // own the data bytes. // If compression is enabled and also there is no compressed block cache, // the adjacent blocks are read out in one IO (combined read) // batch - A MultiGetRange with only those keys with unique data blocks not // found in cache // handles - A vector of block handles. Some of them me be NULL handles // scratch - An optional contiguous buffer to read compressed blocks into void BlockBasedTable::RetrieveMultipleBlocks( const ReadOptions& options, const MultiGetRange* batch, const autovector* handles, autovector* statuses, autovector, MultiGetContext::MAX_BATCH_SIZE>* results, char* scratch, const UncompressionDict& uncompression_dict) const { RandomAccessFileReader* file = rep_->file.get(); const Footer& footer = rep_->footer; const ImmutableCFOptions& ioptions = rep_->ioptions; size_t read_amp_bytes_per_bit = rep_->table_options.read_amp_bytes_per_bit; MemoryAllocator* memory_allocator = GetMemoryAllocator(rep_->table_options); if (file->use_direct_io() || ioptions.allow_mmap_reads) { size_t idx_in_batch = 0; for (auto mget_iter = batch->begin(); mget_iter != batch->end(); ++mget_iter, ++idx_in_batch) { BlockCacheLookupContext lookup_data_block_context( TableReaderCaller::kUserMultiGet); const BlockHandle& handle = (*handles)[idx_in_batch]; if (handle.IsNull()) { continue; } (*statuses)[idx_in_batch] = RetrieveBlock(nullptr, options, handle, uncompression_dict, &(*results)[idx_in_batch], BlockType::kData, mget_iter->get_context, &lookup_data_block_context, /* for_compaction */ false, /* use_cache */ true); } return; } autovector read_reqs; size_t buf_offset = 0; size_t idx_in_batch = 0; uint64_t prev_offset = 0; size_t prev_len = 0; autovector req_idx_for_block; autovector req_offset_for_block; for (auto mget_iter = batch->begin(); mget_iter != batch->end(); ++mget_iter, ++idx_in_batch) { const BlockHandle& handle = (*handles)[idx_in_batch]; if (handle.IsNull()) { continue; } size_t prev_end = static_cast(prev_offset) + prev_len; // If current block is adjacent to the previous one, at the same time, // compression is enabled and there is no compressed cache, we combine // the two block read as one. if (scratch != nullptr && prev_end == handle.offset()) { req_offset_for_block.emplace_back(prev_len); prev_len += block_size(handle); } else { // No compression or current block and previous one is not adjacent: // Step 1, create a new request for previous blocks if (prev_len != 0) { FSReadRequest req; req.offset = prev_offset; req.len = prev_len; if (scratch == nullptr) { req.scratch = new char[req.len]; } else { req.scratch = scratch + buf_offset; buf_offset += req.len; } read_reqs.emplace_back(req); } // Step 2, remeber the previous block info prev_offset = handle.offset(); prev_len = block_size(handle); req_offset_for_block.emplace_back(0); } req_idx_for_block.emplace_back(read_reqs.size()); } // Handle the last block and process the pending last request if (prev_len != 0) { FSReadRequest req; req.offset = prev_offset; req.len = prev_len; if (scratch == nullptr) { req.scratch = new char[req.len]; } else { req.scratch = scratch + buf_offset; } read_reqs.emplace_back(req); } file->MultiRead(&read_reqs[0], read_reqs.size(), nullptr); idx_in_batch = 0; size_t valid_batch_idx = 0; for (auto mget_iter = batch->begin(); mget_iter != batch->end(); ++mget_iter, ++idx_in_batch) { const BlockHandle& handle = (*handles)[idx_in_batch]; if (handle.IsNull()) { continue; } assert(valid_batch_idx < req_idx_for_block.size()); assert(valid_batch_idx < req_offset_for_block.size()); assert(req_idx_for_block[valid_batch_idx] < read_reqs.size()); size_t& req_idx = req_idx_for_block[valid_batch_idx]; size_t& req_offset = req_offset_for_block[valid_batch_idx]; valid_batch_idx++; FSReadRequest& req = read_reqs[req_idx]; Status s = req.status; if (s.ok()) { if (req.result.size() != req.len) { s = Status::Corruption( "truncated block read from " + rep_->file->file_name() + " offset " + ToString(handle.offset()) + ", expected " + ToString(req.len) + " bytes, got " + ToString(req.result.size())); } } BlockContents raw_block_contents; size_t cur_read_end = req_offset + block_size(handle); if (cur_read_end > req.result.size()) { s = Status::Corruption( "truncated block read from " + rep_->file->file_name() + " offset " + ToString(handle.offset()) + ", expected " + ToString(req.len) + " bytes, got " + ToString(req.result.size())); } bool blocks_share_read_buffer = (req.result.size() != block_size(handle)); if (s.ok()) { if (scratch == nullptr && !blocks_share_read_buffer) { // We allocated a buffer for this block. Give ownership of it to // BlockContents so it can free the memory assert(req.result.data() == req.scratch); std::unique_ptr raw_block(req.scratch + req_offset); raw_block_contents = BlockContents(std::move(raw_block), handle.size()); } else { // We used the scratch buffer which are shared by the blocks. // raw_block_contents does not have the ownership. raw_block_contents = BlockContents(Slice(req.scratch + req_offset, handle.size())); } #ifndef NDEBUG raw_block_contents.is_raw_block = true; #endif if (options.verify_checksums) { PERF_TIMER_GUARD(block_checksum_time); const char* data = req.result.data(); uint32_t expected = DecodeFixed32(data + req_offset + handle.size() + 1); // Since the scratch might be shared. the offset of the data block in // the buffer might not be 0. req.result.data() only point to the // begin address of each read request, we need to add the offset // in each read request. Checksum is stored in the block trailer, // which is handle.size() + 1. s = ROCKSDB_NAMESPACE::VerifyChecksum(footer.checksum(), data + req_offset, handle.size() + 1, expected); TEST_SYNC_POINT_CALLBACK("RetrieveMultipleBlocks:VerifyChecksum", &s); } } if (s.ok()) { // It handles a rare case: compression is set and these is no compressed // cache (enable combined read). In this case, the scratch != nullptr. // At the same time, some blocks are actually not compressed, // since its compression space saving is smaller than the threshold. In // this case, if the block shares the scratch memory, we need to copy it // to the heap such that it can be added to the regular block cache. CompressionType compression_type = raw_block_contents.get_compression_type(); if (scratch != nullptr && compression_type == kNoCompression) { Slice raw = Slice(req.scratch + req_offset, block_size(handle)); raw_block_contents = BlockContents( CopyBufferToHeap(GetMemoryAllocator(rep_->table_options), raw), handle.size()); #ifndef NDEBUG raw_block_contents.is_raw_block = true; #endif } } if (s.ok()) { if (options.fill_cache) { BlockCacheLookupContext