You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_impl.h

683 lines
26 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <atomic>
#include <deque>
#include <limits>
#include <set>
#include <utility>
#include <vector>
#include <string>
#include "db/dbformat.h"
#include "db/log_writer.h"
#include "db/snapshot.h"
#include "db/column_family.h"
#include "db/version_edit.h"
#include "memtable_list.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/transaction_log.h"
#include "util/autovector.h"
#include "util/stop_watch.h"
#include "util/thread_local.h"
#include "db/internal_stats.h"
namespace rocksdb {
class MemTable;
class TableCache;
class Version;
class VersionEdit;
class VersionSet;
class CompactionFilterV2;
class Arena;
class DBImpl : public DB {
public:
DBImpl(const DBOptions& options, const std::string& dbname);
virtual ~DBImpl();
// Implementations of the DB interface
using DB::Put;
virtual Status Put(const WriteOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
const Slice& value);
using DB::Merge;
virtual Status Merge(const WriteOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
const Slice& value);
using DB::Delete;
virtual Status Delete(const WriteOptions& options,
ColumnFamilyHandle* column_family, const Slice& key);
using DB::Write;
virtual Status Write(const WriteOptions& options, WriteBatch* updates);
using DB::Get;
virtual Status Get(const ReadOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
std::string* value);
using DB::MultiGet;
virtual std::vector<Status> MultiGet(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values);
virtual Status CreateColumnFamily(const ColumnFamilyOptions& options,
const std::string& column_family,
ColumnFamilyHandle** handle);
virtual Status DropColumnFamily(ColumnFamilyHandle* column_family);
// Returns false if key doesn't exist in the database and true if it may.
// If value_found is not passed in as null, then return the value if found in
// memory. On return, if value was found, then value_found will be set to true
// , otherwise false.
using DB::KeyMayExist;
virtual bool KeyMayExist(const ReadOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
std::string* value, bool* value_found = nullptr);
using DB::NewIterator;
virtual Iterator* NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family);
virtual Status NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators);
virtual const Snapshot* GetSnapshot();
virtual void ReleaseSnapshot(const Snapshot* snapshot);
using DB::GetProperty;
virtual bool GetProperty(ColumnFamilyHandle* column_family,
const Slice& property, std::string* value);
using DB::GetIntProperty;
virtual bool GetIntProperty(ColumnFamilyHandle* column_family,
const Slice& property, uint64_t* value) override;
using DB::GetApproximateSizes;
virtual void GetApproximateSizes(ColumnFamilyHandle* column_family,
const Range* range, int n, uint64_t* sizes);
using DB::CompactRange;
virtual Status CompactRange(ColumnFamilyHandle* column_family,
const Slice* begin, const Slice* end,
bool reduce_level = false, int target_level = -1,
uint32_t target_path_id = 0);
using DB::NumberLevels;
virtual int NumberLevels(ColumnFamilyHandle* column_family);
using DB::MaxMemCompactionLevel;
virtual int MaxMemCompactionLevel(ColumnFamilyHandle* column_family);
using DB::Level0StopWriteTrigger;
virtual int Level0StopWriteTrigger(ColumnFamilyHandle* column_family);
virtual const std::string& GetName() const;
virtual Env* GetEnv() const;
using DB::GetOptions;
virtual const Options& GetOptions(ColumnFamilyHandle* column_family) const;
using DB::Flush;
virtual Status Flush(const FlushOptions& options,
ColumnFamilyHandle* column_family);
virtual SequenceNumber GetLatestSequenceNumber() const;
#ifndef ROCKSDB_LITE
virtual Status DisableFileDeletions();
virtual Status EnableFileDeletions(bool force);
// All the returned filenames start with "/"
virtual Status GetLiveFiles(std::vector<std::string>&,
uint64_t* manifest_file_size,
bool flush_memtable = true);
virtual Status GetSortedWalFiles(VectorLogPtr& files);
virtual Status GetUpdatesSince(
SequenceNumber seq_number, unique_ptr<TransactionLogIterator>* iter,
const TransactionLogIterator::ReadOptions&
read_options = TransactionLogIterator::ReadOptions());
virtual Status DeleteFile(std::string name);
virtual void GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata);
#endif // ROCKSDB_LITE
// checks if all live files exist on file system and that their file sizes
// match to our in-memory records
virtual Status CheckConsistency();
virtual Status GetDbIdentity(std::string& identity);
Status RunManualCompaction(ColumnFamilyData* cfd, int input_level,
int output_level, uint32_t output_path_id,
const Slice* begin, const Slice* end);
#ifndef ROCKSDB_LITE
// Extra methods (for testing) that are not in the public DB interface
// Implemented in db_impl_debug.cc
// Compact any files in the named level that overlap [*begin, *end]
Status TEST_CompactRange(int level, const Slice* begin, const Slice* end,
ColumnFamilyHandle* column_family = nullptr);
// Force current memtable contents to be flushed.
