fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
				
			
			
		
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							965 lines
						
					
					
						
							34 KiB
						
					
					
				
			
		
		
	
	
							965 lines
						
					
					
						
							34 KiB
						
					
					
				| //  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
 | |
| //  This source code is licensed under both the GPLv2 (found in the
 | |
| //  COPYING file in the root directory) and Apache 2.0 License
 | |
| //  (found in the LICENSE.Apache file in the root directory).
 | |
| //
 | |
| // Copyright (c) 2011 The LevelDB Authors. All rights reserved.  Use of
 | |
| // this source code is governed by a BSD-style license that can be found
 | |
| // in the LICENSE file. See the AUTHORS file for names of contributors.
 | |
| //
 | |
| // InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
 | |
| // the memory layout by requiring that the key storage be allocated through
 | |
| // the skip list instance.  For the common case of SkipList<const char*,
 | |
| // Cmp> this saves 1 pointer per skip list node and gives better cache
 | |
| // locality, at the expense of wasted padding from using AllocateAligned
 | |
| // instead of Allocate for the keys.  The unused padding will be from
 | |
| // 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
 | |
| // bytes, so despite the padding the space used is always less than
 | |
| // SkipList<const char*, ..>.
 | |
| //
 | |
| // Thread safety -------------
 | |
| //
 | |
| // Writes via Insert require external synchronization, most likely a mutex.
 | |
| // InsertConcurrently can be safely called concurrently with reads and
 | |
| // with other concurrent inserts.  Reads require a guarantee that the
 | |
| // InlineSkipList will not be destroyed while the read is in progress.
 | |
| // Apart from that, reads progress without any internal locking or
 | |
| // synchronization.
 | |
| //
 | |
| // Invariants:
 | |
| //
 | |
| // (1) Allocated nodes are never deleted until the InlineSkipList is
 | |
| // destroyed.  This is trivially guaranteed by the code since we never
 | |
| // delete any skip list nodes.
 | |
| //
 | |
| // (2) The contents of a Node except for the next/prev pointers are
 | |
| // immutable after the Node has been linked into the InlineSkipList.
 | |
| // Only Insert() modifies the list, and it is careful to initialize a
 | |
| // node and use release-stores to publish the nodes in one or more lists.
 | |
| //
 | |
| // ... prev vs. next pointer ordering ...
 | |
| //
 | |
| 
 | |
| #pragma once
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <algorithm>
 | |
| #include <atomic>
 | |
| #include <type_traits>
 | |
| #include "port/likely.h"
 | |
| #include "port/port.h"
 | |
| #include "rocksdb/slice.h"
 | |
| #include "util/allocator.h"
 | |
| #include "util/coding.h"
 | |
| #include "util/random.h"
 | |
| 
 | |
| namespace rocksdb {
 | |
| 
 | |
| template <class Comparator>
 | |
| class InlineSkipList {
 | |
|  private:
 | |
|   struct Node;
 | |
|   struct Splice;
 | |
| 
 | |
|  public:
 | |
|   using DecodedKey = \
 | |
|     typename std::remove_reference<Comparator>::type::DecodedType;
 | |
| 
 | |
|   static const uint16_t kMaxPossibleHeight = 32;
 | |
| 
 | |
|   // Create a new InlineSkipList object that will use "cmp" for comparing
 | |
|   // keys, and will allocate memory using "*allocator".  Objects allocated
 | |
|   // in the allocator must remain allocated for the lifetime of the
 | |
|   // skiplist object.
 | |
|   explicit InlineSkipList(Comparator cmp, Allocator* allocator,
 | |
|                           int32_t max_height = 12,
 | |
|                           int32_t branching_factor = 4);
 | |
| 
 | |
|   // Allocates a key and a skip-list node, returning a pointer to the key
 | |
|   // portion of the node.  This method is thread-safe if the allocator
 | |
|   // is thread-safe.
 | |
|   char* AllocateKey(size_t key_size);
 | |
| 
 | |
|   // Allocate a splice using allocator.
 | |
|   Splice* AllocateSplice();
 | |
| 
 | |
|   // Inserts a key allocated by AllocateKey, after the actual key value
 | |
|   // has been filled in.
 | |
|   //
 | |
|   // REQUIRES: nothing that compares equal to key is currently in the list.
 | |
|   // REQUIRES: no concurrent calls to any of inserts.
 | |
|   bool Insert(const char* key);
 | |
| 
 | |
|   // Inserts a key allocated by AllocateKey with a hint of last insert
 | |
|   // position in the skip-list. If hint points to nullptr, a new hint will be
 | |
|   // populated, which can be used in subsequent calls.
 | |
|   //
 | |
|   // It can be used to optimize the workload where there are multiple groups
 | |
|   // of keys, and each key is likely to insert to a location close to the last
 | |
|   // inserted key in the same group. One example is sequential inserts.
 | |
|   //
 | |
|   // REQUIRES: nothing that compares equal to key is currently in the list.
 | |
|   // REQUIRES: no concurrent calls to any of inserts.
