// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #ifndef OS_WIN # include #endif #include #include #include #include #ifdef OS_LINUX #include #include #include #include #endif #ifdef ROCKSDB_FALLOCATE_PRESENT #include #include #endif #include "rocksdb/env.h" #include "port/port.h" #include "util/coding.h" #include "util/log_buffer.h" #include "util/mutexlock.h" #include "util/string_util.h" #include "util/testharness.h" namespace rocksdb { static const int kDelayMicros = 100000; class EnvPosixTest : public testing::Test { private: port::Mutex mu_; std::string events_; public: Env* env_; EnvPosixTest() : env_(Env::Default()) { } }; static void SetBool(void* ptr) { reinterpret_cast*>(ptr) ->store(true, std::memory_order_relaxed); } class SleepingBackgroundTask { public: explicit SleepingBackgroundTask() : bg_cv_(&mutex_), should_sleep_(true), sleeping_(false) {} void DoSleep() { MutexLock l(&mutex_); sleeping_ = true; while (should_sleep_) { bg_cv_.Wait(); } sleeping_ = false; bg_cv_.SignalAll(); } void WakeUp() { MutexLock l(&mutex_); should_sleep_ = false; bg_cv_.SignalAll(); while (sleeping_) { bg_cv_.Wait(); } } bool IsSleeping() { MutexLock l(&mutex_); return sleeping_; } static void DoSleepTask(void* arg) { reinterpret_cast(arg)->DoSleep(); } private: port::Mutex mutex_; port::CondVar bg_cv_; // Signalled when background work finishes bool should_sleep_; bool sleeping_; }; TEST_F(EnvPosixTest, RunImmediately) { std::atomic called(false); env_->Schedule(&SetBool, &called); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(called.load(std::memory_order_relaxed)); } TEST_F(EnvPosixTest, UnSchedule) { std::atomic called(false); env_->SetBackgroundThreads(1, Env::LOW); /* Block the low priority queue */ SleepingBackgroundTask sleeping_task, sleeping_task1; env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &sleeping_task, Env::Priority::LOW); /* Schedule another task */ env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &sleeping_task1, Env::Priority::LOW, &sleeping_task1); /* Remove it with a different tag */ ASSERT_EQ(0, env_->UnSchedule(&called, Env::Priority::LOW)); /* Remove it from the queue with the right tag */ ASSERT_EQ(1, env_->UnSchedule(&sleeping_task1, Env::Priority::LOW)); // Unblock background thread sleeping_task.WakeUp(); /* Schedule another task */ env_->Schedule(&SetBool, &called); for (int i = 0; i < kDelayMicros; i++) { if (called.load(std::memory_order_relaxed)) { break; } Env::Default()->SleepForMicroseconds(1); } ASSERT_TRUE(called.load(std::memory_order_relaxed)); ASSERT_TRUE(!sleeping_task.IsSleeping() && !sleeping_task1.IsSleeping()); } TEST_F(EnvPosixTest, RunMany) { std::atomic last_id(0); struct CB { std::atomic* last_id_ptr; // Pointer to shared slot int id; // Order# for the execution of this callback CB(std::atomic* p, int i) : last_id_ptr(p), id(i) {} static void Run(void* v) { CB* cb = reinterpret_cast(v); int cur = cb->last_id_ptr->load(std::memory_order_relaxed); ASSERT_EQ(cb->id - 1, cur); cb->last_id_ptr->store(cb->id, std::memory_order_release); } }; // Schedule in different order than start time CB cb1(&last_id, 1); CB cb2(&last_id, 2); CB cb3(&last_id, 3); CB cb4(&last_id, 4); env_->Schedule(&CB::Run, &cb1); env_->Schedule(&CB::Run, &cb2); env_->Schedule(&CB::Run, &cb3); env_->Schedule(&CB::Run, &cb4); Env::Default()->SleepForMicroseconds(kDelayMicros); int cur = last_id.load(std::memory_order_acquire); ASSERT_EQ(4, cur); } struct State { port::Mutex mu; int val; int num_running; }; static void ThreadBody(void* arg) { State* s = reinterpret_cast(arg); s->mu.Lock(); s->val += 1; s->num_running -= 1; s->mu.Unlock(); } TEST_F(EnvPosixTest, StartThread) { State state; state.val = 0; state.num_running = 3; for (int i = 0; i < 3; i++) { env_->StartThread(&ThreadBody, &state); } while (true) { state.mu.Lock(); int num = state.num_running; state.mu.Unlock(); if (num == 0) { break; } Env::Default()->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(state.val, 3); } TEST_F(EnvPosixTest, TwoPools) { class CB { public: CB(const std::string& pool_name, int pool_size) : mu_(), num_running_(0), num_finished_(0), pool_size_(pool_size), pool_name_(pool_name) { } static void Run(void* v) { CB* cb = reinterpret_cast(v); cb->Run(); } void Run() { { MutexLock l(&mu_); num_running_++; // make sure we don't have more than pool_size_ jobs