fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
958 lines
31 KiB
958 lines
31 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "cache/lru_cache.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
|
|
#include "monitoring/perf_context_imp.h"
|
|
#include "monitoring/statistics.h"
|
|
#include "port/lang.h"
|
|
#include "util/distributed_mutex.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
namespace lru_cache {
|
|
|
|
LRUHandleTable::LRUHandleTable(int max_upper_hash_bits)
|
|
: length_bits_(/* historical starting size*/ 4),
|
|
list_(new LRUHandle* [size_t{1} << length_bits_] {}),
|
|
elems_(0),
|
|
max_length_bits_(max_upper_hash_bits) {}
|
|
|
|
LRUHandleTable::~LRUHandleTable() {
|
|
ApplyToEntriesRange(
|
|
[](LRUHandle* h) {
|
|
if (!h->HasRefs()) {
|
|
h->Free();
|
|
}
|
|
},
|
|
0, uint32_t{1} << length_bits_);
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
|
|
return *FindPointer(key, hash);
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
|
|
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
|
LRUHandle* old = *ptr;
|
|
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
|
*ptr = h;
|
|
if (old == nullptr) {
|
|
++elems_;
|
|
if ((elems_ >> length_bits_) > 0) { // elems_ >= length
|
|
// Since each cache entry is fairly large, we aim for a small
|
|
// average linked list length (<= 1).
|
|
Resize();
|
|
}
|
|
}
|
|
return old;
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = FindPointer(key, hash);
|
|
LRUHandle* result = *ptr;
|
|
if (result != nullptr) {
|
|
*ptr = result->next_hash;
|
|
--elems_;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = &list_[hash >> (32 - length_bits_)];
|
|
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
|
ptr = &(*ptr)->next_hash;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void LRUHandleTable::Resize() {
|
|
if (length_bits_ >= max_length_bits_) {
|
|
// Due to reaching limit of hash information, if we made the table bigger,
|
|
// we would allocate more addresses but only the same number would be used.
|
|
return;
|
|
}
|
|
if (length_bits_ >= 31) {
|
|
// Avoid undefined behavior shifting uint32_t by 32.
|
|
return;
|
|
}
|
|
|
|
uint32_t old_length = uint32_t{1} << length_bits_;
|
|
int new_length_bits = length_bits_ + 1;
|
|
std::unique_ptr<LRUHandle* []> new_list {
|
|
new LRUHandle* [size_t{1} << new_length_bits] {}
|
|
};
|
|
uint32_t count = 0;
|
|
for (uint32_t i = 0; i < old_length; i++) {
|
|
LRUHandle* h = list_[i];
|
|
while (h != nullptr) {
|
|
LRUHandle* next = h->next_hash;
|
|
uint32_t hash = h->hash;
|
|
LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)];
|
|
h->next_hash = *ptr;
|
|
*ptr = h;
|
|
h = next;
|
|
count++;
|
|
}
|
|
}
|
|
assert(elems_ == count);
|
|
list_ = std::move(new_list);
|
|
length_bits_ = new_length_bits;
|
|
}
|
|
|
|
LRUCacheShard::LRUCacheShard(
|
|
size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio,
|
|
double low_pri_pool_ratio, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy, int max_upper_hash_bits,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache)
|
|
: capacity_(0),
|
|
high_pri_pool_usage_(0),
|
|
low_pri_pool_usage_(0),
|
|
strict_capacity_limit_(strict_capacity_limit),
|
|
high_pri_pool_ratio_(high_pri_pool_ratio),
|
|
high_pri_pool_capacity_(0),
|
|
low_pri_pool_ratio_(low_pri_pool_ratio),
|
|
low_pri_pool_capacity_(0),
|
|
table_(max_upper_hash_bits),
|
|
usage_(0),
|
|
lru_usage_(0),
|
|
mutex_(use_adaptive_mutex),
|
|
secondary_cache_(secondary_cache) {
|
|
set_metadata_charge_policy(metadata_charge_policy);
|
|
// Make empty circular linked list.
|
|
lru_.next = &lru_;
|
|
lru_.prev = &lru_;
|
|
lru_low_pri_ = &lru_;
|
|
lru_bottom_pri_ = &lru_;
|
|
SetCapacity(capacity);
|
|
}
|
|
|
|
void LRUCacheShard::EraseUnRefEntries() {
|
|
autovector<LRUHandle*> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
while (lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted.