 | |
|   bool InsertWithHint(const char* key, void** hint);
 | |
| 
 | |
|   // Like Insert, but external synchronization is not required.
 | |
|   bool InsertConcurrently(const char* key);
 | |
| 
 | |
|   // Inserts a node into the skip list.  key must have been allocated by
 | |
|   // AllocateKey and then filled in by the caller.  If UseCAS is true,
 | |
|   // then external synchronization is not required, otherwise this method
 | |
|   // may not be called concurrently with any other insertions.
 | |
|   //
 | |
|   // Regardless of whether UseCAS is true, the splice must be owned
 | |
|   // exclusively by the current thread.  If allow_partial_splice_fix is
 | |
|   // true, then the cost of insertion is amortized O(log D), where D is
 | |
|   // the distance from the splice to the inserted key (measured as the
 | |
|   // number of intervening nodes).  Note that this bound is very good for
 | |
|   // sequential insertions!  If allow_partial_splice_fix is false then
 | |
|   // the existing splice will be ignored unless the current key is being
 | |
|   // inserted immediately after the splice.  allow_partial_splice_fix ==
 | |
|   // false has worse running time for the non-sequential case O(log N),
 | |
|   // but a better constant factor.
 | |
|   template <bool UseCAS>
 | |
|   bool Insert(const char* key, Splice* splice, bool allow_partial_splice_fix);
 | |
| 
 | |
|   // Returns true iff an entry that compares equal to key is in the list.
 | |
|   bool Contains(const char* key) const;
 | |
| 
 | |
|   // Return estimated number of entries smaller than `key`.
 | |
|   uint64_t EstimateCount(const char* key) const;
 | |
| 
 | |
|   // Validate correctness of the skip-list.
 | |
|   void TEST_Validate() const;
 | |
| 
 | |
|   // Iteration over the contents of a skip list
 | |
|   class Iterator {
 | |
|    public:
 | |
|     // Initialize an iterator over the specified list.
 | |
|     // The returned iterator is not valid.
 | |
|     explicit Iterator(const InlineSkipList* list);
 | |
| 
 | |
|     // Change the underlying skiplist used for this iterator
 | |
|     // This enables us not changing the iterator without deallocating
 | |
|     // an old one and then allocating a new one
 | |
|     void SetList(const InlineSkipList* list);
 | |
| 
 | |
|     // Returns true iff the iterator is positioned at a valid node.
 | |
|     bool Valid() const;
 | |
| 
 | |
|     // Returns the key at the current position.
 | |
|     // REQUIRES: Valid()
 | |
|     const char* key() const;
 | |
| 
 | |
|     // Advances to the next position.
 | |
|     // REQUIRES: Valid()
 | |
|     void Next();
 | |
| 
 | |
|     // Advances to the previous position.
 | |
|     // REQUIRES: Valid()
 | |
|     void Prev();
 | |
| 
 | |
|     // Advance to the first entry with a key >= target
 | |
|     void Seek(const char* target);
 | |
| 
 | |
|     // Retreat to the last entry with a key <= target
 | |
|     void SeekForPrev(const char* target);
 | |
| 
 | |
|     // Position at the first entry in list.
 | |
|     // Final state of iterator is Valid() iff list is not empty.
 | |
|     void SeekToFirst();
 | |
| 
 | |
|     // Position at the last entry in list.
 | |
|     // Final state of iterator is Valid() iff list is not empty.
 | |
|     void SeekToLast();
 | |
| 
 | |
|    private:
 | |
|     const InlineSkipList* list_;
 | |
|     Node* node_;
 | |
|     // Intentionally copyable
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const uint16_t kMaxHeight_;
 | |
|   const uint16_t kBranching_;
 | |
|   const uint32_t kScaledInverseBranching_;
 | |
| 
 | |
|   Allocator* const allocator_;  // Allocator used for allocations of nodes
 | |
|   // Immutable after construction
 | |
|   Comparator const compare_;
 | |
|   Node* const head_;
 | |
| 
 | |
|   // Modified only by Insert().  Read racily by readers, but stale
 | |
|   // values are ok.
 | |
|   std::atomic<int> max_height_;  // Height of the entire list
 | |
| 
 | |
|   // seq_splice_ is a Splice used for insertions in the non-concurrent
 | |
|   // case.  It caches the prev and next found during the most recent
 | |
|   // non-concurrent insertion.
 | |
|   Splice* seq_splice_;
 | |
| 
 | |
|   inline int GetMaxHeight() const {
 | |
|     return max_height_.load(std::memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   int RandomHeight();
 | |
| 
 | |
|   Node* AllocateNode(size_t key_size, int height);
 | |
| 
 | |
|   bool Equal(const char* a, const char* b) const {
 | |
|     return (compare_(a, b) == 0);
 | |
|   }
 | |
| 
 | |
|   bool LessThan(const char* a, const char* b) const {
 | |
|     return (compare_(a, b) < 0);
 | |
|   }
 | |
| 
 | |
|   // Return true if key is greater than the data stored in "n".  Null n
 | |
|   // is considered infinite.  n should not be head_.