Status TEST_FlushMemTable(bool wait = true);
// Wait for memtable compaction
Status TEST_WaitForFlushMemTable(ColumnFamilyHandle* column_family = nullptr);
// Wait for any compaction
Status TEST_WaitForCompact();
// Return an internal iterator over the current state of the database.
// The keys of this iterator are internal keys (see format.h).
// The returned iterator should be deleted when no longer needed.
Iterator* TEST_NewInternalIterator(ColumnFamilyHandle* column_family =
nullptr);
// Return the maximum overlapping data (in bytes) at next level for any
// file at a level >= 1.
int64_t TEST_MaxNextLevelOverlappingBytes(ColumnFamilyHandle* column_family =
nullptr);
// Return the current manifest file no.
uint64_t TEST_Current_Manifest_FileNo();
// Trigger's a background call for testing.
void TEST_PurgeObsoleteteWAL();
// get total level0 file size. Only for testing.
uint64_t TEST_GetLevel0TotalSize();
void TEST_SetDefaultTimeToCheck(uint64_t default_interval_to_delete_obsolete_WAL)
{
default_interval_to_delete_obsolete_WAL_ = default_interval_to_delete_obsolete_WAL;
}
void TEST_GetFilesMetaData(ColumnFamilyHandle* column_family,
std::vector<std::vector<FileMetaData>>* metadata);
Status TEST_ReadFirstRecord(const WalFileType type, const uint64_t number,
SequenceNumber* sequence);
Status TEST_ReadFirstLine(const std::string& fname, SequenceNumber* sequence);
#endif // NDEBUG
// Structure to store information for candidate files to delete.
struct CandidateFileInfo {
std::string file_name;
uint32_t path_id;
CandidateFileInfo(std::string name, uint32_t path)
: file_name(name), path_id(path) {}
bool operator==(const CandidateFileInfo& other) const {
return file_name == other.file_name && path_id == other.path_id;
}
};
// needed for CleanupIteratorState
struct DeletionState {
inline bool HaveSomethingToDelete() const {
return candidate_files.size() ||
sst_delete_files.size() ||
log_delete_files.size();
}
// a list of all files that we'll consider deleting
// (every once in a while this is filled up with all files
// in the DB directory)
std::vector<CandidateFileInfo> candidate_files;
// the list of all live sst files that cannot be deleted
std::vector<FileDescriptor> sst_live;
// a list of sst files that we need to delete
std::vector<FileMetaData*> sst_delete_files;
// a list of log files that we need to delete
std::vector<uint64_t> log_delete_files;
// a list of memtables to be free
autovector<MemTable*> memtables_to_free;
autovector<SuperVersion*> superversions_to_free;
SuperVersion* new_superversion; // if nullptr no new superversion
// the current manifest_file_number, log_number and prev_log_number
// that corresponds to the set of files in 'live'.