running. ASSERT_LE(num_running_, pool_size_.load()); } // sleep for 1 sec Env::Default()->SleepForMicroseconds(1000000); { MutexLock l(&mu_); num_running_--; num_finished_++; } } int NumFinished() { MutexLock l(&mu_); return num_finished_; } void Reset(int pool_size) { pool_size_.store(pool_size); num_finished_ = 0; } private: port::Mutex mu_; int num_running_; int num_finished_; std::atomic pool_size_; std::string pool_name_; }; const int kLowPoolSize = 2; const int kHighPoolSize = 4; const int kJobs = 8; CB low_pool_job("low", kLowPoolSize); CB high_pool_job("high", kHighPoolSize); env_->SetBackgroundThreads(kLowPoolSize); env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // call IncBackgroundThreadsIfNeeded to two pools. One increasing and // the other decreasing env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW); env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH); high_pool_job.Reset(kHighPoolSize + 1); low_pool_job.Reset(kLowPoolSize); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); } TEST_F(EnvPosixTest, DecreaseNumBgThreads) { std::vector tasks(10); // Set number of thread to 1 first. env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); // Schedule 3 tasks. 0 running; Task 1, 2 waiting. for (size_t i = 0; i < 3; i++) { env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 2 threads. Task 0, 1 running; 2 waiting env_->SetBackgroundThreads(2, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Shrink back to 1 thread. Still task 0, 1 running, 2 waiting env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // The last task finishes. Task 0 running, 2 waiting. tasks[1].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 5 threads. Task 0 and 2 running. env_->SetBackgroundThreads(5, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[2].IsSleeping()); // Change number of threads a couple of times while there is no sufficient // tasks. env_->SetBackgroundThreads(7, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); tasks[2].WakeUp(); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(3, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(5, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); Env::Default()->SleepForMicroseconds(kDelayMicros * 50); // Enqueue 5 more tasks. Thread pool size now is 4. // Task 0, 3, 4, 5 running;6, 7 waiting. for (size_t i = 3; i < 8; i++) { env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); } Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[3].IsSleeping()); ASSERT_TRUE(tasks[4].IsSleeping()); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(!tasks[7].IsSleeping()); // Wake up task 0, 3 and 4. Task 5, 6, 7 running. tasks[0].WakeUp(); tasks[3].WakeUp(); tasks[4].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); for (size_t i = 5; i < 8; i++) { ASSERT_TRUE(tasks[i].IsSleeping()); } // Shrink back to 1 thread. Still task 5, 6, 7 running env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up task 6. Task 5, 7 running tasks[6].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up threads 7. Task 5 running tasks[7].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[7].IsSleeping()); // Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running. env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[8], Env::Priority::HIGH); env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[9], Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0); ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping()); // Increase to 4 threads. Task 5, 8, 9 running. env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[8].IsSleeping()); ASSERT_TRUE(tasks[9].IsSleeping()); // Shrink to 1 thread env_->SetBackgroundThreads(1, Env::Priority::HIGH); // Wake up thread 9. tasks[9].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[9].IsSleeping()); ASSERT_TRUE(tasks[8].IsSleeping()); // Wake up thread 8 tasks[8].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[8].IsSleeping()); // Wake up the last thread tasks[5].