|
|
assert(old->InCache() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old->key(), old->hash);
|
|
old->SetInCache(false);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(old);
|
|
}
|
|
}
|
|
|
|
for (auto entry : last_reference_list) {
|
|
entry->Free();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
uint32_t average_entries_per_lock, uint32_t* state) {
|
|
// The state is essentially going to be the starting hash, which works
|
|
// nicely even if we resize between calls because we use upper-most
|
|
// hash bits for table indexes.
|
|
DMutexLock l(mutex_);
|
|
uint32_t length_bits = table_.GetLengthBits();
|
|
uint32_t length = uint32_t{1} << length_bits;
|
|
|
|
assert(average_entries_per_lock > 0);
|
|
// Assuming we are called with same average_entries_per_lock repeatedly,
|
|
// this simplifies some logic (index_end will not overflow).
|
|
assert(average_entries_per_lock < length || *state == 0);
|
|
|
|
uint32_t index_begin = *state >> (32 - length_bits);
|
|
uint32_t index_end = index_begin + average_entries_per_lock;
|
|
if (index_end >= length) {
|
|
// Going to end
|
|
index_end = length;
|
|
*state = UINT32_MAX;
|
|
} else {
|
|
*state = index_end << (32 - length_bits);
|
|
}
|
|
|
|
table_.ApplyToEntriesRange(
|
|
[callback,
|
|
metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) {
|
|
DeleterFn deleter = h->IsSecondaryCacheCompatible()
|
|
? h->info_.helper->del_cb
|
|
: h->info_.deleter;
|
|
callback(h->key(), h->value, h->GetCharge(metadata_charge_policy),
|
|
deleter);
|
|
},
|
|
index_begin, index_end);
|
|
}
|
|
|
|
void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri,
|
|
LRUHandle** lru_bottom_pri) {
|
|
DMutexLock l(mutex_);
|
|
*lru = &lru_;
|
|
*lru_low_pri = lru_low_pri_;
|
|
*lru_bottom_pri = lru_bottom_pri_;
|
|
}
|
|
|
|
size_t LRUCacheShard::TEST_GetLRUSize() {
|
|
DMutexLock l(mutex_);
|
|
LRUHandle* lru_handle = lru_.next;
|
|
size_t lru_size = 0;
|
|
while (lru_handle != &lru_) {
|
|
lru_size++;
|
|
lru_handle = lru_handle->next;
|
|
}
|
|
return lru_size;
|
|
}
|
|
|
|
double LRUCacheShard::GetHighPriPoolRatio() {
|
|
DMutexLock l(mutex_);
|
|
return high_pri_pool_ratio_;
|
|
}
|
|
|
|
double LRUCacheShard::GetLowPriPoolRatio() {
|
|
DMutexLock l(mutex_);
|
|
return low_pri_pool_ratio_;
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Remove(LRUHandle* e) {
|
|
assert(e->next != nullptr);
|
|
assert(e->prev != nullptr);
|
|
if (lru_low_pri_ == e) {
|
|
lru_low_pri_ = e->prev;
|
|
}
|
|
if (lru_bottom_pri_ == e) {
|
|
lru_bottom_pri_ = e->prev;
|
|
}
|
|
e->next->prev = e->prev;
|
|
e->prev->next = e->next;
|
|
e->prev = e->next = nullptr;
|
|
assert(lru_usage_ >= e->total_charge);
|
|
lru_usage_ -= e->total_charge;
|
|
assert(!e->InHighPriPool() || !e->InLowPriPool());
|
|
if (e->InHighPriPool()) {
|
|
assert(high_pri_pool_usage_ >= e->total_charge);
|
|
high_pri_pool_usage_ -= e->total_charge;
|
|
} else if (e->InLowPriPool()) {
|
|
assert(low_pri_pool_usage_ >= e->total_charge);
|
|
low_pri_pool_usage_ -= e->total_charge;
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Insert(LRUHandle* e) {
|
|
assert(e->next == nullptr);
|
|
assert(e->prev == nullptr);
|
|
if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) {
|
|
// Inset "e" to head of LRU list.
