// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/compaction_picker.h" #include #include "util/statistics.h" namespace rocksdb { namespace { uint64_t TotalFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->file_size; } return sum; } // Multiple two operands. If they overflow, return op1. uint64_t MultiplyCheckOverflow(uint64_t op1, int op2) { if (op1 == 0) { return 0; } if (op2 <= 0) { return op1; } uint64_t casted_op2 = (uint64_t) op2; if (std::numeric_limits::max() / op1 < casted_op2) { return op1; } return op1 * casted_op2; } } // anonymous namespace CompactionPicker::CompactionPicker(const ColumnFamilyOptions* options, const InternalKeyComparator* icmp) : compactions_in_progress_(options->num_levels), options_(options), num_levels_(options->num_levels), icmp_(icmp) { max_file_size_.reset(new uint64_t[NumberLevels()]); level_max_bytes_.reset(new uint64_t[NumberLevels()]); int target_file_size_multiplier = options_->target_file_size_multiplier; int max_bytes_multiplier = options_->max_bytes_for_level_multiplier; for (int i = 0; i < NumberLevels(); i++) { if (i == 0 && options_->compaction_style == kCompactionStyleUniversal) { max_file_size_[i] = ULLONG_MAX; level_max_bytes_[i] = options_->max_bytes_for_level_base; } else if (i > 1) { max_file_size_[i] = MultiplyCheckOverflow(max_file_size_[i - 1], target_file_size_multiplier); level_max_bytes_[i] = MultiplyCheckOverflow( MultiplyCheckOverflow(level_max_bytes_[i - 1], max_bytes_multiplier), options_->max_bytes_for_level_multiplier_additional[i - 1]); } else { max_file_size_[i] = options_->target_file_size_base; level_max_bytes_[i] = options_->max_bytes_for_level_base; } } } CompactionPicker::~CompactionPicker() {} void CompactionPicker::SizeBeingCompacted(std::vector& sizes) { for (int level = 0; level < NumberLevels() - 1; level++) { uint64_t total = 0; for (auto c : compactions_in_progress_[level]) { assert(c->level() == level); for (int i = 0; i < c->num_input_files(0); i++) { total += c->input(0,i)->file_size; } } sizes[level] = total; } } // Clear all files to indicate that they are not being compacted // Delete this compaction from the list of running compactions. void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) { c->MarkFilesBeingCompacted(false); compactions_in_progress_[c->level()].erase(c); if (!status.ok()) { c->ResetNextCompactionIndex(); } } uint64_t CompactionPicker::MaxFileSizeForLevel(int level) const { assert(level >= 0); assert(level < NumberLevels()); return max_file_size_[level]; } uint64_t CompactionPicker::MaxGrandParentOverlapBytes(int level) { uint64_t result = MaxFileSizeForLevel(level); result *= options_->max_grandparent_overlap_factor; return result; } double CompactionPicker::MaxBytesForLevel(int level) { // Note: the result for level zero is not really used since we set // the level-0 compaction threshold based on number of files. assert(level >= 0); assert(level < NumberLevels()); return level_max_bytes_[level]; } void CompactionPicker::GetRange(const std::vector& inputs, InternalKey* smallest, InternalKey* largest) { assert(!inputs.empty()); smallest->Clear(); largest->Clear(); for (size_t i = 0; i < inputs.size(); i++) { FileMetaData* f = inputs[i]; if (i == 0) { *smallest = f->smallest; *largest = f->largest; } else { if (icmp_->Compare(f->smallest, *smallest) < 0) { *smallest = f->smallest; } if (icmp_->Compare(f->largest, *largest) > 0) { *largest = f->largest; } } } } void CompactionPicker::GetRange(const std::vector& inputs1, const std::vector& inputs2, InternalKey* smallest, InternalKey* largest) { std::vector all = inputs1; all.insert(all.end(), inputs2.begin(), inputs2.end()); GetRange(all, smallest, largest); } bool CompactionPicker::ExpandWhileOverlapping(Compaction* c) { // If inputs are empty then there is nothing to expand. if (!c || c->inputs_[0].empty()) { return true; } // GetOverlappingInputs will always do the right thing for level-0. // So we don't need to do any expansion if level == 0. if (c->level() == 0) { return true; } const int level = c->level(); InternalKey smallest, largest; // Keep expanding c->inputs_[0] until we are sure that there is a // "clean cut" boundary between the files in input and the surrounding files. // This will ensure that no parts of a key are lost during compaction. int hint_index = -1; size_t old_size; do { old_size = c->inputs_[0].size(); GetRange(c->inputs_[0], &smallest, &largest); c->inputs_[0].clear(); c->input_version_->GetOverlappingInputs( level, &smallest, &largest, &c->inputs_[0], hint_index, &hint_index); } while(c->inputs_[0].size() > old_size); // Get the new range GetRange(c->inputs_[0], &smallest, &largest); // If, after the expansion, there are files that are already under // compaction, then we must drop/cancel this compaction. int parent_index = -1; if (FilesInCompaction(c->inputs_[0]) || (c->level() != c->output_level() && ParentRangeInCompaction(c->input_version_, &smallest, &largest, level, &parent_index))) { c->inputs_[0].clear(); c->inputs_[1].clear(); return false; } return true; } uint64_t CompactionPicker::ExpandedCompactionByteSizeLimit(int level) { uint64_t result = MaxFileSizeForLevel(level); result *= options_->expanded_compaction_factor; return result; } // Returns true if any one of specified files are being compacted bool CompactionPicker::FilesInCompaction(std::vector& files) { for (unsigned int i = 0; i < files.size(); i++) { if (files[i]->being_compacted) { return true; } } return false; } // Returns true if any one of the parent files are being compacted bool CompactionPicker::ParentRangeInCompaction(Version* version, const InternalKey* smallest, const InternalKey* largest, int level, int* parent_index) { std::vector inputs; assert(level + 1 < NumberLevels()); version->GetOverlappingInputs(level + 1, smallest, largest, &inputs, *parent_index, parent_index); return FilesInCompaction(inputs); } // Populates the set of inputs from "level+1" that overlap with "level". // Will also attempt to expand "level" if that doesn't expand "level+1" // or cause "level" to include a file for compaction that has an overlapping // user-key with another file. void CompactionPicker::SetupOtherInputs(Compaction* c) { // If inputs are empty, then there is nothing to expand. // If both input and output levels are the same, no need to consider // files at level "level+1" if (c->inputs_[0].empty() || c->level() == c->output_level()) { return; } const int level = c->level(); InternalKey smallest, largest; // Get the range one last time. GetRange(c->inputs_[0], &smallest, &largest); // Populate the set of next-level files (inputs_[1]) to include in compaction c->input_version_->GetOverlappingInputs(level + 1, &smallest, &largest, &c->inputs_[1], c->parent_index_, &c->parent_index_); // Get entire range covered by compaction InternalKey all_start, all_limit; GetRange(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); // See if we can further grow the number of inputs in "level" without // changing the number of "level+1" files we pick up. We also choose NOT // to expand if this would cause "level" to include some entries for some // user key, while excluding other entries for the same user key. This // can happen when one user key spans multiple files. if (!c->inputs_[1].empty()) { std::vector expanded0; c->input_version_->GetOverlappingInputs( level, &all_start, &all_limit, &expanded0, c->base_index_, nullptr); const uint64_t inputs0_size = TotalFileSize(c->inputs_[0]); const uint64_t inputs1_size = TotalFileSize(c->inputs_[1]); const uint64_t expanded0_size = TotalFileSize(expanded0); uint64_t limit = ExpandedCompactionByteSizeLimit(level); if (expanded0.size() > c->inputs_[0].size() && inputs1_size + expanded0_size < limit && !FilesInCompaction(expanded0) && !c->input_version_->HasOverlappingUserKey(&expanded0, level)) { InternalKey new_start, new_limit; GetRange(expanded0, &new_start, &new_limit); std::vector expanded1; c->input_version_->GetOverlappingInputs(level + 1, &new_start, &new_limit, &expanded1, c->parent_index_, &c->parent_index_); if (expanded1.size() == c->inputs_[1].size() && !FilesInCompaction(expanded1)) { Log(options_->info_log, "Expanding@%lu %lu+%lu (%lu+%lu bytes) to %lu+%lu (%lu+%lu bytes)" "\n", (unsigned long)level, (unsigned long)(c->inputs_[0].size()), (unsigned long)(c->inputs_[1].size()), (unsigned long)inputs0_size, (unsigned long)inputs1_size, (unsigned long)(expanded0.size()), (unsigned long)(expanded1.size()), (unsigned long)expanded0_size, (unsigned long)inputs1_size); smallest = new_start; largest = new_limit; c->inputs_[0] = expanded0; c->inputs_[1] = expanded1; GetRange(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); } } } // Compute the set of grandparent files that overlap this compaction // (parent == level+1; grandparent == level+2) if (level + 2 < NumberLevels()) { c->input_version_->GetOverlappingInputs(level + 2, &all_start, &all_limit, &c->grandparents_); } } Compaction* CompactionPicker::CompactRange(Version* version, int input_level, int output_level, const InternalKey* begin, const InternalKey* end, InternalKey** compaction_end) { std::vector inputs; bool covering_the_whole_range = true; // All files are 'overlapping' in universal style compaction. // We have to compact the entire range in one shot. if (options_->compaction_style == kCompactionStyleUniversal) { begin = nullptr; end = nullptr; } version->GetOverlappingInputs(input_level, begin, end, &inputs); if (inputs.empty()) { return nullptr; } // Avoid compacting too much in one shot in case the range is large. // But we cannot do this for level-0 since level-0 files can overlap // and we must not pick one file and drop another older file if the // two files overlap. if (input_level > 0) { const uint64_t limit = MaxFileSizeForLevel(input_level) * options_->source_compaction_factor; uint64_t total = 0; for (size_t i = 0; i + 1 < inputs.size(); ++i) { uint64_t s = inputs[i]->file_size; total += s; if (total >= limit) { **compaction_end = inputs[i + 1]->smallest; covering_the_whole_range = false; inputs.resize(i + 1); break; } } } Compaction* c = new Compaction(version, input_level, output_level, MaxFileSizeForLevel(output_level), MaxGrandParentOverlapBytes(input_level)); c->inputs_[0] = inputs; if (ExpandWhileOverlapping(c) == false) { delete c; Log(options_->info_log, "Could not compact due to expansion failure.\n"); return nullptr; } SetupOtherInputs(c); if (covering_the_whole_range) { *compaction_end = nullptr; } // These files that are to be manaully compacted do not trample // upon other files because manual compactions are processed when // the system has a max of 1 background compaction thread. c->MarkFilesBeingCompacted(true); // Is this compaction creating a file at the bottommost level c->SetupBottomMostLevel(true); return c; } Compaction* LevelCompactionPicker::PickCompaction(Version* version) { Compaction* c = nullptr; int level = -1; // Compute the compactions needed. It is better to do it here // and also in LogAndApply(), otherwise the values could be stale. std::vector size_being_compacted(NumberLevels() - 1); SizeBeingCompacted(size_being_compacted); version->Finalize(size_being_compacted); // We prefer compactions triggered by too much data in a level over // the compactions triggered by seeks. // // Find the compactions by size on all levels. for (int i = 0; i < NumberLevels() - 1; i++) { assert(i == 0 || version->compaction_score_[i] <= version->compaction_score_[i - 1]); level = version->compaction_level_[i]; if ((version->compaction_score_[i] >= 1)) { c = PickCompactionBySize(version, level, version->compaction_score_[i]); if (ExpandWhileOverlapping(c) == false) { delete c; c = nullptr; } else { break; } } } // Find compactions needed by seeks FileMetaData* f = version->file_to_compact_; if (c == nullptr && f != nullptr && !f->being_compacted) { level = version->file_to_compact_level_; int parent_index = -1; // Only allow one level 0 compaction at a time. // Do not pick this file if its parents at level+1 are being compacted. if (level != 0 || compactions_in_progress_[0].empty()) { if (!ParentRangeInCompaction(version, &f->smallest, &f->largest, level, &parent_index)) { c = new Compaction(version, level, level + 1, MaxFileSizeForLevel(level + 1), MaxGrandParentOverlapBytes(level), true); c->inputs_[0].push_back(f); c->parent_index_ = parent_index; c->input_version_->file_to_compact_ = nullptr; if (ExpandWhileOverlapping(c) == false) { return nullptr; } } } } if (c == nullptr) { return nullptr; } // Two level 0 compaction won't run at the same time, so don't need to worry // about files on level 0 being compacted. if (level == 0) { assert(compactions_in_progress_[0].empty()); InternalKey smallest, largest; GetRange(c->inputs_[0], &smallest, &largest); // Note that the next call will discard the file we placed in // c->inputs_[0] earlier and replace it with an overlapping set // which will