// Copyright (c) 2019-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Implementation details of various Bloom filter implementations used in // RocksDB. (DynamicBloom is in a separate file for now because it // supports concurrent write.) #pragma once #include <stddef.h> #include <stdint.h> #include <cmath> #include "rocksdb/slice.h" #include "util/hash.h" #ifdef HAVE_AVX2 #include <immintrin.h> #endif namespace ROCKSDB_NAMESPACE { class BloomMath { public: // False positive rate of a standard Bloom filter, for given ratio of // filter memory bits to added keys, and number of probes per operation. // (The false positive rate is effectively independent of scale, assuming // the implementation scales OK.) static double StandardFpRate(double bits_per_key, int num_probes) { // Standard very-good-estimate formula. See // https://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives return std::pow(1.0 - std::exp(-num_probes / bits_per_key), num_probes); } // False positive rate of a "blocked"/"shareded"/"cache-local" Bloom filter, // for given ratio of filter memory bits to added keys, number of probes per // operation (all within the given block or cache line size), and block or // cache line size. static double CacheLocalFpRate(double bits_per_key, int num_probes, int cache_line_bits) { double keys_per_cache_line = cache_line_bits / bits_per_key; // A reasonable estimate is the average of the FP rates for one standard // deviation above and below the mean bucket occupancy. See // https://github.com/facebook/rocksdb/wiki/RocksDB-Bloom-Filter#the-math double keys_stddev = std::sqrt(keys_per_cache_line); double crowded_fp = StandardFpRate( cache_line_bits / (keys_per_cache_line + keys_stddev), num_probes); double uncrowded_fp = StandardFpRate( cache_line_bits / (keys_per_cache_line - keys_stddev), num_probes); return (crowded_fp + uncrowded_fp) / 2; } // False positive rate of querying a new item against `num_keys` items, all // hashed to `fingerprint_bits` bits. (This assumes the fingerprint hashes // themselves are stored losslessly. See Section 4 of // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf) static double FingerprintFpRate(size_t num_keys, int fingerprint_bits) { double inv_fingerprint_space = std::pow(0.5, fingerprint_bits); // Base estimate assumes each key maps to a unique fingerprint. // Could be > 1 in extreme cases. double base_estimate = num_keys * inv_fingerprint_space; // To account for potential overlap, we choose between two formulas if (base_estimate > 0.0001) { // A very good formula assuming we don't construct a floating point // number extremely close to 1. Always produces a probability < 1. return 1.0 - std::exp(-base_estimate); } else { // A very good formula when base_estimate is far below 1. (Subtract // away the integral-approximated sum that some key has same hash as // one coming before it in a list.) return base_estimate - (base_estimate * base_estimate * 0.5); } } // Returns the probably of either of two independent(-ish) events // happening, given their probabilities. (This is useful for combining // results from StandardFpRate or CacheLocalFpRate with FingerprintFpRate // for a hash-efficient Bloom filter's FP rate. See Section 4 of // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf) static double IndependentProbabilitySum(double rate1, double rate2) { // Use formula that avoids floating point extremely close to 1 if // rates are extremely small. return rate1 + rate2 - (rate1 * rate2); } }; // A fast, flexible, and accurate cache-local Bloom implementation with // SIMD-optimized query performance (currently using AVX2 on Intel). Write // performance and non-SIMD read are very good, benefiting from fastrange32 // used in place of % and single-cycle multiplication on recent processors. // // Most other SIMD Bloom implementations sacrifice flexibility and/or // accuracy by requiring num_probes to be a power of two and restricting // where each probe can occur in a cache line. This implementation sacrifices // SIMD-optimization for add (might still be possible, especially with AVX512) // in favor of allowing any num_probes, not crossing cache line boundary, // and accuracy close to theoretical best accuracy for a cache-local Bloom. // E.g. theoretical best for 10 bits/key, num_probes=6, and 512-bit bucket // (Intel cache line size) is 0.9535% FP rate. This implementation yields // about 0.957%. (Compare to LegacyLocalityBloomImpl<false> at 1.138%, or // about 0.951% for 1024-bit buckets, cache line size for some ARM CPUs.) // // This implementation can use a 32-bit hash (let h2 be h1 * 0x9e3779b9) or // a 64-bit hash (split into two uint32s). With many millions of keys, the // false positive rate