 | |
|   bool KeyIsAfterNode(const char* key, Node* n) const;
 | |
|   bool KeyIsAfterNode(const DecodedKey& key, Node* n) const;
 | |
| 
 | |
|   // Returns the earliest node with a key >= key.
 | |
|   // Return nullptr if there is no such node.
 | |
|   Node* FindGreaterOrEqual(const char* key) const;
 | |
| 
 | |
|   // Return the latest node with a key < key.
 | |
|   // Return head_ if there is no such node.
 | |
|   // Fills prev[level] with pointer to previous node at "level" for every
 | |
|   // level in [0..max_height_-1], if prev is non-null.
 | |
|   Node* FindLessThan(const char* key, Node** prev = nullptr) const;
 | |
| 
 | |
|   // Return the latest node with a key < key on bottom_level. Start searching
 | |
|   // from root node on the level below top_level.
 | |
|   // Fills prev[level] with pointer to previous node at "level" for every
 | |
|   // level in [bottom_level..top_level-1], if prev is non-null.
 | |
|   Node* FindLessThan(const char* key, Node** prev, Node* root, int top_level,
 | |
|                      int bottom_level) const;
 | |
| 
 | |
|   // Return the last node in the list.
 | |
|   // Return head_ if list is empty.
 | |
|   Node* FindLast() const;
 | |
| 
 | |
|   // Traverses a single level of the list, setting *out_prev to the last
 | |
|   // node before the key and *out_next to the first node after. Assumes
 | |
|   // that the key is not present in the skip list. On entry, before should
 | |
|   // point to a node that is before the key, and after should point to
 | |
|   // a node that is after the key.  after should be nullptr if a good after
 | |
|   // node isn't conveniently available.
 | |
|   template<bool prefetch_before>
 | |
|   void FindSpliceForLevel(const DecodedKey& key, Node* before, Node* after, int level,
 | |
|                           Node** out_prev, Node** out_next);
 | |
| 
 | |
|   // Recomputes Splice levels from highest_level (inclusive) down to
 | |
|   // lowest_level (inclusive).
 | |
|   void RecomputeSpliceLevels(const DecodedKey& key, Splice* splice,
 | |
|                              int recompute_level);
 | |
| 
 | |
|   // No copying allowed
 | |
|   InlineSkipList(const InlineSkipList&);
 | |
|   InlineSkipList& operator=(const InlineSkipList&);
 | |
| };
 | |
| 
 | |
| // Implementation details follow
 | |
| 
 | |
| template <class Comparator>
 | |
| struct InlineSkipList<Comparator>::Splice {
 | |
|   // The invariant of a Splice is that prev_[i+1].key <= prev_[i].key <
 | |
|   // next_[i].key <= next_[i+1].key for all i.  That means that if a
 | |
|   // key is bracketed by prev_[i] and next_[i] then it is bracketed by
 | |
|   // all higher levels.  It is _not_ required that prev_[i]->Next(i) ==
 | |
|   // next_[i] (it probably did at some point in the past, but intervening
 | |
|   // or concurrent operations might have inserted nodes in between).
 | |
|   int height_ = 0;
 | |
|   Node** prev_;
 | |
|   Node** next_;
 | |
| };
 | |
| 
 | |
| // The Node data type is more of a pointer into custom-managed memory than
 | |
| // a traditional C++ struct.  The key is stored in the bytes immediately
 | |
| // after the struct, and the next_ pointers for nodes with height > 1 are
 | |
| // stored immediately _before_ the struct.  This avoids the need to include
 | |
| // any pointer or sizing data, which reduces per-node memory overheads.
 | |
| template <class Comparator>
 | |
| struct InlineSkipList<Comparator>::Node {
 | |
|   // Stores the height of the node in the memory location normally used for
 | |
|   // next_[0].  This is used for passing data from AllocateKey to Insert.
 | |
|   void StashHeight(const int height) {
 | |
|     assert(sizeof(int) <= sizeof(next_[0]));
 | |
|     memcpy(static_cast<void*>(&next_[0]), &height, sizeof(int));
 | |
|   }
 | |
| 
 | |
|   // Retrieves the value passed to StashHeight.  Undefined after a call
 | |
|   // to SetNext or NoBarrier_SetNext.
 | |
|   int UnstashHeight() const {
 | |
|     int rv;
 | |
|     memcpy(&rv, &next_[0], sizeof(int));
 | |
|     return rv;
 | |
|   }
 | |
| 
 | |
|   const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
 | |
| 
 | |
|   // Accessors/mutators for links.  Wrapped in methods so we can add
 | |
|   // the appropriate barriers as necessary, and perform the necessary
 | |
|   // addressing trickery for storing links below the Node in memory.
 | |
|   Node* Next(int n) {
 | |
|     assert(n >= 0);
 | |
|     // Use an 'acquire load' so that we observe a fully initialized
 | |
|     // version of the returned Node.