include the picked file. c->inputs_[0].clear(); c->input_version_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]); // If we include more L0 files in the same compaction run it can // cause the 'smallest' and 'largest' key to get extended to a // larger range. So, re-invoke GetRange to get the new key range GetRange(c->inputs_[0], &smallest, &largest); if (ParentRangeInCompaction(c->input_version_, &smallest, &largest, level, &c->parent_index_)) { delete c; return nullptr; } assert(!c->inputs_[0].empty()); } // Setup "level+1" files (inputs_[1]) SetupOtherInputs(c); // mark all the files that are being compacted c->MarkFilesBeingCompacted(true); // Is this compaction creating a file at the bottommost level c->SetupBottomMostLevel(false); // remember this currently undergoing compaction compactions_in_progress_[level].insert(c); return c; } Compaction* LevelCompactionPicker::PickCompactionBySize(Version* version, int level, double score) { Compaction* c = nullptr; // level 0 files are overlapping. So we cannot pick more // than one concurrent compactions at this level. This // could be made better by looking at key-ranges that are // being compacted at level 0. if (level == 0 && compactions_in_progress_[level].size() == 1) { return nullptr; } assert(level >= 0); assert(level + 1 < NumberLevels()); c = new Compaction(version, level, level + 1, MaxFileSizeForLevel(level + 1), MaxGrandParentOverlapBytes(level)); c->score_ = score; // Pick the largest file in this level that is not already // being compacted std::vector& file_size = c->input_version_->files_by_size_[level]; // record the first file that is not yet compacted int nextIndex = -1; for (unsigned int i = c->input_version_->next_file_to_compact_by_size_[level]; i < file_size.size(); i++) { int index = file_size[i]; FileMetaData* f = c->input_version_->files_[level][index]; // check to verify files are arranged in descending size assert((i == file_size.size() - 1) || (i >= Version::number_of_files_to_sort_ - 1) || (f->file_size >= c->input_version_->files_[level][file_size[i + 1]]->file_size)); // do not pick a file to compact if it is being compacted // from n-1 level. if (f->being_compacted) { continue; } // remember the startIndex for the next call to PickCompaction if (nextIndex == -1) { nextIndex = i; } //if (i > Version::number_of_files_to_sort_) { // Log(options_->info_log, "XXX Looking at index %d", i); //} // Do not pick this file if its parents at level+1 are being compacted. // Maybe we can avoid redoing this work in SetupOtherInputs int parent_index = -1; if (ParentRangeInCompaction(c->input_version_, &f->smallest, &f->largest, level, &parent_index)) { continue; } c->inputs_[0].push_back(f); c->base_index_ = index; c->parent_index_ = parent_index; break; } if (c->inputs_[0].empty()) { delete c; c = nullptr; } // store where to start the iteration in the next call to PickCompaction version->next_file_to_compact_by_size_[level] = nextIndex; return c; } // Universal style of compaction. Pick files that are contiguous in // time-range to compact. // Compaction* UniversalCompactionPicker::PickCompaction(Version* version) { int level = 0; double score = version->compaction_score_[0]; if ((version->files_[level].size() < (unsigned int)options_->level0_file_num_compaction_trigger)) { Log(options_->info_log, "Universal: nothing to do\n"); return nullptr; } Version::FileSummaryStorage tmp; Log(options_->info_log, "Universal: candidate files(%lu): %s\n", version->files_[level].size(), version->LevelFileSummary(&tmp, 0)); // Check for size amplification first. Compaction* c = PickCompactionUniversalSizeAmp(version, score); if (c == nullptr) { // Size amplification is within limits. Try reducing read // amplification while maintaining file size ratios. unsigned int ratio = options_->compaction_options_universal.size_ratio; c = PickCompactionUniversalReadAmp(version, score, ratio, UINT_MAX); // Size amplification and file size ratios are within configured limits. // If max read amplification is exceeding configured limits, then force // compaction without looking at filesize ratios and try to reduce // the number of files to fewer than level0_file_num_compaction_trigger. if (c == nullptr) { unsigned int num_files = version->files_[level].size() - options_->level0_file_num_compaction_trigger; c = PickCompactionUniversalReadAmp(version, score, UINT_MAX, num_files); } } if (c == nullptr) { return nullptr; } assert(c->inputs_[0].size() > 1); // validate that all the chosen files are non overlapping in time FileMetaData* newerfile __attribute__((unused)) = nullptr; for (unsigned int i = 0; i < c->inputs_[0].size(); i++) { FileMetaData* f = c->inputs_[0][i]; assert (f->smallest_seqno <= f->largest_seqno); assert(newerfile == nullptr || newerfile->smallest_seqno > f->largest_seqno); newerfile = f; } // The files are sorted from newest first to oldest last. std::vector& file_by_time = c->input_version_->files_by_size_[level]; // Is the earliest file part of this compaction? int last_index = file_by_time[file_by_time.size()-1]; FileMetaData* last_file = c->input_version_->files_[level][last_index]; if (c->inputs_[0][c->inputs_[0].size()-1] == last_file) { c->bottommost_level_ = true; } // update statistics MeasureTime(options_->statistics.get(), NUM_FILES_IN_SINGLE_COMPACTION, c->inputs_[0].size()); // mark all the files that are being compacted c->MarkFilesBeingCompacted(true); // remember this currently undergoing compaction compactions_in_progress_[level].insert(c); // Record whether this compaction includes all sst files. // For now, it is only relevant in universal compaction mode. c->is_full_compaction_ = (c->inputs_[0].size() == c->input_version_->files_[0].size()); return c; } // // Consider compaction files based on their size differences with // the next file in time order. // Compaction* UniversalCompactionPicker::PickCompactionUniversalReadAmp( Version* version, double score, unsigned int ratio, unsigned int max_number_of_files_to_compact) { int level = 0; unsigned int min_merge_width = options_->compaction_options_universal.min_merge_width; unsigned int max_merge_width = options_->compaction_options_universal.max_merge_width; // The files are sorted from newest first to oldest last. std::vector& file_by_time = version->files_by_size_[level]; FileMetaData* f = nullptr; bool done = false; int start_index = 0; unsigned int candidate_count; assert(file_by_time.size() == version->files_[level].size()); unsigned int max_files_to_compact = std::min(max_merge_width, max_number_of_files_to_compact); min_merge_width = std::max(min_merge_width, 2U); // Considers a candidate file only if it is smaller than the // total size accumulated so far. for (unsigned int loop = 0; loop < file_by_time.size(); loop++) { candidate_count = 0; // Skip files that are already being compacted for (f = nullptr; loop < file_by_time.size(); loop++) { int index = file_by_time[loop]; f = version->files_[level][index]; if (!f->being_compacted) { candidate_count = 1; break; } Log(options_->info_log, "Universal: file %lu[%d] being compacted, skipping", (unsigned long)f->number, loop); f = nullptr; } // This file is not being compacted. Consider it as the // first candidate to be compacted. uint64_t candidate_size = f != nullptr? f->file_size : 0; if (f != nullptr) { Log(options_->info_log, "Universal: Possible candidate file %lu[%d].", (unsigned long)f->number, loop); } // Check if the suceeding files need compaction. for (unsigned int i = loop+1; candidate_count < max_files_to_compact && i < file_by_time.size(); i++) { int index = file_by_time[i]; FileMetaData* f = version->files_[level][index]; if (f->being_compacted) { break; } // pick files if the total candidate file size (increased by the // specified ratio) is still larger than the next candidate file. uint64_t sz = (candidate_size * (100L + ratio)) /100; if (sz < f->file_size) { break; } candidate_count++; candidate_size += f->file_size; } // Found a series of consecutive files that need compaction. if (candidate_count >= (unsigned int)min_merge_width) { start_index = loop; done = true; break; } else { for (unsigned int i = loop; i < loop + candidate_count && i < file_by_time.size(); i++) { int index = file_by_time[i]; FileMetaData* f = version->files_[level][index]; Log(options_->info_log, "Universal: Skipping file %lu[%d] with size %lu %d\n", (unsigned long)f->number, i, (unsigned long)f->file_size, f->being_compacted); } } } if (!done || candidate_count <= 1) { return nullptr; } unsigned int first_index_after = start_index + candidate_count; // Compression is enabled if