associated with using a 32-bit hash can dominate the // false positive rate of the underlying filter. At 10 bits/key setting, the // inflection point is about 40 million keys, so 32-bit hash is a bad idea // with 10s of millions of keys or more. // // Despite accepting a 64-bit hash, this implementation uses 32-bit fastrange // to pick a cache line, which can be faster than 64-bit in some cases. // This only hurts accuracy as you get into 10s of GB for a single filter, // and accuracy abruptly breaks down at 256GB (2^32 cache lines). Switch to // 64-bit fastrange if you need filters so big. ;) // // Using only a 32-bit input hash within each cache line has negligible // impact for any reasonable cache line / bucket size, for arbitrary filter // size, and potentially saves intermediate data size in some cases vs. // tracking full 64 bits. (Even in an implementation using 64-bit arithmetic // to generate indices, I might do the same, as a single multiplication // suffices to generate a sufficiently mixed 64 bits from 32 bits.) // // This implementation is currently tied to Intel cache line size, 64 bytes == // 512 bits. If there's sufficient demand for other cache line sizes, this is // a pretty good implementation to extend, but slight performance enhancements // are possible with an alternate implementation (probably not very compatible // with SIMD): // (1) Use rotation in addition to multiplication for remixing // (like murmur hash). (Using multiplication alone *slightly* hurts accuracy // because lower bits never depend on original upper bits.) // (2) Extract more than one bit index from each re-mix. (Only if rotation // or similar is part of remix, because otherwise you're making the // multiplication-only problem worse.) // (3) Re-mix full 64 bit hash, to get maximum number of bit indices per // re-mix. // class FastLocalBloomImpl { public: // NOTE: this has only been validated to enough accuracy for producing // reasonable warnings / user feedback, not for making functional decisions. static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes, int hash_bits) { return BloomMath::IndependentProbabilitySum( BloomMath::CacheLocalFpRate(8.0 * bytes / keys, num_probes, /*cache line bits*/ 512), BloomMath::FingerprintFpRate(keys, hash_bits)); } static inline int ChooseNumProbes(int millibits_per_key) { // Since this implementation can (with AVX2) make up to 8 probes // for the same cost, we pick the most accurate num_probes, based // on actual tests of the implementation. Note that for higher // bits/key, the best choice for cache-local Bloom can be notably // smaller than standard bloom, e.g. 9 instead of 11 @ 16 b/k. if (millibits_per_key <= 2080) { return 1; } else if (millibits_per_key <= 3580) { return 2; } else if (millibits_per_key <= 5100) { return 3; } else if (millibits_per_key <= 6640) { return 4; } else if (millibits_per_key <= 8300) { return 5; } else if (millibits_per_key <= 10070) { return 6; } else if (millibits_per_key <= 11720) { return 7; } else if (millibits_per_key <= 14001) { // Would be something like <= 13800 but sacrificing *slightly* for // more settings using <= 8 probes. return 8; } else if (millibits_per_key <= 16050) { return 9; } else if (millibits_per_key <= 18300) { return 10; } else if (millibits_per_key <= 22001) { return 11; } else if (millibits_per_key <= 25501) { return 12; } else if (millibits_per_key > 50000) { // Top out at 24 probes (three sets of 8) return 24; } else { // Roughly optimal choices for remaining range // e.g. // 28000 -> 12, 28001 -> 13 // 50000 -> 23, 50001 -> 24 return (millibits_per_key - 1) / 2000 - 1; } } static inline void AddHash(uint32_t h1, uint32_t h2, uint32_t len_bytes, int num_probes, char *data) { uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6; AddHashPrepared(h2, num_probes, data + bytes_to_cache_line); } static inline void AddHashPrepared(uint32_t h2, int num_probes, char *data_at_cache_line) { uint32_t h = h2; for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) { // 9-bit address within 512 bit cache line int bitpos = h >> (32 - 9); data_at_cache_line[bitpos >> 3] |= (uint8_t{1} << (bitpos & 7)); } } static inline void PrepareHash(uint32_t h1, uint32_t len_bytes, const char *data, uint32_t /*out*/ *byte_offset) { uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6; PREFETCH(data + bytes_to_cache_line, 0 /* rw */, 1 /* locality */); PREFETCH(data + bytes_to_cache_line + 63, 0 /* rw */, 1 /* locality */); *byte_offset = bytes_to_cache_line; } static inline bool HashMayMatch(uint32_t h1, uint32_t h2, uint32_t len_bytes, int num_probes, const char *data) { uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6; return HashMayMatchPrepared(h2, num_probes, data + bytes_to_cache_line); } static inline bool HashMayMatchPrepared(uint32_t h2, int num_probes, const char *data_at_cache_line) { uint32_t h = h2; #ifdef HAVE_AVX2 int rem_probes = num_probes; // NOTE: For better performance for num_probes in {1, 2, 9, 10, 17, 18, // etc.