uint64_t manifest_file_number, pending_manifest_file_number, log_number,
prev_log_number;
explicit DeletionState(bool create_superversion = false) {
manifest_file_number = 0;
pending_manifest_file_number = 0;
log_number = 0;
prev_log_number = 0;
new_superversion = create_superversion ? new SuperVersion() : nullptr;
}
~DeletionState() {
// free pending memtables
for (auto m : memtables_to_free) {
delete m;
}
// free superversions
for (auto s : superversions_to_free) {
delete s;
}
// if new_superversion was not used, it will be non-nullptr and needs
// to be freed here
delete new_superversion;
}
};
// Returns the list of live files in 'live' and the list
// of all files in the filesystem in 'candidate_files'.
// If force == false and the last call was less than
// options_.delete_obsolete_files_period_micros microseconds ago,
// it will not fill up the deletion_state
void FindObsoleteFiles(DeletionState& deletion_state,
bool force,
bool no_full_scan = false);
// Diffs the files listed in filenames and those that do not
// belong to live files are posibly removed. Also, removes all the
// files in sst_delete_files and log_delete_files.
// It is not necessary to hold the mutex when invoking this method.
void PurgeObsoleteFiles(DeletionState& deletion_state);
ColumnFamilyHandle* DefaultColumnFamily() const;
protected:
Env* const env_;
const std::string dbname_;
unique_ptr<VersionSet> versions_;
const DBOptions options_;
Statistics* stats_;
Iterator* NewInternalIterator(const ReadOptions&, ColumnFamilyData* cfd,
SuperVersion* super_version,
Arena* arena = nullptr);
private:
friend class DB;
friend class InternalStats;
#ifndef ROCKSDB_LITE
friend class TailingIterator;
friend class ForwardIterator;
#endif
friend struct SuperVersion;
struct CompactionState;
struct Writer;
struct WriteContext;
Status NewDB();
// Recover the descriptor from persistent storage. May do a significant
// amount of work to recover recently logged updates. Any changes to
// be made to the descriptor are added to *edit.
Status Recover(const std::vector<ColumnFamilyDescriptor>& column_families,
bool read_only = false, bool error_if_log_file_exist = false);
void MaybeIgnoreError(Status* s) const;
const Status CreateArchivalDirectory();
// Delete any unneeded files and stale in-memory entries.
void DeleteObsoleteFiles();
// Flush the in-memory write buffer to storage. Switches to a new
// log-file/memtable and writes a new descriptor iff successful.
Status FlushMemTableToOutputFile(ColumnFamilyData* cfd, bool* madeProgress,
DeletionState& deletion_state,
LogBuffer* log_buffer);
Status RecoverLogFile(uint64_t log_number, SequenceNumber* max_sequence,
bool read_only);
// The following two methods are used to flush a memtable to
// storage. The first one is used atdatabase RecoveryTime (when the
// database is opened) and is heavyweight because it holds the mutex
// for the entire period. The second method WriteLevel0Table supports
// concurrent flush memtables to storage.
Status WriteLevel0TableForRecovery(ColumnFamilyData* cfd, MemTable* mem,
VersionEdit* edit);
Status WriteLevel0Table(ColumnFamilyData* cfd, autovector<MemTable*>& mems,
VersionEdit* edit, uint64_t* filenumber,
LogBuffer* log_buffer);
uint64_t SlowdownAmount(int n, double bottom, double top);
// Before applying write operation (such as DBImpl::Write, DBImpl::Flush)
// thread should grab the mutex_ and be the first on writers queue.
// BeginWrite is used for it.
// Be aware! Writer's job can be done by other thread (see DBImpl::Write
// for examples), so check it via w.done before applying changes.
//
// Writer* w: writer to be placed in the queue
// uint64_t expiration_time: maximum time to be in the queue
// See also: EndWrite
Status BeginWrite(Writer* w, uint64_t expiration_time);
// After doing write job, we need to remove already used writers from
// writers_ queue and notify head of the queue about it.