|
|
e->next = &lru_;
|
|
e->prev = lru_.prev;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
e->SetInHighPriPool(true);
|
|
e->SetInLowPriPool(false);
|
|
high_pri_pool_usage_ += e->total_charge;
|
|
MaintainPoolSize();
|
|
} else if (low_pri_pool_ratio_ > 0 &&
|
|
(e->IsHighPri() || e->IsLowPri() || e->HasHit())) {
|
|
// Insert "e" to the head of low-pri pool.
|
|
e->next = lru_low_pri_->next;
|
|
e->prev = lru_low_pri_;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
e->SetInHighPriPool(false);
|
|
e->SetInLowPriPool(true);
|
|
low_pri_pool_usage_ += e->total_charge;
|
|
MaintainPoolSize();
|
|
lru_low_pri_ = e;
|
|
} else {
|
|
// Insert "e" to the head of bottom-pri pool.
|
|
e->next = lru_bottom_pri_->next;
|
|
e->prev = lru_bottom_pri_;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
e->SetInHighPriPool(false);
|
|
e->SetInLowPriPool(false);
|
|
// if the low-pri pool is empty, lru_low_pri_ also needs to be updated.
|
|
if (lru_bottom_pri_ == lru_low_pri_) {
|
|
lru_low_pri_ = e;
|
|
}
|
|
lru_bottom_pri_ = e;
|
|
}
|
|
lru_usage_ += e->total_charge;
|
|
}
|
|
|
|
void LRUCacheShard::MaintainPoolSize() {
|
|
while (high_pri_pool_usage_ > high_pri_pool_capacity_) {
|
|
// Overflow last entry in high-pri pool to low-pri pool.
|
|
lru_low_pri_ = lru_low_pri_->next;
|
|
assert(lru_low_pri_ != &lru_);
|
|
lru_low_pri_->SetInHighPriPool(false);
|
|
lru_low_pri_->SetInLowPriPool(true);
|
|
assert(high_pri_pool_usage_ >= lru_low_pri_->total_charge);
|
|
high_pri_pool_usage_ -= lru_low_pri_->total_charge;
|
|
low_pri_pool_usage_ += lru_low_pri_->total_charge;
|
|
}
|
|
|
|
while (low_pri_pool_usage_ > low_pri_pool_capacity_) {
|
|
// Overflow last entry in low-pri pool to bottom-pri pool.
|
|
lru_bottom_pri_ = lru_bottom_pri_->next;
|
|
assert(lru_bottom_pri_ != &lru_);
|
|
lru_bottom_pri_->SetInHighPriPool(false);
|
|
lru_bottom_pri_->SetInLowPriPool(false);
|
|
assert(low_pri_pool_usage_ >= lru_bottom_pri_->total_charge);
|
|
low_pri_pool_usage_ -= lru_bottom_pri_->total_charge;
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::EvictFromLRU(size_t charge,
|
|
autovector<LRUHandle*>* deleted) {
|
|
while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted.
|
|
assert(old->InCache() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old->key(), old->hash);
|
|
old->SetInCache(false);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
deleted->push_back(old);
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::TryInsertIntoSecondaryCache(
|
|
autovector<LRUHandle*> evicted_handles) {
|
|
for (auto entry : evicted_handles) {
|
|
if (secondary_cache_ && entry->IsSecondaryCacheCompatible() &&
|
|
!entry->IsInSecondaryCache()) {
|
|
secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper)
|
|
.PermitUncheckedError();
|
|
}
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
entry->Free();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::SetCapacity(size_t capacity) {
|
|
autovector<LRUHandle*> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
capacity_ = capacity;
|
|
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
|
|
low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
|
|
EvictFromLRU(0, &last_reference_list);
|
|
}
|
|
|
|
TryInsertIntoSecondaryCache(last_reference_list);
|
|
}
|
|
|
|
void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
|
DMutexLock l(mutex_);
|
|
strict_capacity_limit_ = strict_capacity_limit;
|
|
}
|
|
|
|
Status LRUCacheShard::InsertItem(LRUHandle* e, Cache::Handle** handle,
|
|
bool free_handle_on_fail) {
|
|
Status s = Status::OK();
|
|
autovector<LRUHandle*> last_reference_list;
|
|
|
|
{
|
|
DMutexLock l(mutex_);
|
|
|
|
// Free the space following strict LRU policy until enough space
|
|
// is freed or the lru list is empty.