 | |
|     return ((&next_[0] - n)->load(std::memory_order_acquire));
 | |
|   }
 | |
| 
 | |
|   void SetNext(int n, Node* x) {
 | |
|     assert(n >= 0);
 | |
|     // Use a 'release store' so that anybody who reads through this
 | |
|     // pointer observes a fully initialized version of the inserted node.
 | |
|     (&next_[0] - n)->store(x, std::memory_order_release);
 | |
|   }
 | |
| 
 | |
|   bool CASNext(int n, Node* expected, Node* x) {
 | |
|     assert(n >= 0);
 | |
|     return (&next_[0] - n)->compare_exchange_strong(expected, x);
 | |
|   }
 | |
| 
 | |
|   // No-barrier variants that can be safely used in a few locations.
 | |
|   Node* NoBarrier_Next(int n) {
 | |
|     assert(n >= 0);
 | |
|     return (&next_[0] - n)->load(std::memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   void NoBarrier_SetNext(int n, Node* x) {
 | |
|     assert(n >= 0);
 | |
|     (&next_[0] - n)->store(x, std::memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   // Insert node after prev on specific level.
 | |
|   void InsertAfter(Node* prev, int level) {
 | |
|     // NoBarrier_SetNext() suffices since we will add a barrier when
 | |
|     // we publish a pointer to "this" in prev.
 | |
|     NoBarrier_SetNext(level, prev->NoBarrier_Next(level));
 | |
|     prev->SetNext(level, this);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // next_[0] is the lowest level link (level 0).  Higher levels are
 | |
|   // stored _earlier_, so level 1 is at next_[-1].
 | |
|   std::atomic<Node*> next_[1];
 | |
| };
 | |
| 
 | |
| template <class Comparator>
 | |
| inline InlineSkipList<Comparator>::Iterator::Iterator(
 | |
|     const InlineSkipList* list) {
 | |
|   SetList(list);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::SetList(
 | |
|     const InlineSkipList* list) {
 | |
|   list_ = list;
 | |
|   node_ = nullptr;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
 | |
|   return node_ != nullptr;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline const char* InlineSkipList<Comparator>::Iterator::key() const {
 | |
|   assert(Valid());
 | |
|   return node_->Key();
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::Next() {
 | |
|   assert(Valid());
 | |
|   node_ = node_->Next(0);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::Prev() {
 | |
|   // Instead of using explicit "prev" links, we just search for the
 | |
|   // last node that falls before key.
 | |
|   assert(Valid());
 | |
|   node_ = list_->FindLessThan(node_->Key());
 | |
|   if (node_ == list_->head_) {
 | |
|     node_ = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
 | |
|   node_ = list_->FindGreaterOrEqual(target);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::SeekForPrev(
 | |
|     const char* target) {
 | |
|   Seek(target);
 | |
|   if (!Valid()) {
 | |
|     SeekToLast();
 | |
|   }
 | |
|   while (Valid() && list_->LessThan(target, key())) {
 | |
|     Prev();
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
 | |
|   node_ = list_->head_->Next(0);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
 | |
|   node_ = list_->FindLast();
 | |
|   if (node_ == list_->head_) {
 | |
|     node_ = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| int InlineSkipList<Comparator>::RandomHeight() {
 | |
|   auto rnd = Random::GetTLSInstance();
 | |
| 
 | |
|   // Increase height with probability 1 in kBranching
 | |
|   int height = 1;
 | |
|   while (height < kMaxHeight_ && height < kMaxPossibleHeight &&
 | |
|          rnd->Next() < kScaledInverseBranching_) {
 | |
|     height++;
 | |
|   }
 | |
|   assert(height > 0);
 | |
|   assert(height <= kMaxHeight_);
 | |
|   assert(height <= kMaxPossibleHeight);
 | |
|   return height;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
 | |
|                                                 Node* n) const {
 | |
|   // nullptr n is considered infinite
 | |
|   assert(n != head_);
 | |
|   return (n != nullptr) && (compare_(n->Key(), key) < 0);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::KeyIsAfterNode(const DecodedKey& key,
 | |
|                                                 Node* n) const {
 | |
|   // nullptr n is considered infinite
 | |
|   assert(n != head_);
 | |
|   return (n != nullptr) && (compare_(n->Key(), key) < 0);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Node*
 | |
| InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
 | |
|   // Note: It looks like we could reduce duplication by implementing
 | |
|   // this function as FindLessThan(key)->Next(0), but we wouldn't be able
 | |
|   // to exit early on equality and the result wouldn't even be correct.
 | |
|   // A concurrent insert might occur after FindLessThan(key) but before
 | |
|   // we get a chance to call Next(0).
