// Copyright (c) 2011-present, Facebook, Inc. All rights reserved // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include #include #include "cache/sharded_cache.h" #include "port/lang.h" #include "port/likely.h" #include "port/malloc.h" #include "port/port.h" #include "rocksdb/secondary_cache.h" #include "util/autovector.h" #include "util/distributed_mutex.h" namespace ROCKSDB_NAMESPACE { namespace lru_cache { // LRU cache implementation. This class is not thread-safe. // An entry is a variable length heap-allocated structure. // Entries are referenced by cache and/or by any external entity. // The cache keeps all its entries in a hash table. Some elements // are also stored on LRU list. // // LRUHandle can be in these states: // 1. Referenced externally AND in hash table. // In that case the entry is *not* in the LRU list // (refs >= 1 && in_cache == true) // 2. Not referenced externally AND in hash table. // In that case the entry is in the LRU list and can be freed. // (refs == 0 && in_cache == true) // 3. Referenced externally AND not in hash table. // In that case the entry is not in the LRU list and not in hash table. // The entry must be freed if refs becomes 0 in this state. // (refs >= 1 && in_cache == false) // If you call LRUCacheShard::Release enough times on an entry in state 1, it // will go into state 2. To move from state 1 to state 3, either call // LRUCacheShard::Erase or LRUCacheShard::Insert with the same key (but // possibly different value). To move from state 2 to state 1, use // LRUCacheShard::Lookup. // While refs > 0, public properties like value and deleter must not change. struct LRUHandle { Cache::ObjectPtr value; const Cache::CacheItemHelper* helper; // An entry is not added to the LRUHandleTable until the secondary cache // lookup is complete, so its safe to have this union. union { LRUHandle* next_hash; SecondaryCacheResultHandle* sec_handle; }; LRUHandle* next; LRUHandle* prev; size_t total_charge; // TODO(opt): Only allow uint32_t? size_t key_length; // The hash of key(). Used for fast sharding and comparisons. uint32_t hash; // The number of external refs to this entry. The cache itself is not counted. uint32_t refs; // Mutable flags - access controlled by mutex // The m_ and M_ prefixes (and im_ and IM_ later) are to hopefully avoid // checking an M_ flag on im_flags or an IM_ flag on m_flags. uint8_t m_flags; enum MFlags : uint8_t { // Whether this entry is referenced by the hash table. M_IN_CACHE = (1 << 0), // Whether this entry has had any lookups (hits). M_HAS_HIT = (1 << 1), // Whether this entry is in high-pri pool. M_IN_HIGH_PRI_POOL = (1 << 2), // Whether this entry is in low-pri pool. M_IN_LOW_PRI_POOL = (1 << 3), }; // "Immutable" flags - only set in single-threaded context and then // can be accessed without mutex uint8_t im_flags; enum ImFlags : uint8_t { // Whether this entry is high priority entry. IM_IS_HIGH_PRI = (1 << 0), // Whether this entry is low priority entry. IM_IS_LOW_PRI = (1 << 1), // Is the handle still being read from a lower tier. IM_IS_PENDING = (1 << 2), // Marks result handles that should not be inserted into cache IM_IS_STANDALONE = (1 << 3), }; // Beginning of the key (MUST BE THE LAST FIELD IN THIS STRUCT!) char key_data[1]; Slice key() const { return Slice(key_data, key_length); } // For HandleImpl concept uint32_t GetHash() const { return hash; } // Increase the reference count by 1. void Ref() { refs++; } // Just reduce the reference count by 1. Return true if it was last reference. bool Unref() { assert(refs > 0); refs--; return refs == 0; } // Return true if there are external refs, false otherwise. bool HasRefs() const { return refs > 0; } bool InCache() const { return m_flags & M_IN_CACHE; } bool IsHighPri() const { return im_flags & IM_IS_HIGH_PRI; } bool InHighPriPool() const { return m_flags & M_IN_HIGH_PRI_POOL; } bool IsLowPri() const { return im_flags & IM_IS_LOW_PRI; } bool InLowPriPool() const { return m_flags & M_IN_LOW_PRI_POOL; } bool HasHit() const { return m_flags & M_HAS_HIT; } bool IsSecondaryCacheCompatible() const { return helper->size_cb != nullptr; } bool IsPending() const { return im_flags & IM_IS_PENDING; } bool IsStandalone() const { return im_flags & IM_IS_STANDALONE; } void SetInCache(bool in_cache) { if (in_cache) { m_flags |= M_IN_CACHE; } else { m_flags &= ~M_IN_CACHE; } } void SetPriority(Cache::Priority priority) { if (priority == Cache::Priority::HIGH) { im_flags |= IM_IS_HIGH_PRI; im_flags &= ~IM_IS_LOW_PRI; } else if (priority == Cache::Priority::LOW) { im_flags &= ~IM_IS_HIGH_PRI; im_flags |= IM_IS_LOW_PRI; } else { im_flags &= ~IM_IS_HIGH_PRI; im_flags &= ~IM_IS_LOW_PRI; } } void SetInHighPriPool(bool in_high_pri_pool) { if (in_high_pri_pool) { m_flags |= M_IN_HIGH_PRI_POOL; } else { m_flags &= ~M_IN_HIGH_PRI_POOL; } } void SetInLowPriPool(bool in_low_pri_pool) { if (in_low_pri_pool) { m_flags |= M_IN_LOW_PRI_POOL; } else { m_flags &= ~M_IN_LOW_PRI_POOL; } } void SetHit() { m_flags |= M_HAS_HIT; } void SetIsPending(bool pending) { if (pending) { im_flags |= IM_IS_PENDING; } else { im_flags &= ~IM_IS_PENDING; } } void SetIsStandalone(bool is_standalone) { if (is_standalone) { im_flags |= IM_IS_STANDALONE; } else { im_flags &= ~IM_IS_STANDALONE; } } void Free(MemoryAllocator* allocator) { assert(refs == 0); if (UNLIKELY(IsPending())) { assert(sec_handle != nullptr); SecondaryCacheResultHandle* tmp_sec_handle = sec_handle; tmp_sec_handle->Wait(); value = tmp_sec_handle->Value(); delete tmp_sec_handle; } assert(helper); if (helper->del_cb) { helper->del_cb(value, allocator); } free(this); } inline size_t CalcuMetaCharge( CacheMetadataChargePolicy metadata_charge_policy) const { if (metadata_charge_policy != kFullChargeCacheMetadata) { return 0; } else { #ifdef ROCKSDB_MALLOC_USABLE_SIZE return malloc_usable_size( const_cast(static_cast(this))); #else // This is the size that is used when a new handle is created. return sizeof(LRUHandle) - 1 + key_length; #endif } } // Calculate the memory usage by metadata. inline void CalcTotalCharge( size_t charge, CacheMetadataChargePolicy metadata_charge_policy) { total_charge = charge + CalcuMetaCharge(metadata_charge_policy); } inline size_t GetCharge( CacheMetadataChargePolicy metadata_charge_policy) const { size_t meta_charge = CalcuMetaCharge(metadata_charge_policy); assert(total_charge >= meta_charge); return total_charge - meta_charge; } }; // We provide our own simple hash table since it removes a whole bunch // of porting hacks and is also faster than some of the built-in hash // table implementations in some of the compiler/runtime combinations // we have tested. E.g., readrandom speeds up by ~5% over the g++ // 4.4.3's builtin hashtable. class LRUHandleTable { public: explicit LRUHandleTable(int max_upper_hash_bits, MemoryAllocator* allocator); ~LRUHandleTable(); LRUHandle* Lookup(const Slice& key, uint32_t hash); LRUHandle* Insert(LRUHandle* h); LRUHandle* Remove(const Slice& key, uint32_t hash); template void ApplyToEntriesRange(T func, size_t index_begin, size_t index_end) { for (size_t i = index_begin; i < index_end; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { auto n = h->next_hash; assert(h->InCache()); func(h); h = n; } } } int GetLengthBits() const { return length_bits_; } size_t GetOccupancyCount() const { return elems_; } MemoryAllocator* GetAllocator() const { return allocator_; } private: // Return a pointer to slot that points to a cache entry that // matches key/hash. If there is no such cache entry, return a // pointer to the trailing slot in the corresponding linked list. LRUHandle** FindPointer(const Slice& key, uint32_t hash); void Resize(); // Number of hash bits (upper because lower bits