|
|
EvictFromLRU(e->total_charge, &last_reference_list);
|
|
|
|
if ((usage_ + e->total_charge) > capacity_ &&
|
|
(strict_capacity_limit_ || handle == nullptr)) {
|
|
e->SetInCache(false);
|
|
if (handle == nullptr) {
|
|
// Don't insert the entry but still return ok, as if the entry inserted
|
|
// into cache and get evicted immediately.
|
|
last_reference_list.push_back(e);
|
|
} else {
|
|
if (free_handle_on_fail) {
|
|
delete[] reinterpret_cast<char*>(e);
|
|
*handle = nullptr;
|
|
}
|
|
s = Status::MemoryLimit("Insert failed due to LRU cache being full.");
|
|
}
|
|
} else {
|
|
// Insert into the cache. Note that the cache might get larger than its
|
|
// capacity if not enough space was freed up.
|
|
LRUHandle* old = table_.Insert(e);
|
|
usage_ += e->total_charge;
|
|
if (old != nullptr) {
|
|
s = Status::OkOverwritten();
|
|
assert(old->InCache());
|
|
old->SetInCache(false);
|
|
if (!old->HasRefs()) {
|
|
// old is on LRU because it's in cache and its reference count is 0.
|
|
LRU_Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(old);
|
|
}
|
|
}
|
|
if (handle == nullptr) {
|
|
LRU_Insert(e);
|
|
} else {
|
|
// If caller already holds a ref, no need to take one here.
|
|
if (!e->HasRefs()) {
|
|
e->Ref();
|
|
}
|
|
*handle = reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
TryInsertIntoSecondaryCache(last_reference_list);
|
|
|
|
return s;
|
|
}
|
|
|
|
void LRUCacheShard::Promote(LRUHandle* e) {
|
|
SecondaryCacheResultHandle* secondary_handle = e->sec_handle;
|
|
|
|
assert(secondary_handle->IsReady());
|
|
e->SetIncomplete(false);
|
|
e->SetInCache(false);
|
|
e->value = secondary_handle->Value();
|
|
e->CalcTotalCharge(secondary_handle->Size(), metadata_charge_policy_);
|
|
delete secondary_handle;
|
|
|
|
if (e->value) {
|
|
Status s;
|
|
if (secondary_cache_ && secondary_cache_->SupportForceErase() &&
|
|
e->IsStandalone()) {
|
|
// Insert a dummy handle and return a standalone handle to caller.
|
|
// Charge the standalone handle.
|
|
autovector<LRUHandle*> last_reference_list;
|
|
bool free_standalone_handle{false};
|
|
{
|
|
DMutexLock l(mutex_);
|
|
|
|
// Free the space following strict LRU policy until enough space
|
|
// is freed or the lru list is empty.
|
|
EvictFromLRU(e->total_charge, &last_reference_list);
|
|
|
|
if ((usage_ + e->total_charge) > capacity_ && strict_capacity_limit_) {
|
|
free_standalone_handle = true;
|
|
} else {
|
|
usage_ += e->total_charge;
|
|
}
|
|
}
|
|
|
|
TryInsertIntoSecondaryCache(last_reference_list);
|
|
if (free_standalone_handle) {
|
|
e->Unref();
|
|
e->Free();
|
|
e = nullptr;
|
|
} else {
|
|
PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1);
|
|
}
|
|
|
|
// Insert a dummy handle into the primary cache. This dummy handle is
|
|
// not IsSecondaryCacheCompatible().
|
|
Cache::Priority priority =
|
|
e->IsHighPri() ? Cache::Priority::HIGH : Cache::Priority::LOW;
|
|
s = Insert(e->key(), e->hash, /*value=*/nullptr, 0,
|
|
/*deleter=*/nullptr, /*helper=*/nullptr, /*handle=*/nullptr,
|
|
priority);
|
|
} else {
|
|
e->SetInCache(true);
|
|
e->SetIsStandalone(false);
|
|
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(e);
|
|
// This InsertItem() could fail if the cache is over capacity and
|
|
// strict_capacity_limit_ is true. In such a case, we don't want
|
|
// InsertItem() to free the handle, since the item is already in memory
|
|
// and the caller will most likely just read it from disk if we erase it
|
|
// here.