 | |
|   Node* x = head_;
 | |
|   int level = GetMaxHeight() - 1;
 | |
|   Node* last_bigger = nullptr;
 | |
|   const DecodedKey key_decoded = compare_.decode_key(key);
 | |
|   while (true) {
 | |
|     Node* next = x->Next(level);
 | |
|     if (next != nullptr) {
 | |
|       PREFETCH(next->Next(level), 0, 1);
 | |
|     }
 | |
|     // Make sure the lists are sorted
 | |
|     assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
 | |
|     // Make sure we haven't overshot during our search
 | |
|     assert(x == head_ || KeyIsAfterNode(key_decoded, x));
 | |
|     int cmp = (next == nullptr || next == last_bigger)
 | |
|                   ? 1
 | |
|                   : compare_(next->Key(), key_decoded);
 | |
|     if (cmp == 0 || (cmp > 0 && level == 0)) {
 | |
|       return next;
 | |
|     } else if (cmp < 0) {
 | |
|       // Keep searching in this list
 | |
|       x = next;
 | |
|     } else {
 | |
|       // Switch to next list, reuse compare_() result
 | |
|       last_bigger = next;
 | |
|       level--;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Node*
 | |
| InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
 | |
|   return FindLessThan(key, prev, head_, GetMaxHeight(), 0);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Node*
 | |
| InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev,
 | |
|                                          Node* root, int top_level,
 | |
|                                          int bottom_level) const {
 | |
|   assert(top_level > bottom_level);
 | |
|   int level = top_level - 1;
 | |
|   Node* x = root;
 | |
|   // KeyIsAfter(key, last_not_after) is definitely false
 | |
|   Node* last_not_after = nullptr;
 | |
|   const DecodedKey key_decoded = compare_.decode_key(key);
 | |
|   while (true) {
 | |
|     assert(x != nullptr);
 | |
|     Node* next = x->Next(level);
 | |
|     if (next != nullptr) {
 | |
|       PREFETCH(next->Next(level), 0, 1);
 | |
|     }
 | |
|     assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
 | |
|     assert(x == head_ || KeyIsAfterNode(key_decoded, x));
 | |
|     if (next != last_not_after && KeyIsAfterNode(key_decoded, next)) {
 | |
|       // Keep searching in this list
 | |
|       assert(next != nullptr);
 | |
|       x = next;
 | |
|     } else {
 | |
|       if (prev != nullptr) {
 | |
|         prev[level] = x;
 | |
|       }
 | |
|       if (level == bottom_level) {
 | |
|         return x;
 | |
|       } else {
 | |
|         // Switch to next list, reuse KeyIsAfterNode() result
 | |
|         last_not_after = next;
 | |
|         level--;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Node*
 | |
| InlineSkipList<Comparator>::FindLast() const {
 | |
|   Node* x = head_;
 | |
|   int level = GetMaxHeight() - 1;
 | |
|   while (true) {
 | |
|     Node* next = x->Next(level);
 | |
|     if (next == nullptr) {
 | |
|       if (level == 0) {
 | |
|         return x;
 | |
|       } else {
 | |
|         // Switch to next list
 | |
|         level--;
 | |
|       }
 | |
|     } else {
 | |
|       x = next;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| uint64_t InlineSkipList<Comparator>::EstimateCount(const char* key) const {
 | |
|   uint64_t count = 0;
 | |
| 
 | |
|   Node* x = head_;
 | |
|   int level = GetMaxHeight() - 1;
 | |
|   const DecodedKey key_decoded = compare_.decode_key(key);
 | |
|   while (true) {
 | |
|     assert(x == head_ || compare_(x->Key(), key_decoded) < 0);
 | |
|     Node* next = x->Next(level);
 | |
|     if (next != nullptr) {
 | |
|       PREFETCH(next->Next(level), 0, 1);
 | |
|     }
 | |
|     if (next == nullptr || compare_(next->Key(), key_decoded) >= 0) {
 | |
|       if (level == 0) {
 | |
|         return count;
 | |
|       } else {
 | |
|         // Switch to next list
 | |
|         count *= kBranching_;
 | |
|         level--;
 | |
|       }
 | |
|     } else {
 | |
|       x = next;
 | |
|       count++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
 | |
|                                            Allocator* allocator,
 | |
|                                            int32_t max_height,
 | |
|                                            int32_t branching_factor)
 | |
|     : kMaxHeight_(static_cast<uint16_t>(max_height)),
 | |
|       kBranching_(static_cast<uint16_t>(branching_factor)),
 | |
|       kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
 | |
|       allocator_(allocator),
 | |
|       compare_(cmp),
 | |
|       head_(AllocateNode(0, max_height)),
 | |
|       max_height_(1),
 | |
|       seq_splice_(AllocateSplice()) {
 | |
|   assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
 | |
|   assert(branching_factor > 1 &&
 | |
|          kBranching_ == static_cast<uint32_t>(branching_factor));
 | |
|   assert(kScaledInverseBranching_ > 0);
 | |
| 
 | |
|   for (int i = 0; i < kMaxHeight_; ++i) {
 | |
|     head_->SetNext(i, nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
 | |
|   return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Node*
 | |
| InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
 | |
|   auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
 | |
| 
 | |
|   // prefix is space for the height - 1 pointers that we store before
 | |
|   // the Node instance (next_[-(height - 1) .. -1]).  Node starts at
 | |
|   // raw + prefix, and holds the bottom-mode (level 0) skip list pointer
 | |
|   // next_[0].  key_size is the bytes for the key, which comes just after
 | |
|   // the Node.