used for sharding) // used for table index. Length == 1 << length_bits_ int length_bits_; // The table consists of an array of buckets where each bucket is // a linked list of cache entries that hash into the bucket. std::unique_ptr list_; // Number of elements currently in the table. uint32_t elems_; // Set from max_upper_hash_bits (see constructor). const int max_length_bits_; // From Cache, needed for delete MemoryAllocator* const allocator_; }; // A single shard of sharded cache. class ALIGN_AS(CACHE_LINE_SIZE) LRUCacheShard final : public CacheShardBase { public: LRUCacheShard(size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio, double low_pri_pool_ratio, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, int max_upper_hash_bits, MemoryAllocator* allocator, SecondaryCache* secondary_cache); public: // Type definitions expected as parameter to ShardedCache using HandleImpl = LRUHandle; using HashVal = uint32_t; using HashCref = uint32_t; public: // Function definitions expected as parameter to ShardedCache static inline HashVal ComputeHash(const Slice& key) { return Lower32of64(GetSliceNPHash64(key)); } // Separate from constructor so caller can easily make an array of LRUCache // if current usage is more than new capacity, the function will attempt to // free the needed space. void SetCapacity(size_t capacity); // Set the flag to reject insertion if cache if full. void SetStrictCapacityLimit(bool strict_capacity_limit); // Set percentage of capacity reserved for high-pri cache entries. void SetHighPriorityPoolRatio(double high_pri_pool_ratio); // Set percentage of capacity reserved for low-pri cache entries. void SetLowPriorityPoolRatio(double low_pri_pool_ratio); // Like Cache methods, but with an extra "hash" parameter. Status Insert(const Slice& key, uint32_t hash, Cache::ObjectPtr value, const Cache::CacheItemHelper* helper, size_t charge, LRUHandle** handle, Cache::Priority priority); LRUHandle* Lookup(const Slice& key, uint32_t hash, const Cache::CacheItemHelper* helper, Cache::CreateContext* create_context, Cache::Priority priority, bool wait, Statistics* stats); bool Release(LRUHandle* handle, bool useful, bool erase_if_last_ref); bool IsReady(LRUHandle* /*handle*/); void Wait(LRUHandle* /*handle*/) {} bool Ref(LRUHandle* handle); void Erase(const Slice& key, uint32_t hash); // Although in some platforms the update of size_t is atomic, to make sure // GetUsage() and GetPinnedUsage() work correctly under any platform, we'll // protect them with mutex_. size_t GetUsage() const; size_t GetPinnedUsage() const; size_t GetOccupancyCount() const; size_t GetTableAddressCount() const; void ApplyToSomeEntries( const std::function& callback, size_t average_entries_per_lock, size_t* state); void EraseUnRefEntries(); public: // other function definitions void TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri, LRUHandle** lru_bottom_pri); // Retrieves number of elements in LRU, for unit test purpose only. // Not threadsafe. size_t TEST_GetLRUSize(); // Retrieves high pri pool ratio double GetHighPriPoolRatio(); // Retrieves low pri pool ratio double GetLowPriPoolRatio(); void AppendPrintableOptions(std::string& /*str*/) const; private: friend class LRUCache; // Insert an item into the hash table and, if handle is null, insert into // the LRU list. Older items are evicted as necessary. If the cache is full // and free_handle_on_fail is true, the item is deleted and handle is set to // nullptr. Status InsertItem(LRUHandle* item, LRUHandle** handle, bool free_handle_on_fail); // Promote an item looked up from the secondary cache to the LRU cache. // The item may be still in the secondary cache. // It is only inserted into the hash table and not the LRU list, and only // if the cache is not at full capacity, as is the case during Insert. The // caller should hold a reference on the