|
|
s = InsertItem(e, &handle, /*free_handle_on_fail=*/false);
|
|
if (s.ok()) {
|
|
PERF_COUNTER_ADD(block_cache_real_handle_count, 1);
|
|
}
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
// Item is in memory, but not accounted against the cache capacity.
|
|
// When the handle is released, the item should get deleted.
|
|
assert(!e->InCache());
|
|
}
|
|
|
|
} else {
|
|
// Since the secondary cache lookup failed, mark the item as not in cache
|
|
// Don't charge the cache as its only metadata that'll shortly be released
|
|
DMutexLock l(mutex_);
|
|
// TODO
|
|
e->CalcTotalCharge(0, metadata_charge_policy_);
|
|
e->SetInCache(false);
|
|
e->SetIsStandalone(false);
|
|
}
|
|
}
|
|
|
|
Cache::Handle* LRUCacheShard::Lookup(
|
|
const Slice& key, uint32_t hash,
|
|
const ShardedCache::CacheItemHelper* helper,
|
|
const ShardedCache::CreateCallback& create_cb, Cache::Priority priority,
|
|
bool wait, Statistics* stats) {
|
|
LRUHandle* e = nullptr;
|
|
bool found_dummy_entry{false};
|
|
{
|
|
DMutexLock l(mutex_);
|
|
e = table_.Lookup(key, hash);
|
|
if (e != nullptr) {
|
|
assert(e->InCache());
|
|
if (!e->HasRefs()) {
|
|
// The entry is in LRU since it's in hash and has no external
|
|
// references.
|
|
LRU_Remove(e);
|
|
}
|
|
e->Ref();
|
|
e->SetHit();
|
|
|
|
// For a dummy handle, if it was retrieved from secondary cache,
|
|
// it may still exist in secondary cache.
|
|
// If the handle exists in secondary cache, the value should be
|
|
// erased from sec cache and be inserted into primary cache.
|
|
if (!e->value && secondary_cache_ &&
|
|
secondary_cache_->SupportForceErase()) {
|
|
found_dummy_entry = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If handle table lookup failed or the handle is a dummy one, allocate
|
|
// a handle outside the mutex if we re going to lookup in the secondary cache.
|
|
//
|
|
// When a block is firstly Lookup from CompressedSecondaryCache, we just
|
|
// insert a dummy block into the primary cache (charging the actual size of
|
|
// the block) and don't erase the block from CompressedSecondaryCache. A
|
|
// standalone handle is returned to the caller. Only if the block is hit
|
|
// again, we erase it from CompressedSecondaryCache and add it into the
|
|
// primary cache.
|
|
//
|
|
// Only support synchronous for now.
|
|
// TODO: Support asynchronous lookup in secondary cache
|
|
if ((!e || found_dummy_entry) && secondary_cache_ && helper &&
|
|
helper->saveto_cb) {
|
|
// For objects from the secondary cache, we expect the caller to provide
|
|
// a way to create/delete the primary cache object. The only case where
|
|
// a deleter would not be required is for dummy entries inserted for
|
|
// accounting purposes, which we won't demote to the secondary cache
|
|
// anyway.
|
|
assert(create_cb && helper->del_cb);
|
|
// Release the dummy handle.
|
|
if (e) {
|
|
Release(reinterpret_cast<Cache::Handle*>(e), true /*erase_if_last_ref*/);
|
|
}
|
|
bool is_in_sec_cache{false};
|
|
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
|
|
secondary_cache_->Lookup(key, create_cb, wait, found_dummy_entry,
|
|
is_in_sec_cache);
|
|
if (secondary_handle != nullptr) {
|
|
e = reinterpret_cast<LRUHandle*>(
|
|
new char[sizeof(LRUHandle) - 1 + key.size()]);
|
|
|
|
e->flags = 0;
|
|
e->SetSecondaryCacheCompatible(true);
|
|
e->info_.helper = helper;
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->refs = 0;
|
|
e->next = e->prev = nullptr;
|
|
e->SetPriority(priority);
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
e->value = nullptr;
|
|
e->sec_handle = secondary_handle.release();
|
|
e->total_charge = 0;
|
|
e->Ref();
|
|
e->SetIsInSecondaryCache(is_in_sec_cache);
|
|
|
|
if (secondary_cache_->SupportForceErase() && !found_dummy_entry) {
|
|
e->SetIsStandalone(true);
|
|
}
|
|
|
|
if (wait) {
|
|
Promote(e);
|
|
if (e) {
|
|
if (!e->value) {
|
|
// The secondary cache returned a handle, but the lookup failed.