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[5].IsSleeping()); } #ifdef OS_LINUX // Travis doesn't support fallocate or getting unique ID from files for whatever // reason. #ifndef TRAVIS namespace { bool IsSingleVarint(const std::string& s) { Slice slice(s); uint64_t v; if (!GetVarint64(&slice, &v)) { return false; } return slice.size() == 0; } bool IsUniqueIDValid(const std::string& s) { return !s.empty() && !IsSingleVarint(s); } const size_t MAX_ID_SIZE = 100; char temp_id[MAX_ID_SIZE]; } // namespace // Determine whether we can use the FS_IOC_GETVERSION ioctl // on a file in directory DIR. Create a temporary file therein, // try to apply the ioctl (save that result), cleanup and // return the result. Return true if it is supported, and // false if anything fails. // Note that this function "knows" that dir has just been created // and is empty, so we create a simply-named test file: "f". bool ioctl_support__FS_IOC_GETVERSION(const std::string& dir) { const std::string file = dir + "/f"; int fd; do { fd = open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); long int version; bool ok = (fd >= 0 && ioctl(fd, FS_IOC_GETVERSION, &version) >= 0); close(fd); unlink(file.c_str()); return ok; } // To ensure that Env::GetUniqueId-related tests work correctly, the files // should be stored in regular storage like "hard disk" or "flash device", // and not on a tmpfs file system (like /dev/shm and /tmp on some systems). // Otherwise we cannot get the correct id. // // This function serves as the replacement for test::TmpDir(), which may be // customized to be on a file system that doesn't work with GetUniqueId(). class IoctlFriendlyTmpdir { public: explicit IoctlFriendlyTmpdir() { char dir_buf[100]; std::list candidate_dir_list = {"/var/tmp", "/tmp"}; const char *fmt = "%s/rocksdb.XXXXXX"; const char *tmp = getenv("TEST_IOCTL_FRIENDLY_TMPDIR"); // If $TEST_IOCTL_FRIENDLY_TMPDIR/rocksdb.XXXXXX fits, use // $TEST_IOCTL_FRIENDLY_TMPDIR; subtract 2 for the "%s", and // add 1 for the trailing NUL byte. if (tmp && strlen(tmp) + strlen(fmt) - 2 + 1 <= sizeof dir_buf) { // use $TEST_IOCTL_FRIENDLY_TMPDIR value candidate_dir_list.push_front(tmp); } for (const std::string& d : candidate_dir_list) { snprintf(dir_buf, sizeof dir_buf, fmt, d.c_str()); if (mkdtemp(dir_buf)) { if (ioctl_support__FS_IOC_GETVERSION(dir_buf)) { dir_ = dir_buf; return; } else { // Diagnose ioctl-related failure only if this is the // directory specified via that envvar. if (tmp == d) { fprintf(stderr, "TEST_IOCTL_FRIENDLY_TMPDIR-specified directory is " "not suitable: %s\n", d.c_str()); } rmdir(dir_buf); // ignore failure } } else { // mkdtemp failed: diagnose it, but don't give up. fprintf(stderr, "mkdtemp(%s/...) failed: %s\n", d.c_str(), strerror(errno)); } } fprintf(stderr, "failed to find an ioctl-friendly temporary directory;" " specify one via the TEST_IOCTL_FRIENDLY_TMPDIR envvar\n"); std::abort(); } ~IoctlFriendlyTmpdir() { rmdir(dir_.c_str()); } const std::string& name() { return dir_; } private: std::string dir_; }; // Only works in linux platforms TEST_F(EnvPosixTest, RandomAccessUniqueID) { // Create file. const EnvOptions soptions; IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/testfile"; unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); unique_ptr file; // Get Unique ID ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id1(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id1)); // Get Unique ID again ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id2(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id2)); // Get Unique ID again after waiting some time. env_->SleepForMicroseconds(1000000); ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id3(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id3)); // Check IDs are the same. ASSERT_EQ(unique_id1, unique_id2); ASSERT_EQ(unique_id2, unique_id3); // Delete the file env_->DeleteFile(fname); } // only works in linux platforms #ifdef ROCKSDB_FALLOCATE_PRESENT TEST_F(EnvPosixTest, AllocateTest) { IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/preallocate_testfile"; // Try fallocate in a file to see whether the target file system supports it. // Skip the test if fallocate is not supported. std::string fname_test_fallocate = ift.name() + "/preallocate_testfile_2"; int fd = -1; do { fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); ASSERT_GT(fd, 0); int alloc_status = fallocate(fd, 0, 0, 1); int err_number = 0; if (alloc_status != 0) { err_number = errno; fprintf(stderr, "Warning: fallocate() fails, %s\n", strerror(err_number)); } close(fd); ASSERT_OK(env_->DeleteFile(fname_test_fallocate)); if (alloc_status != 0 && err_number == EOPNOTSUPP) { // The filesystem containing the file does not support fallocate