 | |
|   char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
 | |
|   Node* x = reinterpret_cast<Node*>(raw + prefix);
 | |
| 
 | |
|   // Once we've linked the node into the skip list we don't actually need
 | |
|   // to know its height, because we can implicitly use the fact that we
 | |
|   // traversed into a node at level h to known that h is a valid level
 | |
|   // for that node.  We need to convey the height to the Insert step,
 | |
|   // however, so that it can perform the proper links.  Since we're not
 | |
|   // using the pointers at the moment, StashHeight temporarily borrow
 | |
|   // storage from next_[0] for that purpose.
 | |
|   x->StashHeight(height);
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| typename InlineSkipList<Comparator>::Splice*
 | |
| InlineSkipList<Comparator>::AllocateSplice() {
 | |
|   // size of prev_ and next_
 | |
|   size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
 | |
|   char* raw = allocator_->AllocateAligned(sizeof(Splice) + array_size * 2);
 | |
|   Splice* splice = reinterpret_cast<Splice*>(raw);
 | |
|   splice->height_ = 0;
 | |
|   splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
 | |
|   splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
 | |
|   return splice;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::Insert(const char* key) {
 | |
|   return Insert<false>(key, seq_splice_, false);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
 | |
|   Node* prev[kMaxPossibleHeight];
 | |
|   Node* next[kMaxPossibleHeight];
 | |
|   Splice splice;
 | |
|   splice.prev_ = prev;
 | |
|   splice.next_ = next;
 | |
|   return Insert<true>(key, &splice, false);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::InsertWithHint(const char* key, void** hint) {
 | |
|   assert(hint != nullptr);
 | |
|   Splice* splice = reinterpret_cast<Splice*>(*hint);
 | |
|   if (splice == nullptr) {
 | |
|     splice = AllocateSplice();
 | |
|     *hint = reinterpret_cast<void*>(splice);
 | |
|   }
 | |
|   return Insert<false>(key, splice, true);
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| template <bool prefetch_before>
 | |
| void InlineSkipList<Comparator>::FindSpliceForLevel(const DecodedKey& key,
 | |
|                                                     Node* before, Node* after,
 | |
|                                                     int level, Node** out_prev,
 | |
|                                                     Node** out_next) {
 | |
|   while (true) {
 | |
|     Node* next = before->Next(level);
 | |
|     if (next != nullptr) {
 | |
|       PREFETCH(next->Next(level), 0, 1);
 | |
|     }
 | |
|     if (prefetch_before == true) {
 | |
|       if (next != nullptr && level>0) {
 | |
|         PREFETCH(next->Next(level-1), 0, 1);
 | |
|       }
 | |
|     }
 | |
|     assert(before == head_ || next == nullptr ||
 | |
|            KeyIsAfterNode(next->Key(), before));
 | |
|     assert(before == head_ || KeyIsAfterNode(key, before));
 | |
|     if (next == after || !KeyIsAfterNode(key, next)) {
 | |
|       // found it
 | |
|       *out_prev = before;
 | |
|       *out_next = next;
 | |
|       return;
 | |
|     }
 | |
|     before = next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| void InlineSkipList<Comparator>::RecomputeSpliceLevels(const DecodedKey& key,
 | |
|                                                        Splice* splice,
 | |
|                                                        int recompute_level) {
 | |
|   assert(recompute_level > 0);
 | |
|   assert(recompute_level <= splice->height_);
 | |
|   for (int i = recompute_level - 1; i >= 0; --i) {
 | |
|     FindSpliceForLevel<true>(key, splice->prev_[i + 1], splice->next_[i + 1], i,
 | |
|                        &splice->prev_[i], &splice->next_[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| template <bool UseCAS>
 | |
| bool InlineSkipList<Comparator>::Insert(const char* key, Splice* splice,
 | |
|                                         bool allow_partial_splice_fix) {
 | |
|   Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
 | |
|   const DecodedKey key_decoded = compare_.decode_key(key);
 | |
|   int height = x->UnstashHeight();
 | |
|   assert(height >= 1 && height <= kMaxHeight_);
 | |
| 
 | |
|   int max_height = max_height_.load(std::memory_order_relaxed);
 | |
|   while (height > max_height) {
 | |
|     if (max_height_.compare_exchange_weak(max_height, height)) {
 | |
|       // successfully updated it
 | |
|       max_height = height;
 | |
|       break;
 | |
|     }
 | |
|     // else retry, possibly exiting the loop because somebody else
 | |
|     // increased it
 | |
|   }
 | |
|   assert(max_height <= kMaxPossibleHeight);
 | |
| 
 | |
|   int recompute_height = 0;
 | |
|   if (splice->height_ < max_height) {
 | |
|     // Either splice has never been used or max_height has grown since
 | |
|     // last use.  We could potentially fix it in the latter case, but
 | |
|     // that is tricky.
 | |
|     splice->prev_[max_height] = head_;
 | |
|     splice->next_[max_height] = nullptr;
 | |
|     splice->height_ = max_height;
 | |
|     recompute_height = max_height;
 | |
|   } else {
 | |
|     // Splice is a valid proper-height splice that brackets some
 | |
|     // key, but does it bracket this one?  We need to validate it and
 | |
|     // recompute a portion of the splice (levels 0..recompute_height-1)
 | |
|     // that is a superset of all levels that don't bracket the new key.
 | |
|     // Several choices are reasonable, because we have to balance the work
 | |
|     // saved against the extra comparisons required to validate the Splice.
 | |
|     //
 | |
|     // One strategy is just to recompute all of orig_splice_height if the
 | |
|     // bottom level isn't bracketing.  This pessimistically assumes that
 | |
|     // we will either get a perfect Splice hit (increasing sequential
 | |
|     // inserts) or have no locality.
 | |
|     //
 | |
|     // Another strategy is to walk up the Splice's levels until we find
 | |
|     // a level that brackets the key.  This strategy lets the Splice
 | |
|     // hint help for other cases: it turns insertion from O(log N) into
 | |
|     // O(log D), where D is the number of nodes in between the key that
 | |
|     // produced the Splice and the current insert (insertion is aided
 | |
|     // whether the new key is before or after the splice).  If you have
 | |
|     // a way of using a prefix of the key to map directly to the closest
 | |
|     // Splice out of O(sqrt(N)) Splices and we make it so that splices
 | |
|     // can also be used as hints during read, then we end up with Oshman's
 | |
|     // and Shavit's SkipTrie, which has O(log log N) lookup and insertion
 | |
|     // (compare to O(log N) for skip list).
 | |
|     //
 | |
|     // We control the pessimistic strategy with allow_partial_splice_fix.
 | |
|     // A good strategy is probably to be pessimistic for seq_splice_,
 | |
|     // optimistic if the caller actually went to the work of providing
 | |
|     // a Splice.
 | |
|     while (recompute_height < max_height) {
 | |
|       if (splice->prev_[recompute_height]->Next(recompute_height) !=
 | |
|           splice->next_[recompute_height]) {
 | |
|         // splice isn't tight at this level, there must have been some inserts
 | |
|         // to this
 | |
|         // location that didn't update the splice.  We might only be a little
 | |
|         // stale, but if
 | |
|         // the splice is very stale it would be O(N) to fix it.  We haven't used
 | |
|         // up any of
 | |
|         // our budget of comparisons, so always move up even if we are
 | |
|         // pessimistic about
 | |
|         // our chances of success.
 | |
|         ++recompute_height;
 | |
|       } else if (splice->prev_[recompute_height] != head_ &&
 | |
|                  !KeyIsAfterNode(key_decoded,
 | |
|                                  splice->prev_[recompute_height])) {
 | |
|         // key is from before splice
 | |
|         if (allow_partial_splice_fix) {
 | |
|           // skip all levels with the same node without more comparisons
 | |
|           Node* bad = splice->prev_[recompute_height];
 | |
|           while (splice->prev_[recompute_height] == bad) {
 | |
|             ++recompute_height;
 | |
|           }
 | |
|         } else {
 | |
|           // we're pessimistic, recompute everything
 | |
|           recompute_height = max_height;
 | |
|         }
 | |
|       } else if (KeyIsAfterNode(key_decoded,
 | |
|                                 splice->next_[recompute_height])) {
 | |
|         // key is from after splice
 | |
|         if (allow_partial_splice_fix) {
 | |
|           Node* bad = splice->next_[recompute_height];
 | |
|           while (splice->next_[recompute_height] == bad) {
 | |
|             ++recompute_height;
 | |
|           }
 | |
|         } else {
 | |
|           recompute_height = max_height;
 | |
|         }
 | |
|       } else {
 | |
|         // this level brackets the key, we won!
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert(recompute_height <= max_height);
 | |
|   if (recompute_height > 0) {
 | |
|     RecomputeSpliceLevels(key_decoded, splice, recompute_height);
 | |
|   }
 | |
| 
 | |
|   bool splice_is_valid = true;
 | |
|   if (UseCAS) {
 | |
|     for (int i = 0; i < height; ++i) {
 | |
|       while (true) {
 | |
|         // Checking for duplicate keys on the level 0 is sufficient
 | |
|         if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
 | |
|                      compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
 | |
|           // duplicate key
 | |
|           return false;
 | |
|         }
 | |
|         if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
 | |
|                      compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
 | |
|           // duplicate key
 | |
|           return false;
 | |
|         }
 | |
|         assert(splice->next_[i] == nullptr ||
 | |
|                compare_(x->Key(), splice->next_[i]->Key()) < 0);
 | |
|         assert(splice->prev_[i] == head_ ||
 | |
|                compare_(splice->prev_[i]->Key(), x->Key()) < 0);
 | |
|         x->NoBarrier_SetNext(i, splice->next_[i]);
 | |
|         if (splice->prev_[i]->CASNext(i, splice->next_[i], x)) {
 | |
|           // success
 | |
|           break;
 | |
|         }
 | |
|         // CAS failed, we need to recompute prev and next. It is unlikely
 | |
|         // to be helpful to try to use a different level as we redo the
 | |
|         // search, because it should be unlikely that lots of nodes have
 | |
|         // been inserted between prev[i] and next[i]. No point in using
 | |
|         // next[i] as the after hint, because we know it is stale.
