rocksdb/db/compaction/compaction_job_stats_test.cc

1036 lines
36 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <algorithm>
#include <cinttypes>
#include <iostream>
#include <mutex>
#include <queue>
#include <set>
#include <thread>
#include <unordered_set>
#include <utility>
#include "db/db_impl/db_impl.h"
#include "db/dbformat.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "env/mock_env.h"
#include "file/filename.h"
#include "monitoring/statistics.h"
#include "monitoring/thread_status_util.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/experimental.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/thread_status.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/mock_table.h"
#include "table/plain/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/cast_util.h"
#include "util/compression.h"
#include "util/hash.h"
#include "util/mutexlock.h"
#include "util/rate_limiter.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
#if !defined(IOS_CROSS_COMPILE)
#ifndef ROCKSDB_LITE
namespace ROCKSDB_NAMESPACE {
static std::string RandomString(Random* rnd, int len, double ratio) {
std::string r;
test::CompressibleString(rnd, ratio, len, &r);
return r;
}
std::string Key(uint64_t key, int length) {
const int kBufSize = 1000;
char buf[kBufSize];
if (length > kBufSize) {
length = kBufSize;
}
snprintf(buf, kBufSize, "%0*" PRIu64, length, key);
return std::string(buf);
}
class CompactionJobStatsTest : public testing::Test,
public testing::WithParamInterface<bool> {
public:
std::string dbname_;
std::string alternative_wal_dir_;
Env* env_;
DB* db_;
std::vector<ColumnFamilyHandle*> handles_;
uint32_t max_subcompactions_;
Options last_options_;
CompactionJobStatsTest() : env_(Env::Default()) {
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
dbname_ = test::PerThreadDBPath("compaction_job_stats_test");
alternative_wal_dir_ = dbname_ + "/wal";
Options options;
options.create_if_missing = true;
max_subcompactions_ = GetParam();
options.max_subcompactions = max_subcompactions_;
auto delete_options = options;
delete_options.wal_dir = alternative_wal_dir_;
EXPECT_OK(DestroyDB(dbname_, delete_options));
// Destroy it for not alternative WAL dir is used.
EXPECT_OK(DestroyDB(dbname_, options));
db_ = nullptr;
Reopen(options);
}
~CompactionJobStatsTest() override {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
Close();
Options options;
options.db_paths.emplace_back(dbname_, 0);
options.db_paths.emplace_back(dbname_ + "_2", 0);
options.db_paths.emplace_back(dbname_ + "_3", 0);
options.db_paths.emplace_back(dbname_ + "_4", 0);
EXPECT_OK(DestroyDB(dbname_, options));
}
// Required if inheriting from testing::WithParamInterface<>
static void SetUpTestCase() {}
static void TearDownTestCase() {}
DBImpl* dbfull() { return static_cast_with_check<DBImpl>(db_); }
void CreateColumnFamilies(const std::vector<std::string>& cfs,
const Options& options) {
ColumnFamilyOptions cf_opts(options);
size_t cfi = handles_.size();
handles_.resize(cfi + cfs.size());
for (auto cf : cfs) {
ASSERT_OK(db_->CreateColumnFamily(cf_opts, cf, &handles_[cfi++]));
}
}
void CreateAndReopenWithCF(const std::vector<std::string>& cfs,
const Options& options) {
CreateColumnFamilies(cfs, options);
std::vector<std::string> cfs_plus_default = cfs;
cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName);
ReopenWithColumnFamilies(cfs_plus_default, options);
}
void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
const std::vector<Options>& options) {
ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
}
void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
const Options& options) {
ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
}
Status TryReopenWithColumnFamilies(
const std::vector<std::string>& cfs,
const std::vector<Options>& options) {
Close();
EXPECT_EQ(cfs.size(), options.size());
std::vector<ColumnFamilyDescriptor> column_families;
for (size_t i = 0; i < cfs.size(); ++i) {
column_families.push_back(ColumnFamilyDescriptor(cfs[i], options[i]));
}
DBOptions db_opts = DBOptions(options[0]);
return DB::Open(db_opts, dbname_, column_families, &handles_, &db_);
}
Status TryReopenWithColumnFamilies(const std::vector<std::string>& cfs,
const Options& options) {
Close();
std::vector<Options> v_opts(cfs.size(), options);
return TryReopenWithColumnFamilies(cfs, v_opts);
}
void Reopen(const Options& options) {
ASSERT_OK(TryReopen(options));
}
void Close() {