lookup_data_block_context( TableReaderCaller::kUserMultiGet); CachableEntry* block_entry = &(*results)[idx_in_batch]; // MaybeReadBlockAndLoadToCache will insert into the block caches if // necessary. Since we're passing the raw block contents, it will // avoid looking up the block cache s = MaybeReadBlockAndLoadToCache( nullptr, options, handle, uncompression_dict, block_entry, BlockType::kData, mget_iter->get_context, &lookup_data_block_context, &raw_block_contents); // block_entry value could be null if no block cache is present, i.e // BlockBasedTableOptions::no_block_cache is true and no compressed // block cache is configured. In that case, fall // through and set up the block explicitly if (block_entry->GetValue() != nullptr) { continue; } } CompressionType compression_type = raw_block_contents.get_compression_type(); BlockContents contents; if (compression_type != kNoCompression) { UncompressionContext context(compression_type); UncompressionInfo info(context, uncompression_dict, compression_type); s = UncompressBlockContents(info, req.result.data() + req_offset, handle.size(), &contents, footer.version(), rep_->ioptions, memory_allocator); } else { // There are two cases here: 1) caller uses the scratch buffer; 2) we // use the requst buffer. If scratch buffer is used, we ensure that // all raw blocks are copyed to the heap as single blocks. If scratch // buffer is not used, we also have no combined read, so the raw // block can be used directly. contents = std::move(raw_block_contents); } if (s.ok()) { (*results)[idx_in_batch].SetOwnedValue(new Block( std::move(contents), read_amp_bytes_per_bit, ioptions.statistics)); } } (*statuses)[idx_in_batch] = s; } } template Status BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache) const { assert(block_entry); assert(block_entry->IsEmpty()); Status s; if (use_cache) { s = MaybeReadBlockAndLoadToCache(prefetch_buffer, ro, handle, uncompression_dict, block_entry, block_type, get_context, lookup_context, /*contents=*/nullptr); if (!s.ok()) { return s; } if (block_entry->GetValue() != nullptr) { assert(s.ok()); return s; } } assert(block_entry->IsEmpty()); const bool no_io = ro.read_tier == kBlockCacheTier; if (no_io) { return Status::Incomplete("no blocking io"); } const bool maybe_compressed = block_type != BlockType::kFilter && block_type != BlockType::kCompressionDictionary && rep_->blocks_maybe_compressed; const bool do_uncompress = maybe_compressed; std::unique_ptr block; { StopWatch sw(rep_->ioptions.env, rep_->ioptions.statistics, READ_BLOCK_GET_MICROS); s = ReadBlockFromFile( rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle, &block, rep_->ioptions, do_uncompress, maybe_compressed, block_type, uncompression_dict, rep_->persistent_cache_options, block_type == BlockType::kData ? rep_->table_options.read_amp_bytes_per_bit : 0, GetMemoryAllocator(rep_->table_options), for_compaction, rep_->blocks_definitely_zstd_compressed, rep_->table_options.filter_policy.get()); } if (!s.ok()) { return s; } block_entry->SetOwnedValue(block.release()); assert(s.ok()); return s; } // Explicitly instantiate templates for both "blocklike" types we use. // This makes it possible to keep the template definitions in the .cc file. template Status BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache) const; template Status BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache) const; template Status BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache) const; template Status BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, BlockType block_type, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache) const; BlockBasedTable::PartitionedIndexIteratorState::PartitionedIndexIteratorState( const BlockBasedTable* table, std::unordered_map>* block_map) : table_(table), block_map_(block_map) {} InternalIteratorBase* BlockBasedTable::PartitionedIndexIteratorState::NewSecondaryIterator( const BlockHandle& handle) { // Return a block iterator on the index partition auto block = block_map_->find(handle.offset()); // This is a possible scenario since block cache might not have had space // for the partition if (block != block_map_->end()) { const Rep* rep = table_->get_rep(); assert(rep); Statistics* kNullStats = nullptr; // We don't return pinned data from index blocks, so no need // to set `block_contents_pinned`. return block->second.GetValue()->NewIndexIterator( &rep->internal_comparator, rep->internal_comparator.user_comparator(), rep->get_global_seqno(BlockType::kIndex), nullptr, kNullStats, true, rep->index_has_first_key, rep->index_key_includes_seq, rep->index_value_is_full); } // Create an empty iterator return new IndexBlockIter(); } // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in BlockBasedTableOptions.filter_policy. // In particular, we require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // If read_options.read_tier == kBlockCacheTier, this method will do no I/O and // will return true if the filter block is not in memory and not found in block // cache. // // REQUIRES: this method shouldn't be called while the DB lock is held. bool BlockBasedTable::PrefixMayMatch( const Slice& internal_key, const ReadOptions& read_options, const SliceTransform* options_prefix_extractor, const bool need_upper_bound_check, BlockCacheLookupContext* lookup_context) const { if (!rep_->filter_policy) { return true; } const SliceTransform* prefix_extractor; if (rep_->table_prefix_extractor == nullptr) { if (need_upper_bound_check) { return true; } prefix_extractor = options_prefix_extractor; } else { prefix_extractor = rep_->table_prefix_extractor.get(); } auto user_key = ExtractUserKey(internal_key); if (!prefix_extractor->InDomain(user_key)) { return true; } bool may_match = true; Status s; // First, try check with full filter FilterBlockReader* const filter = rep_->filter.get(); bool filter_checked = true; if (filter != nullptr) { const bool no_io = read_options.read_tier == kBlockCacheTier; if (!filter->IsBlockBased()) { const Slice* const const_ikey_ptr = &internal_key; may_match = filter->RangeMayExist( read_options.iterate_upper_bound, user_key, prefix_extractor, rep_->internal_comparator.user_comparator(), const_ikey_ptr, &filter_checked, need_upper_bound_check, no_io, lookup_context); } else { // if prefix_extractor changed for block based filter, skip filter if (need_upper_bound_check) { return true; } auto prefix = prefix_extractor->Transform(user_key); InternalKey internal_key_prefix(prefix, kMaxSequenceNumber, kTypeValue); auto internal_prefix = internal_key_prefix.Encode(); // To prevent any io operation in this method, we set `read_tier` to make // sure we always read index or filter only when they have already been // loaded to memory. ReadOptions no_io_read_options; no_io_read_options.read_tier = kBlockCacheTier; // Then, try find it within each block // we already know prefix_extractor and prefix_extractor_name must match // because `CheckPrefixMayMatch` first checks `check_filter_ == true` std::unique_ptr> iiter(NewIndexIterator( no_io_read_options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, lookup_context)); iiter->Seek(internal_prefix); if (!iiter->Valid()) { // we're past end of file // if it's incomplete, it means that we avoided I/O // and we're not really sure that we're past the end // of the file may_match = iiter->status().IsIncomplete(); } else if ((rep_->index_key_includes_seq ? ExtractUserKey(iiter->key()) : iiter->key()) .starts_with(ExtractUserKey(internal_prefix))) { // we need to check for this subtle case because our only // guarantee is that "the key is a string >= last key in that data // block" according to the doc/table_format.txt spec. // // Suppose iiter->key() starts with the desired prefix; it is not // necessarily the case that the corresponding data block will // contain the prefix, since iiter->key() need not be in the // block. However, the next data block may contain the prefix, so // we return true to play it safe. may_match = true; } else if (filter->IsBlockBased()) { // iiter->key() does NOT start with the desired prefix. Because // Seek() finds the first key that is >= the seek target, this // means that iiter->key() > prefix. Thus, any data blocks coming // after the data block corresponding to iiter->key() cannot // possibly contain the key. Thus, the corresponding data block // is the only on could potentially contain the prefix. BlockHandle handle = iiter->value().handle; may_match = filter->PrefixMayMatch( prefix, prefix_extractor, handle.offset(), no_io, /*const_key_ptr=*/nullptr, /*get_context=*/nullptr, lookup_context); } } } if (filter_checked) { Statistics* statistics = rep_->ioptions.statistics; RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED); if (!may_match) { RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL); } } return may_match; } InternalIterator* BlockBasedTable::NewIterator( const ReadOptions& read_options, const SliceTransform* prefix_extractor, Arena* arena, bool skip_filters, TableReaderCaller caller, size_t compaction_readahead_size) { BlockCacheLookupContext lookup_context{caller}; bool need_upper_bound_check = read_options.auto_prefix_mode || PrefixExtractorChanged(rep_->table_properties.get(), prefix_extractor); std::unique_ptr> index_iter(NewIndexIterator( read_options, need_upper_bound_check && rep_->index_type == BlockBasedTableOptions::kHashSearch, /*input_iter=*/nullptr, /*get_context=*/nullptr, &lookup_context)); if (arena == nullptr) { return new BlockBasedTableIterator( this, read_options, rep_->internal_comparator, std::move(index_iter), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, caller, compaction_readahead_size); } else { auto* mem = arena->AllocateAligned(sizeof(BlockBasedTableIterator)); return new (mem) BlockBasedTableIterator( this, read_options, rep_->internal_comparator, std::move(index_iter), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, caller, compaction_readahead_size); } } FragmentedRangeTombstoneIterator* BlockBasedTable::NewRangeTombstoneIterator( const ReadOptions& read_options) { if (rep_->fragmented_range_dels == nullptr) { return nullptr; } SequenceNumber snapshot = kMaxSequenceNumber; if (read_options.snapshot != nullptr) { snapshot = read_options.snapshot->GetSequenceNumber(); } return new FragmentedRangeTombstoneIterator( rep_->fragmented_range_dels, rep_->internal_comparator, snapshot); } bool BlockBasedTable::FullFilterKeyMayMatch( const ReadOptions& read_options, FilterBlockReader* filter, const Slice& internal_key, const bool no_io, const SliceTransform* prefix_extractor, GetContext* get_context, BlockCacheLookupContext* lookup_context) const { if (filter == nullptr || filter->IsBlockBased()) { return true; } Slice user_key = ExtractUserKey(internal_key); const Slice* const const_ikey_ptr = &internal_key; bool may_match = true; if (rep_->whole_key_filtering) { size_t ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size(); Slice user_key_without_ts = StripTimestampFromUserKey(user_key, ts_sz); may_match = filter->KeyMayMatch(user_key_without_ts, prefix_extractor, kNotValid, no_io, const_ikey_ptr, get_context, lookup_context); } else if (!read_options.total_order_seek && prefix_extractor && rep_->table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) == 0 && prefix_extractor->InDomain(user_key) && !filter->PrefixMayMatch(prefix_extractor->Transform(user_key), prefix_extractor, kNotValid, no_io, const_ikey_ptr, get_context, lookup_context)) { may_match = false; } if (may_match) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, rep_->level); } return may_match; } void BlockBasedTable::FullFilterKeysMayMatch( const ReadOptions& read_options, FilterBlockReader* filter, MultiGetRange* range, const bool no_io, const SliceTransform* prefix_extractor, BlockCacheLookupContext* lookup_context) const { if (filter == nullptr || filter->IsBlockBased()) { return; } if (rep_->whole_key_filtering) { filter->KeysMayMatch(range, prefix_extractor, kNotValid, no_io, lookup_context); } else if (!read_options.total_order_seek && prefix_extractor && rep_->table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) == 0) { filter->PrefixesMayMatch(range, prefix_extractor, kNotValid, false, lookup_context); } } Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key, GetContext* get_context, const SliceTransform* prefix_extractor, bool skip_filters) { assert(key.size() >= 8); // key must be internal key assert(get_context != nullptr); Status s; const bool no_io = read_options.read_tier == kBlockCacheTier; FilterBlockReader* const filter = !skip_filters ? rep_->filter.get() : nullptr; // First check the full filter // If full filter not useful, Then go into each block uint64_t tracing_get_id = get_context->get_tracing_get_id(); BlockCacheLookupContext lookup_context{ TableReaderCaller::kUserGet, tracing_get_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) { // Trace the key since it contains both user key and sequence number. lookup_context.referenced_key = key.ToString(); lookup_context.get_from_user_specified_snapshot = read_options.snapshot != nullptr; } const bool may_match = FullFilterKeyMayMatch(read_options, filter, key, no_io, prefix_extractor, get_context, &lookup_context); if (!may_match) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); } else { IndexBlockIter iiter_on_stack; // if prefix_extractor found in block differs from options, disable // BlockPrefixIndex. Only do this check when index_type is kHashSearch. bool need_upper_bound_check = false; if (rep_->index_type == BlockBasedTableOptions::kHashSearch) { need_upper_bound_check = PrefixExtractorChanged( rep_->table_properties.get(), prefix_extractor); } auto iiter = NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack, get_context, &lookup_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } size_t ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size(); bool matched = false; // if such user key mathced a key in SST bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { IndexValue v = iiter->value(); bool not_exist_in_filter = filter != nullptr && filter->IsBlockBased() == true && !filter->KeyMayMatch(ExtractUserKeyAndStripTimestamp(key, ts_sz), prefix_extractor, v.handle.offset(), no_io, /*const_ikey_ptr=*/nullptr, get_context, &lookup_context); if (not_exist_in_filter) { // Not found // TODO: think about interaction with Merge. If a user key cannot // cross one data block, we should be fine. RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); break; } if (!v.first_internal_key.empty() && !skip_filters && UserComparatorWrapper(rep_->internal_comparator.user_comparator()) .Compare(ExtractUserKey(key), ExtractUserKey(v.first_internal_key)) < 0) { // The requested key falls between highest key in previous block and // lowest key in current block. break; } BlockCacheLookupContext lookup_data_block_context{ TableReaderCaller::kUserGet, tracing_get_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; bool does_referenced_key_exist = false; DataBlockIter biter; uint64_t referenced_data_size = 0; NewDataBlockIterator( read_options, v.handle, &biter, BlockType::kData, get_context, &lookup_data_block_context, /*s=*/Status(), /*prefetch_buffer*/ nullptr); if (no_io && biter.status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for // whether we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); break; } if (!biter.status().ok()) { s = biter.status(); break; } bool may_exist = biter.SeekForGet(key); // If user-specified timestamp is supported, we cannot end the search // just because hash index lookup indicates the key+ts does not exist. if (!may_exist && ts_sz == 0) { // HashSeek cannot find the key this block and the the iter is not // the end of the block, i.e. cannot be in the following blocks // either. In this case, the seek_key cannot be found, so we break // from the top level for-loop. done = true; } else { // Call the *saver function on each entry/block until it returns false for (; biter.Valid(); biter.Next()) { ParsedInternalKey parsed_key; if (!ParseInternalKey(biter.key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (!get_context->SaveValue( parsed_key, biter.value(), &matched, biter.IsValuePinned() ? &biter : nullptr)) { if (get_context->State() == GetContext::GetState::kFound) { does_referenced_key_exist = true; referenced_data_size = biter.key().size() + biter.value().size(); } done = true; break; } } s = biter.status(); } // Write the block cache access record. if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) { // Avoid making copy of block_key, cf_name, and referenced_key when // constructing the access record. Slice referenced_key; if (does_referenced_key_exist) { referenced_key = biter.key(); } else { referenced_key = key; } BlockCacheTraceRecord access_record( rep_->ioptions.env->NowMicros(), /*block_key=*/"", lookup_data_block_context.block_type, lookup_data_block_context.block_size, rep_->cf_id_for_tracing(), /*cf_name=*/"", rep_->level_for_tracing(), rep_->sst_number_for_tracing(), lookup_data_block_context.caller, lookup_data_block_context.is_cache_hit, lookup_data_block_context.no_insert, lookup_data_block_context.get_id, lookup_data_block_context.get_from_user_specified_snapshot, /*referenced_key=*/"", referenced_data_size, lookup_data_block_context.num_keys_in_block, does_referenced_key_exist); block_cache_tracer_->WriteBlockAccess( access_record, lookup_data_block_context.block_key, rep_->cf_name_for_tracing(), referenced_key); } if (done) { // Avoid the extra Next which is expensive in two-level indexes break; } } if (matched && filter != nullptr && !filter->IsBlockBased()) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_TRUE_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, rep_->level); } if (s.ok() && !iiter->status().IsNotFound()) { s = iiter->status(); } } return s; } using MultiGetRange = MultiGetContext::Range; void BlockBasedTable::MultiGet(const ReadOptions& read_options, const MultiGetRange* mget_range, const SliceTransform* prefix_extractor, bool skip_filters) { FilterBlockReader* const filter = !skip_filters ? rep_->filter.get() : nullptr; MultiGetRange sst_file_range(*mget_range, mget_range->begin(), mget_range->end()); // First check the full filter // If full filter not useful, Then go into each block const bool no_io = read_options.read_tier == kBlockCacheTier; uint64_t tracing_mget_id = BlockCacheTraceHelper::kReservedGetId; if (!sst_file_range.empty() && sst_file_range.begin()->get_context) { tracing_mget_id = sst_file_range.begin()->get_context->get_tracing_get_id(); } BlockCacheLookupContext lookup_context{ TableReaderCaller::kUserMultiGet, tracing_mget_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; FullFilterKeysMayMatch(read_options, filter, &sst_file_range, no_io, prefix_extractor, &lookup_context); if (skip_filters || !sst_file_range.empty()) { IndexBlockIter iiter_on_stack; // if prefix_extractor found in block differs from options, disable // BlockPrefixIndex. Only do this check when index_type is kHashSearch. bool need_upper_bound_check = false; if (rep_->index_type == BlockBasedTableOptions::kHashSearch) { need_upper_bound_check = PrefixExtractorChanged( rep_->table_properties.get(), prefix_extractor); } auto iiter = NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack, sst_file_range.begin()->get_context, &lookup_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } uint64_t offset = std::numeric_limits::max(); autovector block_handles; autovector, MultiGetContext::MAX_BATCH_SIZE> results; autovector statuses; char stack_buf[kMultiGetReadStackBufSize]; std::unique_ptr block_buf; { MultiGetRange data_block_range(sst_file_range, sst_file_range.begin(), sst_file_range.end()); CachableEntry uncompression_dict; Status uncompression_dict_status; if (rep_->uncompression_dict_reader) { uncompression_dict_status = rep_->uncompression_dict_reader->GetOrReadUncompressionDictionary( nullptr /* prefetch_buffer */, no_io, sst_file_range.begin()->get_context, &lookup_context, &uncompression_dict); } const UncompressionDict& dict = uncompression_dict.GetValue() ? *uncompression_dict.GetValue() : UncompressionDict::GetEmptyDict(); size_t total_len = 0; ReadOptions ro = read_options; ro.read_tier = kBlockCacheTier; for (auto miter = data_block_range.begin(); miter != data_block_range.end(); ++miter) { const Slice& key = miter->ikey; iiter->Seek(miter->ikey); IndexValue v; if (iiter->Valid()) { v = iiter->value(); } if (!iiter->Valid() || (!v.first_internal_key.empty() && !skip_filters && UserComparatorWrapper(rep_->internal_comparator.user_comparator()) .Compare(ExtractUserKey(key), ExtractUserKey(v.first_internal_key)) < 0)) { // The requested key falls between highest key in previous block and // lowest key in current block. *(miter->s) = iiter->status(); data_block_range.SkipKey(miter); sst_file_range.SkipKey(miter); continue; } if (!uncompression_dict_status.ok()) { *(miter->s) = uncompression_dict_status; data_block_range.SkipKey(miter); sst_file_range.SkipKey(miter); continue; } statuses.emplace_back(); results.emplace_back(); if (v.handle.offset() == offset) { // We're going to reuse the block for this key later on. No need to // look it up now. Place a null handle block_handles.emplace_back(BlockHandle::NullBlockHandle()); continue; } // Lookup the cache for the given data block referenced by an index // iterator value (i.e BlockHandle). If it exists in the cache, // initialize block to the contents of the data block. offset = v.handle.offset(); BlockHandle handle = v.handle; BlockCacheLookupContext lookup_data_block_context( TableReaderCaller::kUserMultiGet); Status s = RetrieveBlock( nullptr, ro, handle, dict, &(results.back()), BlockType::kData, miter->get_context, &lookup_data_block_context, /* for_compaction */ false, /* use_cache */ true); if (s.IsIncomplete()) { s = Status::OK(); } if (s.ok() && !results.back().IsEmpty()) { // Found it in the cache. Add NULL handle to indicate there is // nothing to read from disk block_handles.emplace_back(BlockHandle::NullBlockHandle()); } else { block_handles.emplace_back(handle); total_len += block_size(handle); } } if (total_len) { char* scratch = nullptr; // If the blocks need to be uncompressed and we don't need the // compressed blocks, then we can use a contiguous block of // memory to read in all the blocks as it will be temporary // storage // 1. If blocks are compressed and compressed block cache is there, // alloc heap bufs // 2. If blocks are uncompressed, alloc heap bufs // 3. If blocks are compressed and no compressed block cache, use // stack buf if (rep_->table_options.block_cache_compressed == nullptr && rep_->blocks_maybe_compressed) { if (total_len <= kMultiGetReadStackBufSize) { scratch = stack_buf; } else { scratch = new char[total_len]; block_buf.reset(scratch); } } RetrieveMultipleBlocks(read_options, &data_block_range, &block_handles, &statuses, &results, scratch, dict); } } DataBlockIter first_biter; DataBlockIter next_biter; size_t idx_in_batch = 0; for (auto miter = sst_file_range.begin(); miter != sst_file_range.end(); ++miter) { Status s; GetContext* get_context = miter->get_context; const Slice& key = miter->ikey; bool matched = false; // if such user key matched a key in SST bool done = false; bool first_block = true; do { DataBlockIter* biter = nullptr; bool reusing_block = true; uint64_t referenced_data_size = 0; bool does_referenced_key_exist = false; BlockCacheLookupContext lookup_data_block_context( TableReaderCaller::kUserMultiGet, tracing_mget_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr); if (first_block) { if (!block_handles[idx_in_batch].IsNull() || !results[idx_in_batch].IsEmpty()) { first_biter.Invalidate(Status::OK()); NewDataBlockIterator( read_options, results[idx_in_batch], &first_biter, statuses[idx_in_batch]); reusing_block = false; } biter = &first_biter; idx_in_batch++; } else { IndexValue v = iiter->value(); if (!v.first_internal_key.empty() && !skip_filters && UserComparatorWrapper(rep_->internal_comparator.user_comparator()) .Compare(ExtractUserKey(key), ExtractUserKey(v.first_internal_key)) < 0) { // The requested key falls between highest key in previous block and // lowest key in current block. break; } next_biter.Invalidate(Status::OK()); NewDataBlockIterator( read_options, iiter->value().handle, &next_biter, BlockType::kData, get_context, &lookup_data_block_context, Status(), nullptr); biter = &next_biter; reusing_block = false; } if (read_options.read_tier == kBlockCacheTier && biter->status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for // whether we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); break; } if (!biter->status().ok()) { s = biter->status(); break; } bool may_exist = biter->SeekForGet(key); if (!may_exist) { // HashSeek cannot find the key this block and the the iter is not // the end of the block, i.e. cannot be in the following blocks // either. In this case, the seek_key cannot be found, so we break // from the top level for-loop. break; } // Call the *saver function on each entry/block until it returns false for (; biter->Valid(); biter->Next()) { ParsedInternalKey parsed_key; Cleanable dummy; Cleanable* value_pinner = nullptr; if (!ParseInternalKey(biter->key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (biter->IsValuePinned()) { if (reusing_block) { Cache* block_cache = rep_->table_options.block_cache.get(); assert(biter->cache_handle() != nullptr); block_cache->Ref(biter->cache_handle()); dummy.RegisterCleanup(&ReleaseCachedEntry, block_cache, biter->cache_handle()); value_pinner = &dummy; } else { value_pinner = biter; } } if (!get_context->SaveValue(parsed_key, biter->value(), &matched, value_pinner)) { if (get_context->State() == GetContext::GetState::kFound) { does_referenced_key_exist = true; referenced_data_size = biter->key().size() + biter->value().size(); } done = true; break; } s = biter->status(); } // Write the block cache access. if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) { // Avoid making copy of block_key, cf_name, and referenced_key when // constructing the access record. Slice referenced_key; if (does_referenced_key_exist) { referenced_key = biter->key(); } else { referenced_key = key; } BlockCacheTraceRecord