} one can insert specialized code for rem_probes <= 2, bypassing // the SIMD code in those cases. There is a detectable but minor overhead // applied to other values of num_probes (when not statically determined), // but smoother performance curve vs. num_probes. But for now, when // in doubt, don't add unnecessary code. // Powers of 32-bit golden ratio, mod 2**32. const __m256i multipliers = _mm256_setr_epi32(0x00000001, 0x9e3779b9, 0xe35e67b1, 0x734297e9, 0x35fbe861, 0xdeb7c719, 0x448b211, 0x3459b749); for (;;) { // Eight copies of hash __m256i hash_vector = _mm256_set1_epi32(h); // Same effect as repeated multiplication by 0x9e3779b9 thanks to // associativity of multiplication. hash_vector = _mm256_mullo_epi32(hash_vector, multipliers); // Now the top 9 bits of each of the eight 32-bit values in // hash_vector are bit addresses for probes within the cache line. // While the platform-independent code uses byte addressing (6 bits // to pick a byte + 3 bits to pick a bit within a byte), here we work // with 32-bit words (4 bits to pick a word + 5 bits to pick a bit // within a word) because that works well with AVX2 and is equivalent // under little-endian. // Shift each right by 28 bits to get 4-bit word addresses. const __m256i word_addresses = _mm256_srli_epi32(hash_vector, 28); // Gather 32-bit values spread over 512 bits by 4-bit address. In // essence, we are dereferencing eight pointers within the cache // line. // // Option 1: AVX2 gather (seems to be a little slow - understandable) // const __m256i value_vector = // _mm256_i32gather_epi32(static_cast<const int // *>(data_at_cache_line), // word_addresses, // /*bytes / i32*/ 4); // END Option 1 // Potentially unaligned as we're not *always* cache-aligned -> loadu const __m256i *mm_data = reinterpret_cast<const __m256i *>(data_at_cache_line); __m256i lower = _mm256_loadu_si256(mm_data); __m256i upper = _mm256_loadu_si256(mm_data + 1); // Option 2: AVX512VL permute hack // Only negligibly faster than Option 3, so not yet worth supporting // const __m256i value_vector = // _mm256_permutex2var_epi32(lower, word_addresses, upper); // END Option 2 // Option 3: AVX2 permute+blend hack // Use lowest three bits to order probing values, as if all from same // 256 bit piece. lower = _mm256_permutevar8x32_epi32(lower, word_addresses); upper = _mm256_permutevar8x32_epi32(upper, word_addresses); // Just top 1 bit of address, to select between lower and upper. const __m256i upper_lower_selector = _mm256_srai_epi32(hash_vector, 31); // Finally: the next 8 probed 32-bit values, in probing sequence order. const __m256i value_vector = _mm256_blendv_epi8(lower, upper, upper_lower_selector); // END Option 3 // We might not need to probe all 8, so build a mask for selecting only // what we need. (The k_selector(s) could be pre-computed but that // doesn't seem to make a noticeable performance difference.) const __m256i zero_to_seven = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); // Subtract rem_probes from each of those constants __m256i k_selector = _mm256_sub_epi32(zero_to_seven, _mm256_set1_epi32(rem_probes)); // Negative after subtract -> use/select // Keep only high bit (logical shift right each by 31). k_selector = _mm256_srli_epi32(k_selector, 31); // Strip off the 4 bit word address (shift left) __m256i bit_addresses = _mm256_slli_epi32(hash_vector, 4); // And keep only 5-bit (32 - 27) bit-within-32-bit-word addresses. bit_addresses = _mm256_srli_epi32(bit_addresses, 27); // Build a bit mask const __m256i bit_mask = _mm256_sllv_epi32(k_selector, bit_addresses); // Like ((~value_vector) & bit_mask) == 0) bool match = _mm256_testc_si256(value_vector, bit_mask) != 0; // This check first so that it's easy for branch predictor to optimize // num_probes <= 8 case, making it free of unpredictable branches. if (rem_probes <= 8) { return match; } else if (!match) { return false; } // otherwise // Need another iteration. 