// EndWrite is used for this.
//
// Writer* w: Writer, that was added by BeginWrite function
// Writer* last_writer: Since we can join a few Writers (as DBImpl::Write
// does)
// we should pass last_writer as a parameter to
// EndWrite
// (if you don't touch other writers, just pass w)
// Status status: Status of write operation
// See also: BeginWrite
void EndWrite(Writer* w, Writer* last_writer, Status status);
Status MakeRoomForWrite(ColumnFamilyData* cfd,
WriteContext* context,
uint64_t expiration_time);
Status SetNewMemtableAndNewLogFile(ColumnFamilyData* cfd,
WriteContext* context);
void BuildBatchGroup(Writer** last_writer,
autovector<WriteBatch*>* write_batch_group);
// Force current memtable contents to be flushed.
Status FlushMemTable(ColumnFamilyData* cfd, const FlushOptions& options);
// Wait for memtable flushed
Status WaitForFlushMemTable(ColumnFamilyData* cfd);
void RecordFlushIOStats();
void RecordCompactionIOStats();
void MaybeScheduleFlushOrCompaction();
static void BGWorkCompaction(void* db);
static void BGWorkFlush(void* db);
void BackgroundCallCompaction();
void BackgroundCallFlush();
Status BackgroundCompaction(bool* madeProgress, DeletionState& deletion_state,
LogBuffer* log_buffer);
Status BackgroundFlush(bool* madeProgress, DeletionState& deletion_state,
LogBuffer* log_buffer);
void CleanupCompaction(CompactionState* compact, Status status);
Status DoCompactionWork(CompactionState* compact,
DeletionState& deletion_state,
LogBuffer* log_buffer);
// This function is called as part of compaction. It enables Flush process to
// preempt compaction, since it's higher prioirty
// Returns: micros spent executing
uint64_t CallFlushDuringCompaction(ColumnFamilyData* cfd,
DeletionState& deletion_state,
LogBuffer* log_buffer);
// Call compaction filter if is_compaction_v2 is not true. Then iterate
// through input and compact the kv-pairs
Status ProcessKeyValueCompaction(
bool is_snapshot_supported,
SequenceNumber visible_at_tip,
SequenceNumber earliest_snapshot,
SequenceNumber latest_snapshot,
DeletionState& deletion_state,
bool bottommost_level,
int64_t& imm_micros,
Iterator* input,
CompactionState* compact,
bool is_compaction_v2,
LogBuffer* log_buffer);
// Call compaction_filter_v2->Filter() on kv-pairs in compact
void CallCompactionFilterV2(CompactionState* compact,
CompactionFilterV2* compaction_filter_v2);
Status OpenCompactionOutputFile(CompactionState* compact);
Status FinishCompactionOutputFile(CompactionState* compact, Iterator* input);
Status InstallCompactionResults(CompactionState* compact,
LogBuffer* log_buffer);
void AllocateCompactionOutputFileNumbers(CompactionState* compact);
void ReleaseCompactionUnusedFileNumbers(CompactionState* compact);
#ifdef ROCKSDB_LITE
void PurgeObsoleteWALFiles() {
// this function is used for archiving WAL files. we don't need this in
// ROCKSDB_LITE
}
#else
void PurgeObsoleteWALFiles();
Status GetSortedWalsOfType(const std::string& path,
VectorLogPtr& log_files,
WalFileType type);
// Requires: all_logs should be sorted with earliest log file first
// Retains all log files in all_logs which contain updates with seq no.
// Greater Than or Equal to the requested SequenceNumber.
Status RetainProbableWalFiles(VectorLogPtr& all_logs,
const SequenceNumber target);
Status ReadFirstRecord(const WalFileType type, const uint64_t number,
SequenceNumber* sequence);
Status ReadFirstLine(const std::string& fname, SequenceNumber* sequence);
#endif // ROCKSDB_LITE
void PrintStatistics();
// dump rocksdb.stats to LOG
void MaybeDumpStats();
// Return true if the current db supports snapshot. If the current
// DB does not support snapshot, then calling GetSnapshot() will always
// return nullptr.