 | |
|         FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
 | |
|                                   &splice->prev_[i], &splice->next_[i]);
 | |
| 
 | |
|         // Since we've narrowed the bracket for level i, we might have
 | |
|         // violated the Splice constraint between i and i-1.  Make sure
 | |
|         // we recompute the whole thing next time.
 | |
|         if (i > 0) {
 | |
|           splice_is_valid = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (int i = 0; i < height; ++i) {
 | |
|       if (i >= recompute_height &&
 | |
|           splice->prev_[i]->Next(i) != splice->next_[i]) {
 | |
|         FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
 | |
|                                   &splice->prev_[i], &splice->next_[i]);
 | |
|       }
 | |
|       // Checking for duplicate keys on the level 0 is sufficient
 | |
|       if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
 | |
|                    compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
 | |
|         // duplicate key
 | |
|         return false;
 | |
|       }
 | |
|       if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
 | |
|                    compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
 | |
|         // duplicate key
 | |
|         return false;
 | |
|       }
 | |
|       assert(splice->next_[i] == nullptr ||
 | |
|              compare_(x->Key(), splice->next_[i]->Key()) < 0);
 | |
|       assert(splice->prev_[i] == head_ ||
 | |
|              compare_(splice->prev_[i]->Key(), x->Key()) < 0);
 | |
|       assert(splice->prev_[i]->Next(i) == splice->next_[i]);
 | |
|       x->NoBarrier_SetNext(i, splice->next_[i]);
 | |
|       splice->prev_[i]->SetNext(i, x);
 | |
|     }
 | |
|   }
 | |
|   if (splice_is_valid) {
 | |
|     for (int i = 0; i < height; ++i) {
 | |
|       splice->prev_[i] = x;
 | |
|     }
 | |
|     assert(splice->prev_[splice->height_] == head_);
 | |
|     assert(splice->next_[splice->height_] == nullptr);
 | |
|     for (int i = 0; i < splice->height_; ++i) {
 | |
|       assert(splice->next_[i] == nullptr ||
 | |
|              compare_(key, splice->next_[i]->Key()) < 0);
 | |
|       assert(splice->prev_[i] == head_ ||
 | |
|              compare_(splice->prev_[i]->Key(), key) <= 0);
 | |
|       assert(splice->prev_[i + 1] == splice->prev_[i] ||
 | |
|              splice->prev_[i + 1] == head_ ||
 | |
|              compare_(splice->prev_[i + 1]->Key(), splice->prev_[i]->Key()) <
 | |
|                  0);
 | |
|       assert(splice->next_[i + 1] == splice->next_[i] ||
 | |
|              splice->next_[i + 1] == nullptr ||
 | |
|              compare_(splice->next_[i]->Key(), splice->next_[i + 1]->Key()) <
 | |
|                  0);
 | |
|     }
 | |
|   } else {
 | |
|     splice->height_ = 0;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| bool InlineSkipList<Comparator>::Contains(const char* key) const {
 | |
|   Node* x = FindGreaterOrEqual(key);
 | |
|   if (x != nullptr && Equal(key, x->Key())) {
 | |
|     return true;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Comparator>
 | |
| void InlineSkipList<Comparator>::TEST_Validate() const {
 | |
|   // Interate over all levels at the same time, and verify nodes appear in
 | |
|   // the right order, and nodes appear in upper level also appear in lower
 | |
|   // levels.
 | |
|   Node* nodes[kMaxPossibleHeight];
 | |
|   int max_height = GetMaxHeight();
 | |
|   assert(max_height > 0);
 | |
|   for (int i = 0; i < max_height; i++) {
 | |
|     nodes[i] = head_;
 | |
|   }
 | |
|   while (nodes[0] != nullptr) {
 | |
|     Node* l0_next = nodes[0]->Next(0);
 | |
|     if (l0_next == nullptr) {
 | |
|       break;
 | |
|     }
 | |
|     assert(nodes[0] == head_ || compare_(nodes[0]->Key(), l0_next->Key()) < 0);
 | |
|     nodes[0] = l0_next;
 | |
| 
 | |
|     int i = 1;
 | |
|     while (i < max_height) {
 | |
|       Node* next = nodes[i]->Next(i);
 | |
|       if (next == nullptr) {
 | |
|         break;
 | |
|       }
 | |
|       auto cmp = compare_(nodes[0]->Key(), next->Key());
 | |
|       assert(cmp <= 0);
 | |
|       if (cmp == 0) {
 | |
|         assert(next == nodes[0]);
 | |
|         nodes[i] = next;
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|       i++;
 | |
|     }
 | |
|   }
 | |
|   for (int i = 1; i < max_height; i++) {
 | |
|     assert(nodes[i] != nullptr && nodes[i]->Next(i) == nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace rocksdb
 | |
| 
 |