|
|
e->Unref();
|
|
e->Free();
|
|
e = nullptr;
|
|
} else {
|
|
PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
|
|
RecordTick(stats, SECONDARY_CACHE_HITS);
|
|
}
|
|
}
|
|
} else {
|
|
// If wait is false, we always return a handle and let the caller
|
|
// release the handle after checking for success or failure.
|
|
e->SetIncomplete(true);
|
|
// This may be slightly inaccurate, if the lookup eventually fails.
|
|
// But the probability is very low.
|
|
PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
|
|
RecordTick(stats, SECONDARY_CACHE_HITS);
|
|
}
|
|
} else {
|
|
e = nullptr;
|
|
}
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
bool LRUCacheShard::Ref(Cache::Handle* h) {
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(h);
|
|
DMutexLock l(mutex_);
|
|
// To create another reference - entry must be already externally referenced.
|
|
assert(e->HasRefs());
|
|
e->Ref();
|
|
return true;
|
|
}
|
|
|
|
void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) {
|
|
DMutexLock l(mutex_);
|
|
high_pri_pool_ratio_ = high_pri_pool_ratio;
|
|
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
|
|
MaintainPoolSize();
|
|
}
|
|
|
|
void LRUCacheShard::SetLowPriorityPoolRatio(double low_pri_pool_ratio) {
|
|
DMutexLock l(mutex_);
|
|
low_pri_pool_ratio_ = low_pri_pool_ratio;
|
|
low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
|
|
MaintainPoolSize();
|
|
}
|
|
|
|
bool LRUCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) {
|
|
if (handle == nullptr) {
|
|
return false;
|
|
}
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
|
|
bool last_reference = false;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
last_reference = e->Unref();
|
|
if (last_reference && e->InCache()) {
|
|
// The item is still in cache, and nobody else holds a reference to it.
|
|
if (usage_ > capacity_ || erase_if_last_ref) {
|
|
// The LRU list must be empty since the cache is full.
|
|
assert(lru_.next == &lru_ || erase_if_last_ref);
|
|
// Take this opportunity and remove the item.
|
|
table_.Remove(e->key(), e->hash);
|
|
e->SetInCache(false);
|
|
} else {
|
|
// Put the item back on the LRU list, and don't free it.
|
|
LRU_Insert(e);
|
|
last_reference = false;
|
|
}
|
|
}
|
|
// If it was the last reference, and the entry is either not secondary
|
|
// cache compatible (i.e a dummy entry for accounting), or is secondary
|
|
// cache compatible and has a non-null value, then decrement the cache
|
|
// usage. If value is null in the latter case, that means the lookup
|
|
// failed and we didn't charge the cache.
|
|
if (last_reference && (!e->IsSecondaryCacheCompatible() || e->value)) {
|
|
assert(usage_ >= e->total_charge);
|
|
usage_ -= e->total_charge;
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
if (last_reference) {
|
|
e->Free();
|
|
}
|
|
return last_reference;
|
|
}
|
|
|
|
Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge,
|
|
void (*deleter)(const Slice& key, void* value),
|
|
const Cache::CacheItemHelper* helper,
|
|
Cache::Handle** handle, Cache::Priority priority) {
|
|
// Allocate the memory here outside of the mutex.
|
|
// If the cache is full, we'll have to release it.
|
|
// It shouldn't happen very often though.