//
// @see GetSnapshot()
virtual bool IsSnapshotSupported() const;
// Return the minimum empty level that could hold the total data in the
// input level. Return the input level, if such level could not be found.
int FindMinimumEmptyLevelFitting(ColumnFamilyData* cfd, int level);
// Move the files in the input level to the target level.
// If target_level < 0, automatically calculate the minimum level that could
// hold the data set.
Status ReFitLevel(ColumnFamilyData* cfd, int level, int target_level = -1);
// table_cache_ provides its own synchronization
std::shared_ptr<Cache> table_cache_;
// Lock over the persistent DB state. Non-nullptr iff successfully acquired.
FileLock* db_lock_;
// State below is protected by mutex_
port::Mutex mutex_;
port::AtomicPointer shutting_down_;
// This condition variable is signaled on these conditions:
// * whenever bg_compaction_scheduled_ goes down to 0
// * if bg_manual_only_ > 0, whenever a compaction finishes, even if it hasn't
// made any progress
// * whenever a compaction made any progress
// * whenever bg_flush_scheduled_ value decreases (i.e. whenever a flush is
// done, even if it didn't make any progress)
// * whenever there is an error in background flush or compaction
port::CondVar bg_cv_;
uint64_t logfile_number_;
unique_ptr<log::Writer> log_;
bool log_empty_;
ColumnFamilyHandleImpl* default_cf_handle_;
InternalStats* default_cf_internal_stats_;
unique_ptr<ColumnFamilyMemTablesImpl> column_family_memtables_;
struct LogFileNumberSize {
explicit LogFileNumberSize(uint64_t _number)
: number(_number), size(0), getting_flushed(false) {}
void AddSize(uint64_t new_size) { size += new_size; }
uint64_t number;
uint64_t size;
bool getting_flushed;
};
std::deque<LogFileNumberSize> alive_log_files_;
uint64_t total_log_size_;
// only used for dynamically adjusting max_total_wal_size. it is a sum of
// [write_buffer_size * max_write_buffer_number] over all column families
uint64_t max_total_in_memory_state_;
// If true, we have only one (default) column family. We use this to optimize
// some code-paths
bool single_column_family_mode_;
std::unique_ptr<Directory> db_directory_;
// Queue of writers.
std::deque<Writer*> writers_;
WriteBatch tmp_batch_;
SnapshotList snapshots_;
// cache for ReadFirstRecord() calls
std::unordered_map<uint64_t, SequenceNumber> read_first_record_cache_;
port::Mutex read_first_record_cache_mutex_;
// Set of table files to protect from deletion because they are
// part of ongoing compactions.
// map from pending file number ID to their path IDs.
FileNumToPathIdMap pending_outputs_;
// At least one compaction or flush job is pending but not yet scheduled
// because of the max background thread limit.
bool bg_schedule_needed_;
// count how many background compactions are running or have been scheduled
int bg_compaction_scheduled_;
// If non-zero, MaybeScheduleFlushOrCompaction() will only schedule manual
// compactions (if manual_compaction_ is not null). This mechanism enables
// manual compactions to wait until all other compactions are finished.
int bg_manual_only_;
// number of background memtable flush jobs, submitted to the HIGH pool
int bg_flush_scheduled_;
// Information for a manual compaction
struct ManualCompaction {
ColumnFamilyData* cfd;
int input_level;
int output_level;
uint32_t output_path_id;
bool done;
Status status;
bool in_progress; // compaction request being processed?
const InternalKey* begin; // nullptr means beginning of key range
const InternalKey* end; // nullptr means end of key range
InternalKey tmp_storage; // Used to keep track of compaction progress
};
ManualCompaction* manual_compaction_;
// Have we encountered a background error in paranoid mode?