files compacted earlier already reached // size ratio of compression. bool enable_compression = true; int ratio_to_compress = options_->compaction_options_universal.compression_size_percent; if (ratio_to_compress >= 0) { uint64_t total_size = version->NumLevelBytes(level); uint64_t older_file_size = 0; for (unsigned int i = file_by_time.size() - 1; i >= first_index_after; i--) { older_file_size += version->files_[level][file_by_time[i]]->file_size; if (older_file_size * 100L >= total_size * (long) ratio_to_compress) { enable_compression = false; break; } } } Compaction* c = new Compaction(version, level, level, MaxFileSizeForLevel(level), LLONG_MAX, false, enable_compression); c->score_ = score; for (unsigned int i = start_index; i < first_index_after; i++) { int index = file_by_time[i]; FileMetaData* f = c->input_version_->files_[level][index]; c->inputs_[0].push_back(f); Log(options_->info_log, "Universal: Picking file %lu[%d] with size %lu\n", (unsigned long)f->number, i, (unsigned long)f->file_size); } return c; } // Look at overall size amplification. If size amplification // exceeeds the configured value, then do a compaction // of the candidate files all the way upto the earliest // base file (overrides configured values of file-size ratios, // min_merge_width and max_merge_width). // Compaction* UniversalCompactionPicker::PickCompactionUniversalSizeAmp( Version* version, double score) { int level = 0; // percentage flexibilty while reducing size amplification uint64_t ratio = options_->compaction_options_universal. max_size_amplification_percent; // The files are sorted from newest first to oldest last. std::vector& file_by_time = version->files_by_size_[level]; assert(file_by_time.size() == version->files_[level].size()); unsigned int candidate_count = 0; uint64_t candidate_size = 0; unsigned int start_index = 0; FileMetaData* f = nullptr; // Skip files that are already being compacted for (unsigned int loop = 0; loop < file_by_time.size() - 1; loop++) { int index = file_by_time[loop]; f = version->files_[level][index]; if (!f->being_compacted) { start_index = loop; // Consider this as the first candidate. break; } Log(options_->info_log, "Universal: skipping file %lu[%d] compacted %s", (unsigned long)f->number, loop, " cannot be a candidate to reduce size amp.\n"); f = nullptr; } if (f == nullptr) { return nullptr; // no candidate files } Log(options_->info_log, "Universal: First candidate file %lu[%d] %s", (unsigned long)f->number, start_index, " to reduce size amp.\n"); // keep adding up all the remaining files for (unsigned int loop = start_index; loop < file_by_time.size() - 1; loop++) { int index = file_by_time[loop]; f = version->files_[level][index]; if (f->being_compacted) { Log(options_->info_log, "Universal: Possible candidate file %lu[%d] %s.", (unsigned long)f->number, loop, " is already being compacted. No size amp reduction possible.\n"); return nullptr; } candidate_size += f->file_size; candidate_count++; } if (candidate_count == 0) { return nullptr; } // size of earliest file int index = file_by_time[file_by_time.size() - 1]; uint64_t earliest_file_size = version->files_[level][index]->file_size; // size amplification = percentage of additional size if (candidate_size * 100 < ratio * earliest_file_size) { Log(options_->info_log, "Universal: size amp not needed. newer-files-total-size %lu " "earliest-file-size %lu", (unsigned long)candidate_size, (unsigned long)earliest_file_size); return nullptr; } else { Log(options_->info_log, "Universal: size amp needed. newer-files-total-size %lu " "earliest-file-size %lu", (unsigned long)candidate_size, (unsigned long)earliest_file_size); } assert(start_index >= 0 && start_index < file_by_time.size() - 1); // create a compaction request // We always compact all the files, so always compress. Compaction* c = new Compaction(version, level, level, MaxFileSizeForLevel(level), LLONG_MAX, false, true); c->score_ = score; for (unsigned int loop = start_index; loop < file_by_time.size(); loop++) { int index = file_by_time[loop]; f = c->input_version_->files_[level][index]; c->inputs_[0].push_back(f); Log(options_->info_log, "Universal: size amp picking file %lu[%d] with size %lu", (unsigned long)f->number, index, (unsigned long)f->file_size); } return c; } } // namespace rocksdb