return; } EnvOptions soptions; soptions.use_mmap_writes = false; unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); // allocate 100 MB size_t kPreallocateSize = 100 * 1024 * 1024; size_t kBlockSize = 512; size_t kPageSize = 4096; std::string data(1024 * 1024, 'a'); wfile->SetPreallocationBlockSize(kPreallocateSize); ASSERT_OK(wfile->Append(Slice(data))); ASSERT_OK(wfile->Flush()); struct stat f_stat; stat(fname.c_str(), &f_stat); ASSERT_EQ((unsigned int)data.size(), f_stat.st_size); // verify that blocks are preallocated // Note here that we don't check the exact number of blocks preallocated -- // we only require that number of allocated blocks is at least what we expect. // It looks like some FS give us more blocks that we asked for. That's fine. // It might be worth investigating further. ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks); // close the file, should deallocate the blocks wfile.reset(); stat(fname.c_str(), &f_stat); ASSERT_EQ((unsigned int)data.size(), f_stat.st_size); // verify that preallocated blocks were deallocated on file close // Because the FS might give us more blocks, we add a full page to the size // and expect the number of blocks to be less or equal to that. ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize, (unsigned int)f_stat.st_blocks); } #endif // ROCKSDB_FALLOCATE_PRESENT // Returns true if any of the strings in ss are the prefix of another string. bool HasPrefix(const std::unordered_set& ss) { for (const std::string& s: ss) { if (s.empty()) { return true; } for (size_t i = 1; i < s.size(); ++i) { if (ss.count(s.substr(0, i)) != 0) { return true; } } } return false; } // Only works in linux platforms TEST_F(EnvPosixTest, RandomAccessUniqueIDConcurrent) { // Check whether a bunch of concurrently existing files have unique IDs. const EnvOptions soptions; // Create the files IoctlFriendlyTmpdir ift; std::vector fnames; for (int i = 0; i < 1000; ++i) { fnames.push_back(ift.name() + "/" + "testfile" + ToString(i)); // Create file. unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions)); } // Collect and check whether the IDs are unique. std::unordered_set ids; for (const std::string fname: fnames) { unique_ptr file; std::string unique_id; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); } // Delete the files for (const std::string fname: fnames) { ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } // Only works in linux platforms TEST_F(EnvPosixTest, RandomAccessUniqueIDDeletes) { const EnvOptions soptions; IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/" + "testfile"; // Check that after file is deleted we don't get same ID again in a new file. std::unordered_set ids; for (int i = 0; i < 1000; ++i) { // Create file. { unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); } // Get Unique ID std::string unique_id; { unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); } ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); // Delete the file ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } // Only works in linux platforms TEST_F(EnvPosixTest, InvalidateCache) { const EnvOptions soptions; std::string fname = test::TmpDir() + "/" + "testfile"; // Create file. { unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); ASSERT_OK(wfile.get()->Append(Slice("Hello world"))); ASSERT_OK(wfile.get()->InvalidateCache(0, 0)); ASSERT_OK(wfile.get()->Close()); } // Random Read { unique_ptr file; char scratch[100]; Slice result; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); ASSERT_OK(file.get()->Read(0, 11, &result, scratch)); ASSERT_EQ(memcmp(scratch, "Hello world", 11), 0); ASSERT_OK(file.get()->InvalidateCache(0, 11)); ASSERT_OK(file.get()->InvalidateCache(0, 0)); } // Sequential Read { unique_ptr file; char scratch[100]; Slice result; ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions)); ASSERT_OK(file.get()->Read(11, &result, scratch)); ASSERT_EQ(memcmp(scratch, "Hello world", 11), 0); ASSERT_OK(file.get()->InvalidateCache(0, 11)); ASSERT_OK(file.get()->InvalidateCache(0, 0)); } // Delete the file ASSERT_OK(env_->DeleteFile(fname)); } #endif // not TRAVIS #endif // OS_LINUX TEST_F(EnvPosixTest, PosixRandomRWFileTest) { EnvOptions soptions; soptions.use_mmap_writes = soptions.use_mmap_reads = false; std::string fname = test::TmpDir() + "/" + "testfile"; unique_ptr