access_record( rep_->ioptions.env->NowMicros(), /*block_key=*/"", lookup_data_block_context.block_type, lookup_data_block_context.block_size, rep_->cf_id_for_tracing(), /*cf_name=*/"", rep_->level_for_tracing(), rep_->sst_number_for_tracing(), lookup_data_block_context.caller, lookup_data_block_context.is_cache_hit, lookup_data_block_context.no_insert, lookup_data_block_context.get_id, lookup_data_block_context.get_from_user_specified_snapshot, /*referenced_key=*/"", referenced_data_size, lookup_data_block_context.num_keys_in_block, does_referenced_key_exist); block_cache_tracer_->WriteBlockAccess( access_record, lookup_data_block_context.block_key, rep_->cf_name_for_tracing(), referenced_key); } s = biter->status(); if (done) { // Avoid the extra Next which is expensive in two-level indexes break; } if (first_block) { iiter->Seek(key); } first_block = false; iiter->Next(); } while (iiter->Valid()); if (matched && filter != nullptr && !filter->IsBlockBased()) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_TRUE_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, rep_->level); } if (s.ok()) { s = iiter->status(); } *(miter->s) = s; } } } Status BlockBasedTable::Prefetch(const Slice* const begin, const Slice* const end) { auto& comparator = rep_->internal_comparator; UserComparatorWrapper user_comparator(comparator.user_comparator()); // pre-condition if (begin && end && comparator.Compare(*begin, *end) > 0) { return Status::InvalidArgument(*begin, *end); } BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch}; IndexBlockIter iiter_on_stack; auto iiter = NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false, &iiter_on_stack, /*get_context=*/nullptr, &lookup_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } // indicates if we are on the last page that need to be pre-fetched bool prefetching_boundary_page = false; for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid(); iiter->Next()) { BlockHandle block_handle = iiter->value().handle; const bool is_user_key = !rep_->index_key_includes_seq; if (end && ((!is_user_key && comparator.Compare(iiter->key(), *end) >= 0) || (is_user_key && user_comparator.Compare(iiter->key(), ExtractUserKey(*end)) >= 0))) { if (prefetching_boundary_page) { break; } // The index entry represents the last key in the data block. // We should load this page into memory as well, but no more prefetching_boundary_page = true; } // Load the block specified by the block_handle into the block cache DataBlockIter biter; NewDataBlockIterator( ReadOptions(), block_handle, &biter, /*type=*/BlockType::kData, /*get_context=*/nullptr, &lookup_context, Status(), /*prefetch_buffer=*/nullptr); if (!biter.status().ok()) { // there was an unexpected error while pre-fetching return biter.status(); } } return Status::OK(); } Status BlockBasedTable::VerifyChecksum(const ReadOptions& read_options, TableReaderCaller caller) { Status s; // Check Meta blocks std::unique_ptr metaindex; std::unique_ptr metaindex_iter; s = ReadMetaIndexBlock(nullptr /* prefetch buffer */, &metaindex, &metaindex_iter); if (s.ok()) { s = VerifyChecksumInMetaBlocks(metaindex_iter.get()); if (!s.ok()) { return s; } } else { return s; } // Check Data blocks IndexBlockIter iiter_on_stack; BlockCacheLookupContext context{caller}; InternalIteratorBase* iiter = NewIndexIterator( read_options, /*disable_prefix_seek=*/false, &iiter_on_stack, /*get_context=*/nullptr, &context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } s = VerifyChecksumInBlocks(read_options, iiter); return s; } Status BlockBasedTable::VerifyChecksumInBlocks( const ReadOptions& read_options, InternalIteratorBase* index_iter) { Status s; // We are scanning the whole file, so no need to do exponential // increasing of the buffer size. size_t readahead_size = (read_options.readahead_size != 0) ? read_options.readahead_size : kMaxAutoReadaheadSize; // FilePrefetchBuffer doesn't work in mmap mode and readahead is not // needed there. FilePrefetchBuffer prefetch_buffer( rep_->file.get(), readahead_size /* readadhead_size */, readahead_size /* max_readahead_size */, !rep_->ioptions.allow_mmap_reads /* enable */); for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle = index_iter->value().handle; BlockContents contents; BlockFetcher block_fetcher( rep_->file.get(), &prefetch_buffer, rep_->footer, ReadOptions(), handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, BlockType::kData, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (!s.ok()) { break; } } return s; } BlockType BlockBasedTable::GetBlockTypeForMetaBlockByName( const Slice& meta_block_name) { if (meta_block_name.starts_with(kFilterBlockPrefix) || meta_block_name.starts_with(kFullFilterBlockPrefix) || meta_block_name.starts_with(kPartitionedFilterBlockPrefix)) { return BlockType::kFilter; } if (meta_block_name == kPropertiesBlock) { return BlockType::kProperties; } if (meta_block_name == kCompressionDictBlock) { return BlockType::kCompressionDictionary; } if (meta_block_name == kRangeDelBlock) { return BlockType::kRangeDeletion; } if (meta_block_name == kHashIndexPrefixesBlock) { return BlockType::kHashIndexPrefixes; } if (meta_block_name == kHashIndexPrefixesMetadataBlock) { return BlockType::kHashIndexMetadata; } assert(false); return BlockType::kInvalid; } Status BlockBasedTable::VerifyChecksumInMetaBlocks( InternalIteratorBase* index_iter) { Status s; for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle; Slice input = index_iter->value(); s = handle.DecodeFrom(&input); BlockContents contents; const Slice meta_block_name = index_iter->key(); BlockFetcher block_fetcher( rep_->file.get(), nullptr /* prefetch buffer */, rep_->footer, ReadOptions(), handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, GetBlockTypeForMetaBlockByName(meta_block_name), UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (s.IsCorruption() && meta_block_name == kPropertiesBlock) { TableProperties* table_properties; s = TryReadPropertiesWithGlobalSeqno(nullptr /* prefetch_buffer */, index_iter->value(), &table_properties); delete table_properties; } if (!s.ok()) { break; } } return s; } bool BlockBasedTable::TEST_BlockInCache(const BlockHandle& handle) const { assert(rep_ != nullptr); Cache* const cache = rep_->table_options.block_cache.get(); if (cache == nullptr) { return false; } char cache_key_storage[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice cache_key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, handle, cache_key_storage); Cache::Handle* const cache_handle = cache->Lookup(cache_key); if (cache_handle == nullptr) { return false; } cache->Release(cache_handle); return true; } bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { std::unique_ptr> iiter(NewIndexIterator( options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_context=*/nullptr)); iiter->Seek(key); assert(iiter->Valid()); return