0xab25f4c1 == golden ratio to the 8th power h *= 0xab25f4c1; rem_probes -= 8; } #else for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) { // 9-bit address within 512 bit cache line int bitpos = h >> (32 - 9); if ((data_at_cache_line[bitpos >> 3] & (char(1) << (bitpos & 7))) == 0) { return false; } } return true; #endif } }; // A legacy Bloom filter implementation with no locality of probes (slow). // It uses double hashing to generate a sequence of hash values. // Asymptotic analysis is in [Kirsch,Mitzenmacher 2006], but known to have // subtle accuracy flaws for practical sizes [Dillinger,Manolios 2004]. // // DO NOT REUSE // class LegacyNoLocalityBloomImpl { public: static inline int ChooseNumProbes(int bits_per_key) { // We intentionally round down to reduce probing cost a little bit int num_probes = static_cast<int>(bits_per_key * 0.69); // 0.69 =~ ln(2) if (num_probes < 1) num_probes = 1; if (num_probes > 30) num_probes = 30; return num_probes; } static inline void AddHash(uint32_t h, uint32_t total_bits, int num_probes, char *data) { const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits for (int i = 0; i < num_probes; i++) { const uint32_t bitpos = h % total_bits; data[bitpos / 8] |= (1 << (bitpos % 8)); h += delta; } } static inline bool HashMayMatch(uint32_t h, uint32_t total_bits, int num_probes, const char *data) { const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits for (int i = 0; i < num_probes; i++) { const uint32_t bitpos = h % total_bits; if ((data[bitpos / 8] & (1 << (bitpos % 8))) == 0) { return false; } h += delta; } return true; } }; // A legacy Bloom filter implementation with probes local to a single // cache line (fast). Because SST files might be transported between // platforms, the cache line size is a parameter rather than hard coded. // (But if specified as a constant parameter, an optimizing compiler // should take advantage of that.) // // When ExtraRotates is false, this implementation is notably deficient in // accuracy. Specifically, it uses double hashing with a 1/512 chance of the // increment being zero (when cache line size is 512 bits). Thus, there's a // 1/512 chance of probing only one index, which we'd expect to incur about // a 1/2 * 1/512 or absolute 0.1% FP rate penalty. More detail at // https://github.com/facebook/rocksdb/issues/4120 // // DO NOT REUSE // template <bool ExtraRotates> class LegacyLocalityBloomImpl { private: static inline uint32_t GetLine(uint32_t h, uint32_t num_lines) { uint32_t offset_h = ExtraRotates ? (h >> 11) | (h << 21) : h; return offset_h % num_lines; } public: // NOTE: this has only been validated to enough accuracy for producing // reasonable warnings / user feedback, not for making functional decisions. static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes) { double bits_per_key = 8.0 * bytes / keys; double filter_rate = BloomMath::CacheLocalFpRate(bits_per_key, num_probes, /*cache line bits*/ 512); if (!ExtraRotates) { // Good estimate of impact of flaw in index computation. // Adds roughly 0.002 around 50 bits/key and 0.001 around 100 bits/key. // The + 22 shifts it nicely to fit for lower bits/key. filter_rate += 0.1 / (bits_per_key * 0.75 + 22); } else { // Not yet validated assert(false); } // Always uses 32-bit hash double fingerprint_rate = BloomMath::FingerprintFpRate(keys, 32); return BloomMath::IndependentProbabilitySum(filter_rate, fingerprint_rate); } static inline void AddHash(uint32_t h, uint32_t num_lines, int num_probes, char *data, int log2_cache_line_bytes) { const int log2_cache_line_bits = log2_cache_line_bytes + 3; char *data_at_offset = data + (GetLine(h, num_lines) << log2_cache_line_bytes); const uint32_t delta = (h >> 17) | (h << 15); for (int i = 0; i < num_probes; ++i) { // Mask to bit-within-cache-line address const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1); data_at_offset[bitpos / 8] |= (1 << (bitpos % 8)); if (ExtraRotates) { h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits)); } h += delta; } } static inline void PrepareHashMayMatch(uint32_t h, uint32_t num_lines, const char *data, uint32_t /*out*/ *byte_offset, int log2_cache_line_bytes) { uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes; PREFETCH(data + b, 0 /* rw */, 1 /* locality */); PREFETCH(data + b + ((1 << log2_cache_line_bytes) - 1), 0 /* rw */, 1 /* locality */); *byte_offset = b; } static inline bool HashMayMatch(uint32_t h, uint32_t num_lines, int num_probes, const char *data, int log2_cache_line_bytes) { uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes; return HashMayMatchPrepared(h, num_probes, data + b, log2_cache_line_bytes); } static inline bool HashMayMatchPrepared(uint32_t h, int num_probes, const char *data_at_offset, int log2_cache_line_bytes) { const int log2_cache_line_bits = log2_cache_line_bytes + 3; const uint32_t delta = (h >> 17) | (h << 15); for (int i = 0; i < num_probes; ++i) { // Mask to bit-within-cache-line address const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1); if (((data_at_offset[bitpos / 8]) & (1 << (bitpos % 8))) == 0) { return false; } if (ExtraRotates) { h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits)); } h += delta; } return true; } }; } // namespace ROCKSDB_NAMESPACE