LRUHandle. When the caller releases // the last reference, the item is added to the LRU list. // The item is promoted to the high pri or low pri pool as specified by the // caller in Lookup. void Promote(LRUHandle* e); void LRU_Remove(LRUHandle* e); void LRU_Insert(LRUHandle* e); // Overflow the last entry in high-pri pool to low-pri pool until size of // high-pri pool is no larger than the size specify by high_pri_pool_pct. void MaintainPoolSize(); // Free some space following strict LRU policy until enough space // to hold (usage_ + charge) is freed or the lru list is empty // This function is not thread safe - it needs to be executed while // holding the mutex_. void EvictFromLRU(size_t charge, autovector* deleted); // Try to insert the evicted handles into the secondary cache. void TryInsertIntoSecondaryCache(autovector evicted_handles); // Initialized before use. size_t capacity_; // Memory size for entries in high-pri pool. size_t high_pri_pool_usage_; // Memory size for entries in low-pri pool. size_t low_pri_pool_usage_; // Whether to reject insertion if cache reaches its full capacity. bool strict_capacity_limit_; // Ratio of capacity reserved for high priority cache entries. double high_pri_pool_ratio_; // High-pri pool size, equals to capacity * high_pri_pool_ratio. // Remember the value to avoid recomputing each time. double high_pri_pool_capacity_; // Ratio of capacity reserved for low priority cache entries. double low_pri_pool_ratio_; // Low-pri pool size, equals to capacity * low_pri_pool_ratio. // Remember the value to avoid recomputing each time. double low_pri_pool_capacity_; // Dummy head of LRU list. // lru.prev is newest entry, lru.next is oldest entry. // LRU contains items which can be evicted, ie reference only by cache LRUHandle lru_; // Pointer to head of low-pri pool in LRU list. LRUHandle* lru_low_pri_; // Pointer to head of bottom-pri pool in LRU list. LRUHandle* lru_bottom_pri_; // ------------^^^^^^^^^^^^^----------- // Not frequently modified data members // ------------------------------------ // // We separate data members that are updated frequently from the ones that // are not frequently updated so that they don't share the same cache line // which will lead into false cache sharing // // ------------------------------------ // Frequently modified data members // ------------vvvvvvvvvvvvv----------- LRUHandleTable table_; // Memory size for entries residing in the cache. size_t usage_; // Memory size for entries residing only in the LRU list. size_t lru_usage_; // mutex_ protects the following state. // We don't count mutex_ as the cache's internal state so semantically we // don't mind mutex_ invoking the non-const actions. mutable DMutex mutex_; // Owned by LRUCache SecondaryCache* secondary_cache_; }; class LRUCache #ifdef NDEBUG final #endif : public ShardedCache { public: LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, double low_pri_pool_ratio, std::shared_ptr memory_allocator = nullptr, bool use_adaptive_mutex = kDefaultToAdaptiveMutex, CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata, std::shared_ptr secondary_cache = nullptr); const char* Name() const override { return "LRUCache"; } ObjectPtr Value(Handle* handle) override; size_t GetCharge(Handle* handle) const override; const CacheItemHelper* GetCacheItemHelper(Handle* handle) const override; void WaitAll(std::vector& handles) override; // Retrieves number of elements in LRU, for unit test purpose only. size_t TEST_GetLRUSize(); // Retrieves high pri pool ratio. double GetHighPriPoolRatio(); void AppendPrintableOptions(std::string& str) const override; private: std::shared_ptr secondary_cache_; }; } // namespace lru_cache using LRUCache = lru_cache::LRUCache; using LRUHandle = lru_cache::LRUHandle; using LRUCacheShard = lru_cache::LRUCacheShard; } // namespace ROCKSDB_NAMESPACE