TEST_BlockInCache(iiter->value().handle); } // REQUIRES: The following fields of rep_ should have already been populated: // 1. file // 2. index_handle, // 3. options // 4. internal_comparator // 5. index_type Status BlockBasedTable::CreateIndexReader( FilePrefetchBuffer* prefetch_buffer, InternalIterator* preloaded_meta_index_iter, bool use_cache, bool prefetch, bool pin, BlockCacheLookupContext* lookup_context, std::unique_ptr* index_reader) { // kHashSearch requires non-empty prefix_extractor but bypass checking // prefix_extractor here since we have no access to MutableCFOptions. // Add need_upper_bound_check flag in BlockBasedTable::NewIndexIterator. // If prefix_extractor does not match prefix_extractor_name from table // properties, turn off Hash Index by setting total_order_seek to true switch (rep_->index_type) { case BlockBasedTableOptions::kTwoLevelIndexSearch: { return PartitionIndexReader::Create(this, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } case BlockBasedTableOptions::kBinarySearch: FALLTHROUGH_INTENDED; case BlockBasedTableOptions::kBinarySearchWithFirstKey: { return BinarySearchIndexReader::Create(this, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } case BlockBasedTableOptions::kHashSearch: { std::unique_ptr metaindex_guard; std::unique_ptr metaindex_iter_guard; auto meta_index_iter = preloaded_meta_index_iter; bool should_fallback = false; if (rep_->internal_prefix_transform.get() == nullptr) { ROCKS_LOG_WARN(rep_->ioptions.info_log, "No prefix extractor passed in. Fall back to binary" " search index."); should_fallback = true; } else if (meta_index_iter == nullptr) { auto s = ReadMetaIndexBlock(prefetch_buffer, &metaindex_guard, &metaindex_iter_guard); if (!s.ok()) { // we simply fall back to binary search in case there is any // problem with prefix hash index loading. ROCKS_LOG_WARN(rep_->ioptions.info_log, "Unable to read the metaindex block." " Fall back to binary search index."); should_fallback = true; } meta_index_iter = metaindex_iter_guard.get(); } if (should_fallback) { return BinarySearchIndexReader::Create(this, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } else { return HashIndexReader::Create(this, prefetch_buffer, meta_index_iter, use_cache, prefetch, pin, lookup_context, index_reader); } } default: { std::string error_message = "Unrecognized index type: " + ToString(rep_->index_type); return Status::InvalidArgument(error_message.c_str()); } } } uint64_t BlockBasedTable::ApproximateOffsetOf( const InternalIteratorBase& index_iter) const { uint64_t result = 0; if (index_iter.Valid()) { BlockHandle handle = index_iter.value().handle; result = handle.offset(); } else { // The iterator is past the last key in the file. If table_properties is not // available, approximate the offset by returning the offset of the // metaindex block (which is right near the end of the file). if (rep_->table_properties) { result = rep_->table_properties->data_size; } // table_properties is not present in the table. if (result == 0) { result = rep_->footer.metaindex_handle().offset(); } } return result; } uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key, TableReaderCaller caller) { BlockCacheLookupContext context(caller); IndexBlockIter iiter_on_stack; ReadOptions ro; ro.total_order_seek = true; auto index_iter = NewIndexIterator(ro, /*disable_prefix_seek=*/true, /*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr, /*lookup_context=*/&context); std::unique_ptr> iiter_unique_ptr; if (index_iter != &iiter_on_stack) { iiter_unique_ptr.reset(index_iter); } index_iter->Seek(key); return ApproximateOffsetOf(*index_iter); } uint64_t BlockBasedTable::ApproximateSize(const Slice& start, const Slice& end, TableReaderCaller caller) { assert(rep_->internal_comparator.Compare(start, end) <= 0); BlockCacheLookupContext context(caller); IndexBlockIter iiter_on_stack; ReadOptions ro; ro.total_order_seek = true; auto index_iter = NewIndexIterator(ro, /*disable_prefix_seek=*/true, /*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr, /*lookup_context=*/&context); std::unique_ptr> iiter_unique_ptr; if (index_iter != &iiter_on_stack) { iiter_unique_ptr.reset(index_iter); } index_iter->Seek(start); uint64_t start_offset = ApproximateOffsetOf(*index_iter); index_iter->Seek(end); uint64_t end_offset = ApproximateOffsetOf(*index_iter); assert(end_offset >= start_offset); return end_offset - start_offset; } bool BlockBasedTable::TEST_FilterBlockInCache() const { assert(rep_ != nullptr); return TEST_BlockInCache(rep_->filter_handle); } bool BlockBasedTable::TEST_IndexBlockInCache() const { assert(rep_ != nullptr); return TEST_BlockInCache(rep_->footer.index_handle()); } Status BlockBasedTable::GetKVPairsFromDataBlocks( std::vector* kv_pair_blocks) { std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { // Cannot read Index Block return s; } for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } std::unique_ptr datablock_iter; datablock_iter.reset(NewDataBlockIterator( ReadOptions(), blockhandles_iter->value().handle, /*input_iter=*/nullptr, /*type=*/BlockType::kData, /*get_context=*/nullptr, /*lookup_context=*/nullptr, Status(), /*prefetch_buffer=*/nullptr)); s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped continue; } KVPairBlock kv_pair_block; for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped break; } const Slice& key = datablock_iter->key(); const Slice& value = datablock_iter->value(); std::string key_copy = std::string(key.data(), key.size()); std::string value_copy = std::string(value.data(), value.size()); kv_pair_block.push_back( std::make_pair(std::move(key_copy), std::move(value_copy))); } kv_pair_blocks->push_back(std::move(kv_pair_block)); } return Status::OK(); } Status BlockBasedTable::DumpTable(WritableFile* out_file) { // Output Footer out_file->Append( "Footer Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->footer.ToString().c_str()); out_file->Append("\n"); // Output MetaIndex out_file->Append( "Metaindex Details:\n" "--------------------------------------\n"); std::unique_ptr metaindex; std::unique_ptr metaindex_iter; Status s = ReadMetaIndexBlock(nullptr /* prefetch_buffer */, &metaindex, &metaindex_iter); if (s.ok()) { for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid(); metaindex_iter->Next()) { s = metaindex_iter->status(); if (!s.ok()) { return s; } if (metaindex_iter->key() == ROCKSDB_NAMESPACE::kPropertiesBlock) { out_file->Append(" Properties block handle: "); out_file->Append(metaindex_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (metaindex_iter->key() == ROCKSDB_NAMESPACE::kCompressionDictBlock) { out_file->Append(" Compression