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(
|
|
new char[sizeof(LRUHandle) - 1 + key.size()]);
|
|
|
|
e->value = value;
|
|
e->flags = 0;
|
|
if (helper) {
|
|
e->SetSecondaryCacheCompatible(true);
|
|
e->info_.helper = helper;
|
|
} else {
|
|
#ifdef __SANITIZE_THREAD__
|
|
e->is_secondary_cache_compatible_for_tsan = false;
|
|
#endif // __SANITIZE_THREAD__
|
|
e->info_.deleter = deleter;
|
|
}
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->refs = 0;
|
|
e->next = e->prev = nullptr;
|
|
e->SetInCache(true);
|
|
e->SetPriority(priority);
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
e->CalcTotalCharge(charge, metadata_charge_policy_);
|
|
|
|
return InsertItem(e, handle, /* free_handle_on_fail */ true);
|
|
}
|
|
|
|
void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
|
|
LRUHandle* e;
|
|
bool last_reference = false;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
e = table_.Remove(key, hash);
|
|
if (e != nullptr) {
|
|
assert(e->InCache());
|
|
e->SetInCache(false);
|
|
if (!e->HasRefs()) {
|
|
// The entry is in LRU since it's in hash and has no external references
|
|
LRU_Remove(e);
|
|
assert(usage_ >= e->total_charge);
|
|
usage_ -= e->total_charge;
|
|
last_reference = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
// last_reference will only be true if e != nullptr.
|
|
if (last_reference) {
|
|
e->Free();
|
|
}
|
|
}
|
|
|
|
bool LRUCacheShard::IsReady(Cache::Handle* handle) {
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
|
|
DMutexLock l(mutex_);
|
|
bool ready = true;
|
|
if (e->IsPending()) {
|
|
assert(secondary_cache_);
|
|
assert(e->sec_handle);
|
|
ready = e->sec_handle->IsReady();
|
|
}
|
|
return ready;
|
|
}
|
|
|
|
size_t LRUCacheShard::GetUsage() const {
|
|
DMutexLock l(mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
size_t LRUCacheShard::GetPinnedUsage() const {
|
|
DMutexLock l(mutex_);
|
|
assert(usage_ >= lru_usage_);
|
|
return usage_ - lru_usage_;
|
|
}
|
|
|
|
std::string LRUCacheShard::GetPrintableOptions() const {
|
|
const int kBufferSize = 200;
|
|
char buffer[kBufferSize];
|
|
{
|
|
DMutexLock l(mutex_);
|
|
snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n",
|
|
high_pri_pool_ratio_);
|
|
snprintf(buffer + strlen(buffer), kBufferSize - strlen(buffer),
|
|
" low_pri_pool_ratio: %.3lf\n", low_pri_pool_ratio_);
|
|
}
|
|
return std::string(buffer);
|
|
}
|
|
|
|
LRUCache::LRUCache(size_t capacity, int num_shard_bits,
|
|
bool strict_capacity_limit, double high_pri_pool_ratio,
|
|
double low_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> allocator,
|
|
bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache)
|
|
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
|
|
std::move(allocator)) {
|
|
num_shards_ = 1 << num_shard_bits;
|
|
shards_ = reinterpret_cast<LRUCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_));
|
|
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
new (&shards_[i]) LRUCacheShard(
|
|
per_shard, strict_capacity_limit, high_pri_pool_ratio,
|
|
low_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy,
|
|
/* max_upper_hash_bits */ 32 - num_shard_bits, secondary_cache);
|
|
}
|
|
secondary_cache_ = secondary_cache;
|
|
}
|
|
|
|
LRUCache::~LRUCache() {
|
|
if (shards_ != nullptr) {
|
|
assert(num_shards_ > 0);
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
shards_[i].~LRUCacheShard();
|
|
}
|
|
port::cacheline_aligned_free(shards_);
|
|
}
|
|
}
|
|
|
|
CacheShard* LRUCache::GetShard(uint32_t shard) {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
const CacheShard* LRUCache::GetShard(uint32_t shard) const {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
void* LRUCache::Value(Handle* handle) {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->value;
|
|
}
|
|
|
|
size_t LRUCache::GetCharge(Handle* handle) const {
|
|
CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata;
|
|
if (num_shards_ > 0) {
|
|
metadata_charge_policy = shards_[0].metadata_charge_policy_;
|
|
}
|
|
return reinterpret_cast<const LRUHandle*>(handle)->GetCharge(
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
|
|
auto h = reinterpret_cast<const LRUHandle*>(handle);
|
|
if (h->IsSecondaryCacheCompatible()) {
|
|
return h->info_.helper->del_cb;
|
|
} else {
|
|
return h->info_.deleter;
|
|
}
|
|
}
|
|
|
|
uint32_t LRUCache::GetHash(Handle* handle) const {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->hash;
|
|
}
|
|
|
|
void LRUCache::DisownData() {
|
|
// Leak data only if that won't generate an ASAN/valgrind warning.