for (auto h : handles_) {
delete h;
}
handles_.clear();
delete db_;
db_ = nullptr;
}
void DestroyAndReopen(const Options& options) {
// Destroy using last options
Destroy(last_options_);
ASSERT_OK(TryReopen(options));
}
void Destroy(const Options& options) {
Close();
ASSERT_OK(DestroyDB(dbname_, options));
}
Status ReadOnlyReopen(const Options& options) {
return DB::OpenForReadOnly(options, dbname_, &db_);
}
Status TryReopen(const Options& options) {
Close();
last_options_ = options;
return DB::Open(options, dbname_, &db_);
}
Status Flush(int cf = 0) {
if (cf == 0) {
return db_->Flush(FlushOptions());
} else {
return db_->Flush(FlushOptions(), handles_[cf]);
}
}
Status Put(const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) {
return db_->Put(wo, k, v);
}
Status Put(int cf, const Slice& k, const Slice& v,
WriteOptions wo = WriteOptions()) {
return db_->Put(wo, handles_[cf], k, v);
}
Status Delete(const std::string& k) {
return db_->Delete(WriteOptions(), k);
}
Status Delete(int cf, const std::string& k) {
return db_->Delete(WriteOptions(), handles_[cf], k);
}
std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) {
ReadOptions options;
options.verify_checksums = true;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
std::string Get(int cf, const std::string& k,
const Snapshot* snapshot = nullptr) {
ReadOptions options;
options.verify_checksums = true;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, handles_[cf], k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
int NumTableFilesAtLevel(int level, int cf = 0) {
std::string property;
if (cf == 0) {
// default cfd
EXPECT_TRUE(db_->GetProperty(
"rocksdb.num-files-at-level" + ToString(level), &property));
} else {
EXPECT_TRUE(db_->GetProperty(
handles_[cf], "rocksdb.num-files-at-level" + ToString(level),
&property));
}
return atoi(property.c_str());
}
// Return spread of files per level
std::string FilesPerLevel(int cf = 0) {
int num_levels =
(cf == 0) ? db_->NumberLevels() : db_->NumberLevels(handles_[1]);
std::string result;
size_t last_non_zero_offset = 0;
for (int level = 0; level < num_levels; level++) {
int f = NumTableFilesAtLevel(level, cf);
char buf[100];
snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
result += buf;
if (f > 0) {
last_non_zero_offset = result.size();
}
}
result.resize(last_non_zero_offset);
return result;
}
Status Size(uint64_t* size, const Slice& start, const Slice& limit,
int cf = 0) {
Range r(start, limit);
if (cf == 0) {
return db_->GetApproximateSizes(&r, 1, size);
} else {
return db_->GetApproximateSizes(handles_[1], &r, 1, size);
}
}
void Compact(int cf, const Slice& start, const Slice& limit,
uint32_t target_path_id) {
CompactRangeOptions compact_options;
compact_options.target_path_id = target_path_id;
ASSERT_OK(db_->CompactRange(compact_options, handles_[cf], &start, &limit));
}
void Compact(int cf, const Slice& start, const Slice& limit) {
ASSERT_OK(
db_->CompactRange(CompactRangeOptions(), handles_[cf], &start, &limit));
}
void Compact(const Slice& start, const Slice& limit) {
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &limit));
}
void TEST_Compact(int level, int cf, const Slice& start, const Slice& limit) {
ASSERT_OK(dbfull()->TEST_CompactRange(level, &start, &limit, handles_[cf],
true /* disallow trivial move */));
}
// Do n memtable compactions, each of which produces an sstable
// covering the range [small,large].
void MakeTables(int n, const std::string& small, const std::string& large,
int cf = 0) {
for (int i = 0; i < n; i++) {
ASSERT_OK(Put(cf, small, "begin"));
ASSERT_OK(Put(cf, large, "end"));
ASSERT_OK(Flush(cf));
}
}
static void SetDeletionCompactionStats(
CompactionJobStats *stats, uint64_t input_deletions,
uint64_t expired_deletions, uint64_t records_replaced) {
stats->num_input_deletion_records = input_deletions;
stats->num_expired_deletion_records = expired_deletions;
stats->num_records_replaced = records_replaced;
}
void MakeTableWithKeyValues(
Random* rnd, uint64_t smallest, uint64_t largest,
int key_size, int value_size, uint64_t interval,
double ratio, int cf = 0) {
for (auto key = smallest; key < largest; key += interval) {
ASSERT_OK(Put(cf, Slice(Key(key, key_size)),
Slice(RandomString(rnd, value_size, ratio))));
}
ASSERT_OK(Flush(cf));
}
// This function behaves with the implicit understanding that two
// rounds of keys are inserted into the database, as per the behavior
// of the DeletionStatsTest.