dictionary block handle: "); out_file->Append(metaindex_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (strstr(metaindex_iter->key().ToString().c_str(), "filter.rocksdb.") != nullptr) { out_file->Append(" Filter block handle: "); out_file->Append(metaindex_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (metaindex_iter->key() == ROCKSDB_NAMESPACE::kRangeDelBlock) { out_file->Append(" Range deletion block handle: "); out_file->Append(metaindex_iter->value().ToString(true).c_str()); out_file->Append("\n"); } } out_file->Append("\n"); } else { return s; } // Output TableProperties const ROCKSDB_NAMESPACE::TableProperties* table_properties; table_properties = rep_->table_properties.get(); if (table_properties != nullptr) { out_file->Append( "Table Properties:\n" "--------------------------------------\n" " "); out_file->Append(table_properties->ToString("\n ", ": ").c_str()); out_file->Append("\n"); } if (rep_->filter) { out_file->Append( "Filter Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->filter->ToString().c_str()); out_file->Append("\n"); } // Output Index block s = DumpIndexBlock(out_file); if (!s.ok()) { return s; } // Output compression dictionary if (rep_->uncompression_dict_reader) { CachableEntry uncompression_dict; s = rep_->uncompression_dict_reader->GetOrReadUncompressionDictionary( nullptr /* prefetch_buffer */, false /* no_io */, nullptr /* get_context */, nullptr /* lookup_context */, &uncompression_dict); if (!s.ok()) { return s; } assert(uncompression_dict.GetValue()); const Slice& raw_dict = uncompression_dict.GetValue()->GetRawDict(); out_file->Append( "Compression Dictionary:\n" "--------------------------------------\n"); out_file->Append(" size (bytes): "); out_file->Append(ROCKSDB_NAMESPACE::ToString(raw_dict.size())); out_file->Append("\n\n"); out_file->Append(" HEX "); out_file->Append(raw_dict.ToString(true).c_str()); out_file->Append("\n\n"); } // Output range deletions block auto* range_del_iter = NewRangeTombstoneIterator(ReadOptions()); if (range_del_iter != nullptr) { range_del_iter->SeekToFirst(); if (range_del_iter->Valid()) { out_file->Append( "Range deletions:\n" "--------------------------------------\n" " "); for (; range_del_iter->Valid(); range_del_iter->Next()) { DumpKeyValue(range_del_iter->key(), range_del_iter->value(), out_file); } out_file->Append("\n"); } delete range_del_iter; } // Output Data blocks s = DumpDataBlocks(out_file); return s; } Status BlockBasedTable::DumpIndexBlock(WritableFile* out_file) { out_file->Append( "Index Details:\n" "--------------------------------------\n"); std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } out_file->Append(" Block key hex dump: Data block handle\n"); out_file->Append(" Block key ascii\n\n"); for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } Slice key = blockhandles_iter->key(); Slice user_key; InternalKey ikey; if (!rep_->index_key_includes_seq) { user_key = key; } else { ikey.DecodeFrom(key); user_key = ikey.user_key(); } out_file->Append(" HEX "); out_file->Append(user_key.ToString(true).c_str()); out_file->Append(": "); out_file->Append(blockhandles_iter->value() .ToString(true, rep_->index_has_first_key) .c_str()); out_file->Append("\n"); std::string str_key = user_key.ToString(); std::string res_key(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { res_key.append(&str_key[i], 1); res_key.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append("\n ------\n"); } out_file->Append("\n"); return Status::OK(); } Status BlockBasedTable::DumpDataBlocks(WritableFile* out_file) { std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } uint64_t datablock_size_min = std::numeric_limits::max(); uint64_t datablock_size_max = 0; uint64_t datablock_size_sum = 0; size_t block_id = 1; for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); block_id++, blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } BlockHandle bh = blockhandles_iter->value().handle; uint64_t datablock_size = bh.size(); datablock_size_min = std::min(datablock_size_min, datablock_size); datablock_size_max = std::max(datablock_size_max, datablock_size); datablock_size_sum += datablock_size; out_file->Append("Data Block # "); out_file->Append(ROCKSDB_NAMESPACE::ToString(block_id)); out_file->Append(" @ "); out_file->Append(blockhandles_iter->value().handle.ToString(true).c_str()); out_file->Append("\n"); out_file->Append("--------------------------------------\n"); std::unique_ptr datablock_iter; datablock_iter.reset(NewDataBlockIterator( ReadOptions(), blockhandles_iter->value().handle, /*input_iter=*/nullptr, /*type=*/BlockType::kData, /*get_context=*/nullptr, /*lookup_context=*/nullptr, Status(), /*prefetch_buffer=*/nullptr)); s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n\n"); continue; } for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n"); break; } DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_file); } out_file->Append("\n"); } uint64_t num_datablocks = block_id - 1; if (num_datablocks) { double datablock_size_avg = static_cast(datablock_size_sum) / num_datablocks; out_file->Append("Data Block Summary:\n"); out_file->Append("--------------------------------------"); out_file->Append("\n # data blocks: "); out_file->Append(ROCKSDB_NAMESPACE::ToString(num_datablocks)); out_file->Append("\n min data block size: "); out_file->Append(ROCKSDB_NAMESPACE::ToString(datablock_size_min)); out_file->Append("\n max data block size: "); out_file->Append(ROCKSDB_NAMESPACE::ToString(datablock_size_max)); out_file->Append("\n avg data block size: "); out_file->Append(ROCKSDB_NAMESPACE::ToString(datablock_size_avg)); out_file->Append("\n"); } return Status::OK(); } void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value, WritableFile* out_file) { InternalKey ikey; ikey.DecodeFrom(key); out_file->Append(" HEX "); out_file->Append(ikey.user_key().ToString(true).c_str()); out_file->Append(": "); out_file->Append(value.ToString(true).c_str()); out_file->Append("\n"); std::string str_key = ikey.user_key().ToString(); std::string str_value = value.ToString(); std::string res_key(""), res_value(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { if (str_key[i] == '\0') { res_key.append("\\0", 2); } else { res_key.append(&str_key[i], 1); } res_key.append(1, cspace); } for (size_t i = 0; i < str_value.size(); i++) { if (str_value[i] == '\0') { res_value.append("\\0", 2); } else { res_value.append(&str_value[i], 1); } res_value.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append(": "); out_file->Append(res_value.c_str()); out_file->Append("\n ------\n"); } } // namespace ROCKSDB_NAMESPACE