Status bg_error_;
// shall we disable deletion of obsolete files
// if 0 the deletion is enabled.
// if non-zero, files will not be getting deleted
// This enables two different threads to call
// EnableFileDeletions() and DisableFileDeletions()
// without any synchronization
int disable_delete_obsolete_files_;
// last time when DeleteObsoleteFiles was invoked
uint64_t delete_obsolete_files_last_run_;
// last time when PurgeObsoleteWALFiles ran.
uint64_t purge_wal_files_last_run_;
// last time stats were dumped to LOG
std::atomic<uint64_t> last_stats_dump_time_microsec_;
// obsolete files will be deleted every this seconds if ttl deletion is
// enabled and archive size_limit is disabled.
uint64_t default_interval_to_delete_obsolete_WAL_;
bool flush_on_destroy_; // Used when disableWAL is true.
static const int KEEP_LOG_FILE_NUM = 1000;
static const uint64_t kNoTimeOut = std::numeric_limits<uint64_t>::max();
std::string db_absolute_path_;
// count of the number of contiguous delaying writes
int delayed_writes_;
// The options to access storage files
const EnvOptions storage_options_;
// A value of true temporarily disables scheduling of background work
bool bg_work_gate_closed_;
// Guard against multiple concurrent refitting
bool refitting_level_;
// Indicate DB was opened successfully
bool opened_successfully_;
// No copying allowed
DBImpl(const DBImpl&);
void operator=(const DBImpl&);
// dump the delayed_writes_ to the log file and reset counter.
void DelayLoggingAndReset();
// Return the earliest snapshot where seqno is visible.
// Store the snapshot right before that, if any, in prev_snapshot
inline SequenceNumber findEarliestVisibleSnapshot(
SequenceNumber in,
std::vector<SequenceNumber>& snapshots,
SequenceNumber* prev_snapshot);
// Background threads call this function, which is just a wrapper around
// the cfd->InstallSuperVersion() function. Background threads carry
// deletion_state which can have new_superversion already allocated.
void InstallSuperVersion(ColumnFamilyData* cfd,
DeletionState& deletion_state);
// Find Super version and reference it. Based on options, it might return
// the thread local cached one.
inline SuperVersion* GetAndRefSuperVersion(ColumnFamilyData* cfd);
// Un-reference the super version and return it to thread local cache if
// needed. If it is the last reference of the super version. Clean it up
// after un-referencing it.
inline void ReturnAndCleanupSuperVersion(ColumnFamilyData* cfd,
SuperVersion* sv);
#ifndef ROCKSDB_LITE
using DB::GetPropertiesOfAllTables;
virtual Status GetPropertiesOfAllTables(ColumnFamilyHandle* column_family,
TablePropertiesCollection* props)
override;
#endif // ROCKSDB_LITE
// Function that Get and KeyMayExist call with no_io true or false
// Note: 'value_found' from KeyMayExist propagates here
Status GetImpl(const ReadOptions& options, ColumnFamilyHandle* column_family,
const Slice& key, std::string* value,
bool* value_found = nullptr);
bool GetIntPropertyInternal(ColumnFamilyHandle* column_family,
DBPropertyType property_type,
bool need_out_of_mutex, uint64_t* value);
};
// Sanitize db options. The caller should delete result.info_log if
// it is not equal to src.info_log.
extern Options SanitizeOptions(const std::string& db,
const InternalKeyComparator* icmp,
const InternalFilterPolicy* ipolicy,
const Options& src);
extern DBOptions SanitizeOptions(const std::string& db, const DBOptions& src);
// Fix user-supplied options to be reasonable
template <class T, class V>
static void ClipToRange(T* ptr, V minvalue, V maxvalue) {
if (static_cast<V>(*ptr) > maxvalue) *ptr = maxvalue;
if (static_cast<V>(*ptr) < minvalue) *ptr = minvalue;
}
} // namespace rocksdb