|
|
if (!kMustFreeHeapAllocations) {
|
|
shards_ = nullptr;
|
|
num_shards_ = 0;
|
|
}
|
|
}
|
|
|
|
size_t LRUCache::TEST_GetLRUSize() {
|
|
size_t lru_size_of_all_shards = 0;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
lru_size_of_all_shards += shards_[i].TEST_GetLRUSize();
|
|
}
|
|
return lru_size_of_all_shards;
|
|
}
|
|
|
|
double LRUCache::GetHighPriPoolRatio() {
|
|
double result = 0.0;
|
|
if (num_shards_ > 0) {
|
|
result = shards_[0].GetHighPriPoolRatio();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void LRUCache::WaitAll(std::vector<Handle*>& handles) {
|
|
if (secondary_cache_) {
|
|
std::vector<SecondaryCacheResultHandle*> sec_handles;
|
|
sec_handles.reserve(handles.size());
|
|
for (Handle* handle : handles) {
|
|
if (!handle) {
|
|
continue;
|
|
}
|
|
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
|
|
if (!lru_handle->IsPending()) {
|
|
continue;
|
|
}
|
|
sec_handles.emplace_back(lru_handle->sec_handle);
|
|
}
|
|
secondary_cache_->WaitAll(sec_handles);
|
|
for (Handle* handle : handles) {
|
|
if (!handle) {
|
|
continue;
|
|
}
|
|
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
|
|
if (!lru_handle->IsPending()) {
|
|
continue;
|
|
}
|
|
uint32_t hash = GetHash(handle);
|
|
LRUCacheShard* shard = static_cast<LRUCacheShard*>(GetShard(Shard(hash)));
|
|
shard->Promote(lru_handle);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string LRUCache::GetPrintableOptions() const {
|
|
std::string ret;
|
|
ret.reserve(20000);
|
|
ret.append(ShardedCache::GetPrintableOptions());
|
|
if (secondary_cache_) {
|
|
ret.append(" secondary_cache:\n");
|
|
ret.append(secondary_cache_->GetPrintableOptions());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
} // namespace lru_cache
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(
|
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache,
|
|
double low_pri_pool_ratio) {
|
|
if (num_shard_bits >= 20) {
|
|
return nullptr; // The cache cannot be sharded into too many fine pieces.
|
|
}
|
|
if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) {
|
|
// Invalid high_pri_pool_ratio
|
|
return nullptr;
|
|
}
|
|
if (low_pri_pool_ratio < 0.0 || low_pri_pool_ratio > 1.0) {
|
|
// Invalid high_pri_pool_ratio
|
|
return nullptr;
|
|
}
|
|
if (low_pri_pool_ratio + high_pri_pool_ratio > 1.0) {
|
|
// Invalid high_pri_pool_ratio and low_pri_pool_ratio combination
|
|
return nullptr;
|
|
}
|
|
if (num_shard_bits < 0) {
|
|
num_shard_bits = GetDefaultCacheShardBits(capacity);
|
|
}
|
|
return std::make_shared<LRUCache>(
|
|
capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio,
|
|
low_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex,
|
|
metadata_charge_policy, secondary_cache);
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts) {
|
|
return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit,
|
|
cache_opts.high_pri_pool_ratio,
|
|
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
|
|
cache_opts.metadata_charge_policy,
|
|
cache_opts.secondary_cache, cache_opts.low_pri_pool_ratio);
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(
|
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
double low_pri_pool_ratio) {
|
|
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
|
|
high_pri_pool_ratio, memory_allocator, use_adaptive_mutex,
|
|
metadata_charge_policy, nullptr, low_pri_pool_ratio);
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|