#include #include #include #include "rocksdb/db.h" #include "rocksdb/perf_context.h" #include "util/histogram.h" #include "util/stop_watch.h" #include "util/testharness.h" bool FLAGS_random_key = false; int FLAGS_total_keys = 100; int FLAGS_write_buffer_size = 1000000000; int FLAGS_max_write_buffer_number = 8; int FLAGS_min_write_buffer_number_to_merge = 7; // Path to the database on file system const std::string kDbName = leveldb::test::TmpDir() + "/perf_context_test"; namespace leveldb { std::shared_ptr OpenDb() { DB* db; Options options; options.create_if_missing = true; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; Status s = DB::Open(options, kDbName, &db); ASSERT_OK(s); return std::shared_ptr(db); } class PerfContextTest { }; TEST(PerfContextTest, StopWatchNanoOverhead) { // profile the timer cost by itself! const int kTotalIterations = 1000000; std::vector timings(kTotalIterations); StopWatchNano timer(Env::Default(), true); for (auto& timing : timings) { timing = timer.ElapsedNanos(true /* reset */); } HistogramImpl histogram; for (const auto timing : timings) { histogram.Add(timing); } std::cout << histogram.ToString(); } TEST(PerfContextTest, StopWatchOverhead) { // profile the timer cost by itself! const int kTotalIterations = 1000000; std::vector timings(kTotalIterations); StopWatch timer(Env::Default()); for (auto& timing : timings) { timing = timer.ElapsedMicros(); } HistogramImpl histogram; uint64_t prev_timing = 0; for (const auto timing : timings) { histogram.Add(timing - prev_timing); prev_timing = timing; } std::cout << histogram.ToString(); } void ProfileKeyComparison() { DestroyDB(kDbName, Options()); // Start this test with a fresh DB auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; uint64_t total_user_key_comparison_get = 0; uint64_t total_user_key_comparison_put = 0; uint64_t max_user_key_comparison_get = 0; std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n"; for (int i = 0; i < FLAGS_total_keys; ++i) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); perf_context.Reset(); db->Put(write_options, key, value); total_user_key_comparison_put += perf_context.user_key_comparison_count; perf_context.Reset(); db->Get(read_options, key, &value); total_user_key_comparison_get += perf_context.user_key_comparison_count; max_user_key_comparison_get = std::max(max_user_key_comparison_get, perf_context.user_key_comparison_count); } std::cout << "total user key comparison get: " << total_user_key_comparison_get << "\n" << "total user key comparison put: " << total_user_key_comparison_put << "\n" << "max user key comparison get: " << max_user_key_comparison_get << "\n" << "avg user key comparison get:" << total_user_key_comparison_get/FLAGS_total_keys << "\n"; } TEST(PerfContextTest, KeyComparisonCount) { SetPerfLevel(kEnableCount); ProfileKeyComparison(); SetPerfLevel(kDisable); ProfileKeyComparison(); SetPerfLevel(kEnableTime); ProfileKeyComparison(); } // make perf_context_test // export LEVELDB_TESTS=PerfContextTest.SeekKeyComparison // For one memtable: // ./perf_context_test --write_buffer_size=500000 --total_keys=10000 // For two memtables: // ./perf_context_test --write_buffer_size=250000 --total_keys=10000 // Specify --random_key=1 to shuffle the key before insertion // Results show that, for sequential insertion, worst-case Seek Key comparison // is close to the total number of keys (linear), when there is only one // memtable. When there are two memtables, even the avg Seek Key comparison // starts to become linear to the input size. TEST(PerfContextTest, SeekKeyComparison) { DestroyDB(kDbName, Options()); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n"; std::vector keys; for (int i = 0; i < FLAGS_total_keys; ++i) { keys.push_back(i); } if (FLAGS_random_key) { std::random_shuffle(keys.begin(), keys.end()); } for (const int i : keys) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); db->Put(write_options, key, value); } HistogramImpl histogram; for (int i = 0; i < FLAGS_total_keys; ++i) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); std::unique_ptr iter(db->NewIterator(read_options)); perf_context.Reset(); iter->Seek(key); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(iter->value().ToString(), value); histogram.Add(perf_context.user_key_comparison_count); } std::cout << histogram.ToString(); } } int main(int argc, char** argv) { for (int i = 1; i < argc; i++) { int n; char junk; if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } if (sscanf(argv[i], "--total_keys=%d%c", &n, &junk) == 1) { FLAGS_total_keys = n; } if (sscanf(argv[i], "--random_key=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_random_key = n; } } std::cout << kDbName << "\n"; leveldb::test::RunAllTests(); return 0; }