file; ASSERT_OK(env_->NewRandomRWFile(fname, &file, soptions)); // If you run the unit test on tmpfs, then tmpfs might not // support fallocate. It is still better to trigger that // code-path instead of eliminating it completely. file.get()->Allocate(0, 10*1024*1024); ASSERT_OK(file.get()->Write(100, Slice("Hello world"))); ASSERT_OK(file.get()->Write(105, Slice("Hello world"))); ASSERT_OK(file.get()->Sync()); ASSERT_OK(file.get()->Fsync()); char scratch[100]; Slice result; ASSERT_OK(file.get()->Read(100, 16, &result, scratch)); ASSERT_EQ(result.compare("HelloHello world"), 0); ASSERT_OK(file.get()->Close()); } class TestLogger : public Logger { public: using Logger::Logv; virtual void Logv(const char* format, va_list ap) override { log_count++; char new_format[550]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated // When we have n == -1 there is not a terminating zero expected #ifdef OS_WIN if (n < 0) { char_0_count++; } #endif if (new_format[0] == '[') { // "[DEBUG] " ASSERT_TRUE(n <= 56 + (512 - static_cast(sizeof(struct timeval)))); } else { ASSERT_TRUE(n <= 48 + (512 - static_cast(sizeof(struct timeval)))); } va_end(backup_ap); } for (size_t i = 0; i < sizeof(new_format); i++) { if (new_format[i] == 'x') { char_x_count++; } else if (new_format[i] == '\0') { char_0_count++; } } } int log_count; int char_x_count; int char_0_count; }; TEST_F(EnvPosixTest, LogBufferTest) { TestLogger test_logger; test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); test_logger.log_count = 0; test_logger.char_x_count = 0; test_logger.char_0_count = 0; LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger); char bytes200[200]; std::fill_n(bytes200, sizeof(bytes200), '1'); bytes200[sizeof(bytes200) - 1] = '\0'; char bytes600[600]; std::fill_n(bytes600, sizeof(bytes600), '1'); bytes600[sizeof(bytes600) - 1] = '\0'; char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; LogToBuffer(&log_buffer, "x%sx", bytes200); LogToBuffer(&log_buffer, "x%sx", bytes600); LogToBuffer(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200); LogToBuffer(&log_buffer, "x%sx%sx", bytes200, bytes600); LogToBuffer(&log_buffer, "x%sx%sx", bytes600, bytes9000); LogToBuffer(&log_buffer_debug, "x%sx", bytes200); test_logger.SetInfoLogLevel(DEBUG_LEVEL); LogToBuffer(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000, bytes200); ASSERT_EQ(0, test_logger.log_count); log_buffer.FlushBufferToLog(); log_buffer_debug.FlushBufferToLog(); ASSERT_EQ(6, test_logger.log_count); ASSERT_EQ(6, test_logger.char_0_count); ASSERT_EQ(10, test_logger.char_x_count); } class TestLogger2 : public Logger { public: explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {} using Logger::Logv; virtual void Logv(const char* format, va_list ap) override { char new_format[2000]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated ASSERT_TRUE( n <= 48 + static_cast(max_log_size_ - sizeof(struct timeval))); ASSERT_TRUE(n > static_cast(max_log_size_ - sizeof(struct timeval))); va_end(backup_ap); } } size_t max_log_size_; }; TEST_F(EnvPosixTest, LogBufferMaxSizeTest) { char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; for (size_t max_log_size = 256; max_log_size <= 1024; max_log_size += 1024 - 256) { TestLogger2 test_logger(max_log_size); test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); LogToBuffer(&log_buffer, max_log_size, "%s", bytes9000); log_buffer.FlushBufferToLog(); } } TEST_F(EnvPosixTest, Preallocation) { const std::string src = test::TmpDir() + "/" + "testfile"; unique_ptr srcfile; const EnvOptions soptions; ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions)); srcfile->SetPreallocationBlockSize(1024 * 1024); // No writes should mean no preallocation size_t block_size, last_allocated_block; srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 0UL); // Small write should preallocate one block srcfile->Append("test"); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 1UL); // Write an entire preallocation block, make sure we increased by two. std::string buf(block_size, ' '); srcfile->Append(buf); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 2UL); // Write five more blocks at once, ensure we're where we need to be. buf = std::string(block_size * 5, ' '); srcfile->Append(buf); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 7UL); } } // namespace rocksdb int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }