You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/utilities/transactions/write_prepared_txn_db.h

559 lines
24 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#ifndef ROCKSDB_LITE
#include <mutex>
#include <queue>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "db/db_iter.h"
#include "db/pre_release_callback.h"
#include "db/read_callback.h"
#include "db/snapshot_checker.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/set_comparator.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
#include "utilities/transactions/transaction_lock_mgr.h"
#include "utilities/transactions/write_prepared_txn.h"
namespace rocksdb {
#define ROCKS_LOG_DETAILS(LGR, FMT, ...) \
; // due to overhead by default skip such lines
// ROCKS_LOG_DEBUG(LGR, FMT, ##__VA_ARGS__)
// A PessimisticTransactionDB that writes data to DB after prepare phase of 2PC.
// In this way some data in the DB might not be committed. The DB provides
// mechanisms to tell such data apart from committed data.
class WritePreparedTxnDB : public PessimisticTransactionDB {
public:
explicit WritePreparedTxnDB(
DB* db, const TransactionDBOptions& txn_db_options,
size_t snapshot_cache_bits = DEF_SNAPSHOT_CACHE_BITS,
size_t commit_cache_bits = DEF_COMMIT_CACHE_BITS)
: PessimisticTransactionDB(db, txn_db_options),
SNAPSHOT_CACHE_BITS(snapshot_cache_bits),
SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
COMMIT_CACHE_BITS(commit_cache_bits),
COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
FORMAT(COMMIT_CACHE_BITS) {
Init(txn_db_options);
}
explicit WritePreparedTxnDB(
StackableDB* db, const TransactionDBOptions& txn_db_options,
size_t snapshot_cache_bits = DEF_SNAPSHOT_CACHE_BITS,
size_t commit_cache_bits = DEF_COMMIT_CACHE_BITS)
: PessimisticTransactionDB(db, txn_db_options),
SNAPSHOT_CACHE_BITS(snapshot_cache_bits),
SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
COMMIT_CACHE_BITS(commit_cache_bits),
COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
FORMAT(COMMIT_CACHE_BITS) {
Init(txn_db_options);
}
virtual ~WritePreparedTxnDB();
virtual Status Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) override;
Transaction* BeginTransaction(const WriteOptions& write_options,
const TransactionOptions& txn_options,
Transaction* old_txn) override;
// Optimized version of ::Write that receives more optimization request such
// as skip_concurrency_control.
using PessimisticTransactionDB::Write;
Status Write(const WriteOptions& opts, const TransactionDBWriteOptimizations&,
WriteBatch* updates) override;
// Write the batch to the underlying DB and mark it as committed. Could be
// used by both directly from TxnDB or through a transaction.
Status WriteInternal(const WriteOptions& write_options, WriteBatch* batch,
size_t batch_cnt, WritePreparedTxn* txn);
using DB::Get;
virtual Status Get(const ReadOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* value) override;
using DB::MultiGet;
virtual std::vector<Status> MultiGet(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys,
std::vector<std::string>* values) override;
using DB::NewIterator;
virtual Iterator* NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family) override;
using DB::NewIterators;
virtual Status NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) override;
virtual void ReleaseSnapshot(const Snapshot* snapshot) override;
// Check whether the transaction that wrote the value with seqeunce number seq
// is visible to the snapshot with sequence number snapshot_seq
bool IsInSnapshot(uint64_t seq, uint64_t snapshot_seq) const;
// Add the trasnaction with prepare sequence seq to the prepared list
void AddPrepared(uint64_t seq);
// Rollback a prepared txn identified with prep_seq. rollback_seq is the seq
// with which the additional data is written to cancel the txn effect. It can
// be used to idenitfy the snapshots that overlap with the rolled back txn.
void RollbackPrepared(uint64_t prep_seq, uint64_t rollback_seq);
// Add the transaction with prepare sequence prepare_seq and commit sequence
// commit_seq to the commit map. prepare_skipped is set if the prpeare phase
// is skipped for this commit. loop_cnt is to detect infinite loops.
void AddCommitted(uint64_t prepare_seq, uint64_t commit_seq,
bool prepare_skipped = false, uint8_t loop_cnt = 0);
struct CommitEntry {
uint64_t prep_seq;
uint64_t commit_seq;
CommitEntry() : prep_seq(0), commit_seq(0) {}
CommitEntry(uint64_t ps, uint64_t cs) : prep_seq(ps), commit_seq(cs) {}
bool operator==(const CommitEntry& rhs) const {
return prep_seq == rhs.prep_seq && commit_seq == rhs.commit_seq;
}
};
struct CommitEntry64bFormat {
explicit CommitEntry64bFormat(size_t index_bits)
: INDEX_BITS(index_bits),
PREP_BITS(static_cast<size_t>(64 - PAD_BITS - INDEX_BITS)),
COMMIT_BITS(static_cast<size_t>(64 - PREP_BITS)),
COMMIT_FILTER(static_cast<uint64_t>((1ull << COMMIT_BITS) - 1)),
DELTA_UPPERBOUND(static_cast<uint64_t>((1ull << COMMIT_BITS))) {}
// Number of higher bits of a sequence number that is not used. They are
// used to encode the value type, ...
const size_t PAD_BITS = static_cast<size_t>(8);
// Number of lower bits from prepare seq that can be skipped as they are
// implied by the index of the entry in the array
const size_t INDEX_BITS;
// Number of bits we use to encode the prepare seq
const size_t PREP_BITS;
// Number of bits we use to encode the commit seq.
const size_t COMMIT_BITS;
// Filter to encode/decode commit seq
const uint64_t COMMIT_FILTER;
// The value of commit_seq - prepare_seq + 1 must be less than this bound
const uint64_t DELTA_UPPERBOUND;
};
// Prepare Seq (64 bits) = PAD ... PAD PREP PREP ... PREP INDEX INDEX ...
// INDEX Detal Seq (64 bits) = 0 0 0 0 0 0 0 0 0 0 0 0 DELTA DELTA ...
// DELTA DELTA Encoded Value = PREP PREP .... PREP PREP DELTA DELTA
// ... DELTA DELTA PAD: first bits of a seq that is reserved for tagging and
// hence ignored PREP/INDEX: the used bits in a prepare seq number INDEX: the
// bits that do not have to be encoded (will be provided externally) DELTA:
// prep seq - commit seq + 1 Number of DELTA bits should be equal to number of
// index bits + PADs
struct CommitEntry64b {
constexpr CommitEntry64b() noexcept : rep_(0) {}
CommitEntry64b(const CommitEntry& entry, const CommitEntry64bFormat& format)
: CommitEntry64b(entry.prep_seq, entry.commit_seq, format) {}
CommitEntry64b(const uint64_t ps, const uint64_t cs,
const CommitEntry64bFormat& format) {
assert(ps < static_cast<uint64_t>(
(1ull << (format.PREP_BITS + format.INDEX_BITS))));
assert(ps <= cs);
uint64_t delta = cs - ps + 1; // make initialized delta always >= 1
// zero is reserved for uninitialized entries
assert(0 < delta);
assert(delta < format.DELTA_UPPERBOUND);
if (delta >= format.DELTA_UPPERBOUND) {
throw std::runtime_error(
"commit_seq >> prepare_seq. The allowed distance is " +
ToString(format.DELTA_UPPERBOUND) + " commit_seq is " +
ToString(cs) + " prepare_seq is " + ToString(ps));
}
rep_ = (ps << format.PAD_BITS) & ~format.COMMIT_FILTER;
rep_ = rep_ | delta;
}
// Return false if the entry is empty
bool Parse(const uint64_t indexed_seq, CommitEntry* entry,
const CommitEntry64bFormat& format) {
uint64_t delta = rep_ & format.COMMIT_FILTER;
// zero is reserved for uninitialized entries
assert(delta < static_cast<uint64_t>((1ull << format.COMMIT_BITS)));
if (delta == 0) {
return false; // initialized entry would have non-zero delta
}
assert(indexed_seq < static_cast<uint64_t>((1ull << format.INDEX_BITS)));
uint64_t prep_up = rep_ & ~format.COMMIT_FILTER;
prep_up >>= format.PAD_BITS;
const uint64_t& prep_low = indexed_seq;
entry->prep_seq = prep_up | prep_low;
entry->commit_seq = entry->prep_seq + delta - 1;
return true;
}
private:
uint64_t rep_;
};
// Struct to hold ownership of snapshot and read callback for cleanup.
struct IteratorState;
std::map<uint32_t, const Comparator*>* GetCFComparatorMap() {
return cf_map_.load();
}
void UpdateCFComparatorMap(
const std::vector<ColumnFamilyHandle*>& handles) override;
void UpdateCFComparatorMap(const ColumnFamilyHandle* handle) override;
protected:
virtual Status VerifyCFOptions(
const ColumnFamilyOptions& cf_options) override;
private:
friend class WritePreparedTransactionTest_IsInSnapshotTest_Test;
friend class WritePreparedTransactionTest_CheckAgainstSnapshotsTest_Test;
friend class WritePreparedTransactionTest_CommitMapTest_Test;
friend class
WritePreparedTransactionTest_ConflictDetectionAfterRecoveryTest_Test;
friend class SnapshotConcurrentAccessTest_SnapshotConcurrentAccessTest_Test;
friend class WritePreparedTransactionTestBase;
friend class PreparedHeap_BasicsTest_Test;
friend class PreparedHeap_EmptyAtTheEnd_Test;
friend class PreparedHeap_Concurrent_Test;
friend class WritePreparedTxnDBMock;
friend class WritePreparedTransactionTest_AdvanceMaxEvictedSeqBasicTest_Test;
friend class WritePreparedTransactionTest_BasicRecoveryTest_Test;
friend class WritePreparedTransactionTest_IsInSnapshotEmptyMapTest_Test;
friend class WritePreparedTransactionTest_OldCommitMapGC_Test;
friend class WritePreparedTransactionTest_RollbackTest_Test;
void Init(const TransactionDBOptions& /* unused */);
// A heap with the amortized O(1) complexity for erase. It uses one extra heap
// to keep track of erased entries that are not yet on top of the main heap.
class PreparedHeap {
std::priority_queue<uint64_t, std::vector<uint64_t>, std::greater<uint64_t>>
heap_;
std::priority_queue<uint64_t, std::vector<uint64_t>, std::greater<uint64_t>>
erased_heap_;
// True when testing crash recovery
bool TEST_CRASH_ = false;
friend class WritePreparedTxnDB;
public:
~PreparedHeap() {
if (!TEST_CRASH_) {
assert(heap_.empty());
assert(erased_heap_.empty());
}
}
bool empty() { return heap_.empty(); }
uint64_t top() { return heap_.top(); }
void push(uint64_t v) { heap_.push(v); }
void pop() {
heap_.pop();
while (!heap_.empty() && !erased_heap_.empty() &&
// heap_.top() > erased_heap_.top() could happen if we have erased
// a non-existent entry. Ideally the user should not do that but we
// should be resiliant againt it.
heap_.top() >= erased_heap_.top()) {
if (heap_.top() == erased_heap_.top()) {
heap_.pop();
}
uint64_t erased __attribute__((__unused__));
erased = erased_heap_.top();
erased_heap_.pop();
// No duplicate prepare sequence numbers
assert(erased_heap_.empty() || erased_heap_.top() != erased);
}
while (heap_.empty() && !erased_heap_.empty()) {
erased_heap_.pop();
}
}
void erase(uint64_t seq) {
if (!heap_.empty()) {
if (seq < heap_.top()) {
// Already popped, ignore it.
} else if (heap_.top() == seq) {
pop();
assert(heap_.empty() || heap_.top() != seq);
} else { // (heap_.top() > seq)
// Down the heap, remember to pop it later
erased_heap_.push(seq);
}
}
}
};
void TEST_Crash() override { prepared_txns_.TEST_CRASH_ = true; }
// Get the commit entry with index indexed_seq from the commit table. It
// returns true if such entry exists.
bool GetCommitEntry(const uint64_t indexed_seq, CommitEntry64b* entry_64b,
CommitEntry* entry) const;
// Rewrite the entry with the index indexed_seq in the commit table with the
// commit entry <prep_seq, commit_seq>. If the rewrite results into eviction,
// sets the evicted_entry and returns true.
bool AddCommitEntry(const uint64_t indexed_seq, const CommitEntry& new_entry,
CommitEntry* evicted_entry);
// Rewrite the entry with the index indexed_seq in the commit table with the
// commit entry new_entry only if the existing entry matches the
// expected_entry. Returns false otherwise.
bool ExchangeCommitEntry(const uint64_t indexed_seq,
CommitEntry64b& expected_entry,
const CommitEntry& new_entry);
// Increase max_evicted_seq_ from the previous value prev_max to the new
// value. This also involves taking care of prepared txns that are not
// committed before new_max, as well as updating the list of live snapshots at
// the time of updating the max. Thread-safety: this function can be called
// concurrently. The concurrent invocations of this function is equivalent to
// a serial invocation in which the last invocation is the one with the
// largetst new_max value.
void AdvanceMaxEvictedSeq(const SequenceNumber& prev_max,
const SequenceNumber& new_max);
virtual const std::vector<SequenceNumber> GetSnapshotListFromDB(
SequenceNumber max);
// Will be called by the public ReleaseSnapshot method. Does the maintenance
// internal to WritePreparedTxnDB
void ReleaseSnapshotInternal(const SequenceNumber snap_seq);
// Update the list of snapshots corresponding to the soon-to-be-updated
// max_eviceted_seq_. Thread-safety: this function can be called concurrently.
// The concurrent invocations of this function is equivalent to a serial
// invocation in which the last invocation is the one with the largetst
// version value.
void UpdateSnapshots(const std::vector<SequenceNumber>& snapshots,
const SequenceNumber& version);
// Check an evicted entry against live snapshots to see if it should be kept
// around or it can be safely discarded (and hence assume committed for all
// snapshots). Thread-safety: this function can be called concurrently. If it
// is called concurrently with multiple UpdateSnapshots, the result is the
// same as checking the intersection of the snapshot list before updates with
// the snapshot list of all the concurrent updates.
void CheckAgainstSnapshots(const CommitEntry& evicted);
// Add a new entry to old_commit_map_ if prep_seq <= snapshot_seq <
// commit_seq. Return false if checking the next snapshot(s) is not needed.
// This is the case if none of the next snapshots could satisfy the condition.
// next_is_larger: the next snapshot will be a larger value
bool MaybeUpdateOldCommitMap(const uint64_t& prep_seq,
const uint64_t& commit_seq,
const uint64_t& snapshot_seq,
const bool next_is_larger);
// The list of live snapshots at the last time that max_evicted_seq_ advanced.
// The list stored into two data structures: in snapshot_cache_ that is
// efficient for concurrent reads, and in snapshots_ if the data does not fit
// into snapshot_cache_. The total number of snapshots in the two lists
std::atomic<size_t> snapshots_total_ = {};
// The list sorted in ascending order. Thread-safety for writes is provided
// with snapshots_mutex_ and concurrent reads are safe due to std::atomic for
// each entry. In x86_64 architecture such reads are compiled to simple read
// instructions. 128 entries
static const size_t DEF_SNAPSHOT_CACHE_BITS = static_cast<size_t>(7);
const size_t SNAPSHOT_CACHE_BITS;
const size_t SNAPSHOT_CACHE_SIZE;
unique_ptr<std::atomic<SequenceNumber>[]> snapshot_cache_;
// 2nd list for storing snapshots. The list sorted in ascending order.
// Thread-safety is provided with snapshots_mutex_.
std::vector<SequenceNumber> snapshots_;
// The version of the latest list of snapshots. This can be used to avoid
// rewrittiing a list that is concurrently updated with a more recent version.
SequenceNumber snapshots_version_ = 0;
// A heap of prepared transactions. Thread-safety is provided with
// prepared_mutex_.
PreparedHeap prepared_txns_;
// 2m entry, 16MB size
static const size_t DEF_COMMIT_CACHE_BITS = static_cast<size_t>(21);
const size_t COMMIT_CACHE_BITS;
const size_t COMMIT_CACHE_SIZE;
const CommitEntry64bFormat FORMAT;
// commit_cache_ must be initialized to zero to tell apart an empty index from
// a filled one. Thread-safety is provided with commit_cache_mutex_.
unique_ptr<std::atomic<CommitEntry64b>[]> commit_cache_;
// The largest evicted *commit* sequence number from the commit_cache_. If a
// seq is smaller than max_evicted_seq_ is might or might not be present in
// commit_cache_. So commit_cache_ must first be checked before consulting
// with max_evicted_seq_.
std::atomic<uint64_t> max_evicted_seq_ = {};
// Advance max_evicted_seq_ by this value each time it needs an update. The
// larger the value, the less frequent advances we would have. We do not want
// it to be too large either as it would cause stalls by doing too much
// maintenance work under the lock.
size_t INC_STEP_FOR_MAX_EVICTED = 1;
// A map from old snapshots (expected to be used by a few read-only txns) to
// prpared sequence number of the evicted entries from commit_cache_ that
// overlaps with such snapshot. These are the prepared sequence numbers that
// the snapshot, to which they are mapped, cannot assume to be committed just
// because it is no longer in the commit_cache_. The vector must be sorted
// after each update.
// Thread-safety is provided with old_commit_map_mutex_.
std::map<SequenceNumber, std::vector<SequenceNumber>> old_commit_map_;
// A set of long-running prepared transactions that are not finished by the
// time max_evicted_seq_ advances their sequence number. This is expected to
// be empty normally. Thread-safety is provided with prepared_mutex_.
std::set<uint64_t> delayed_prepared_;
// Update when delayed_prepared_.empty() changes. Expected to be true
// normally.
std::atomic<bool> delayed_prepared_empty_ = {true};
// Update when old_commit_map_.empty() changes. Expected to be true normally.
std::atomic<bool> old_commit_map_empty_ = {true};
mutable port::RWMutex prepared_mutex_;
mutable port::RWMutex old_commit_map_mutex_;
mutable port::RWMutex commit_cache_mutex_;
mutable port::RWMutex snapshots_mutex_;
// A cache of the cf comparators
std::atomic<std::map<uint32_t, const Comparator*>*> cf_map_;
// GC of the object above
std::unique_ptr<std::map<uint32_t, const Comparator*>> cf_map_gc_;
};
class WritePreparedTxnReadCallback : public ReadCallback {
public:
WritePreparedTxnReadCallback(WritePreparedTxnDB* db, SequenceNumber snapshot)
: db_(db), snapshot_(snapshot) {}
// Will be called to see if the seq number accepted; if not it moves on to the
// next seq number.
virtual bool IsCommitted(SequenceNumber seq) override {
return db_->IsInSnapshot(seq, snapshot_);
}
private:
WritePreparedTxnDB* db_;
SequenceNumber snapshot_;
};
class WritePreparedCommitEntryPreReleaseCallback : public PreReleaseCallback {
public:
// includes_data indicates that the commit also writes non-empty
// CommitTimeWriteBatch to memtable, which needs to be committed separately.
WritePreparedCommitEntryPreReleaseCallback(WritePreparedTxnDB* db,
DBImpl* db_impl,
SequenceNumber prep_seq,
size_t prep_batch_cnt,
size_t data_batch_cnt = 0,
bool prep_heap_skipped = false)
: db_(db),
db_impl_(db_impl),
prep_seq_(prep_seq),
prep_batch_cnt_(prep_batch_cnt),
data_batch_cnt_(data_batch_cnt),
prep_heap_skipped_(prep_heap_skipped),
includes_data_(data_batch_cnt_ > 0) {
assert((prep_batch_cnt_ > 0) != (prep_seq == kMaxSequenceNumber)); // xor
assert(prep_batch_cnt_ > 0 || data_batch_cnt_ > 0);
}
virtual Status Callback(SequenceNumber commit_seq) override {
assert(includes_data_ || prep_seq_ != kMaxSequenceNumber);
const uint64_t last_commit_seq = LIKELY(data_batch_cnt_ <= 1)
? commit_seq
: commit_seq + data_batch_cnt_ - 1;
if (prep_seq_ != kMaxSequenceNumber) {
for (size_t i = 0; i < prep_batch_cnt_; i++) {
db_->AddCommitted(prep_seq_ + i, last_commit_seq, prep_heap_skipped_);
}
} // else there was no prepare phase
if (includes_data_) {
assert(data_batch_cnt_);
// Commit the data that is accompnaied with the commit request
const bool PREPARE_SKIPPED = true;
for (size_t i = 0; i < data_batch_cnt_; i++) {
// For commit seq of each batch use the commit seq of the last batch.
// This would make debugging easier by having all the batches having
// the same sequence number.
db_->AddCommitted(commit_seq + i, last_commit_seq, PREPARE_SKIPPED);
}
}
if (db_impl_->immutable_db_options().two_write_queues) {
// Publish the sequence number. We can do that here assuming the callback
// is invoked only from one write queue, which would guarantee that the
// publish sequence numbers will be in order, i.e., once a seq is
// published all the seq prior to that are also publishable.
db_impl_->SetLastPublishedSequence(last_commit_seq);
}
// else SequenceNumber that is updated as part of the write already does the
// publishing
return Status::OK();
}
private:
WritePreparedTxnDB* db_;
DBImpl* db_impl_;
// kMaxSequenceNumber if there was no prepare phase
SequenceNumber prep_seq_;
size_t prep_batch_cnt_;
size_t data_batch_cnt_;
// An optimization that indicates that there is no need to update the prepare
// heap since the prepare sequence number was not added to it.
bool prep_heap_skipped_;
// Either because it is commit without prepare or it has a
// CommitTimeWriteBatch
bool includes_data_;
};
// Count the number of sub-batches inside a batch. A sub-batch does not have
// duplicate keys.
struct SubBatchCounter : public WriteBatch::Handler {
explicit SubBatchCounter(std::map<uint32_t, const Comparator*>& comparators)
: comparators_(comparators), batches_(1) {}
std::map<uint32_t, const Comparator*>& comparators_;
using CFKeys = std::set<Slice, SetComparator>;
std::map<uint32_t, CFKeys> keys_;
size_t batches_;
size_t BatchCount() { return batches_; }
void AddKey(const uint32_t cf, const Slice& key);
void InitWithComp(const uint32_t cf);
Status MarkNoop(bool) override { return Status::OK(); }
Status MarkEndPrepare(const Slice&) override { return Status::OK(); }
Status MarkCommit(const Slice&) override { return Status::OK(); }
Status PutCF(uint32_t cf, const Slice& key, const Slice&) override {
AddKey(cf, key);
return Status::OK();
}
Status DeleteCF(uint32_t cf, const Slice& key) override {
AddKey(cf, key);
return Status::OK();
}
Status SingleDeleteCF(uint32_t cf, const Slice& key) override {
AddKey(cf, key);
return Status::OK();
}
Status MergeCF(uint32_t cf, const Slice& key, const Slice&) override {
AddKey(cf, key);
return Status::OK();
}
Status MarkBeginPrepare() override { return Status::OK(); }
Status MarkRollback(const Slice&) override { return Status::OK(); }
bool WriteAfterCommit() const override { return false; }
};
} // namespace rocksdb
#endif // ROCKSDB_LITE