void SelectivelyDeleteKeys(uint64_t smallest, uint64_t largest,
uint64_t interval, int deletion_interval, int key_size,
uint64_t cutoff_key_num, CompactionJobStats* stats, int cf = 0) {
// interval needs to be >= 2 so that deletion entries can be inserted
// that are intended to not result in an actual key deletion by using
// an offset of 1 from another existing key
ASSERT_GE(interval, 2);
uint64_t ctr = 1;
uint32_t deletions_made = 0;
uint32_t num_deleted = 0;
uint32_t num_expired = 0;
for (auto key = smallest; key <= largest; key += interval, ctr++) {
if (ctr % deletion_interval == 0) {
ASSERT_OK(Delete(cf, Key(key, key_size)));
deletions_made++;
num_deleted++;
if (key > cutoff_key_num) {
num_expired++;
}
}
}
// Insert some deletions for keys that don't exist that
// are both in and out of the key range
ASSERT_OK(Delete(cf, Key(smallest+1, key_size)));
deletions_made++;
ASSERT_OK(Delete(cf, Key(smallest-1, key_size)));
deletions_made++;
num_expired++;
ASSERT_OK(Delete(cf, Key(smallest-9, key_size)));
deletions_made++;
num_expired++;
ASSERT_OK(Flush(cf));
SetDeletionCompactionStats(stats, deletions_made, num_expired,
num_deleted);
}
};
// An EventListener which helps verify the compaction results in
// test CompactionJobStatsTest.
class CompactionJobStatsChecker : public EventListener {
public:
CompactionJobStatsChecker()
: compression_enabled_(false), verify_next_comp_io_stats_(false) {}
size_t NumberOfUnverifiedStats() { return expected_stats_.size(); }
void set_verify_next_comp_io_stats(bool v) { verify_next_comp_io_stats_ = v; }
// Once a compaction completed, this function will verify the returned
// CompactionJobInfo with the oldest CompactionJobInfo added earlier
// in "expected_stats_" which has not yet being used for verification.
void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override {
if (verify_next_comp_io_stats_) {
ASSERT_GT(ci.stats.file_write_nanos, 0);
ASSERT_GT(ci.stats.file_range_sync_nanos, 0);
ASSERT_GT(ci.stats.file_fsync_nanos, 0);
ASSERT_GT(ci.stats.file_prepare_write_nanos, 0);
verify_next_comp_io_stats_ = false;
}
std::lock_guard<std::mutex> lock(mutex_);
if (expected_stats_.size()) {
Verify(ci.stats, expected_stats_.front());
expected_stats_.pop();
}
}
// A helper function which verifies whether two CompactionJobStats
// match. The verification of all compaction stats are done by
// ASSERT_EQ except for the total input / output bytes, which we
// use ASSERT_GE and ASSERT_LE with a reasonable bias ---
// 10% in uncompressed case and 20% when compression is used.
virtual void Verify(const CompactionJobStats& current_stats,
const CompactionJobStats& stats) {
// time
ASSERT_GT(current_stats.elapsed_micros, 0U);
ASSERT_EQ(current_stats.num_input_records,
stats.num_input_records);
ASSERT_EQ(current_stats.num_input_files,
stats.num_input_files);
ASSERT_EQ(current_stats.num_input_files_at_output_level,
stats.num_input_files_at_output_level);
ASSERT_EQ(current_stats.num_output_records,
stats.num_output_records);
ASSERT_EQ(current_stats.num_output_files,
stats.num_output_files);
ASSERT_EQ(current_stats.is_full_compaction, stats.is_full_compaction);
ASSERT_EQ(current_stats.is_manual_compaction,
stats.is_manual_compaction);
// file size
double kFileSizeBias = compression_enabled_ ? 0.20 : 0.10;
ASSERT_GE(current_stats.total_input_bytes * (1.00 + kFileSizeBias),
stats.total_input_bytes);
ASSERT_LE(current_stats.total_input_bytes,
stats.total_input_bytes * (1.00 + kFileSizeBias));
ASSERT_GE(current_stats.total_output_bytes * (1.00 + kFileSizeBias),
stats.total_output_bytes);
ASSERT_LE(current_stats.total_output_bytes,
stats.total_output_bytes * (1.00 + kFileSizeBias));
ASSERT_EQ(current_stats.total_input_raw_key_bytes,
stats.total_input_raw_key_bytes);
ASSERT_EQ(current_stats.total_input_raw_value_bytes,
stats.total_input_raw_value_bytes);
ASSERT_EQ(current_stats.num_records_replaced,
stats.num_records_replaced);
ASSERT_EQ(current_stats.num_corrupt_keys,
stats.num_corrupt_keys);
ASSERT_EQ(
std::string(current_stats.smallest_output_key_prefix),
std::string(stats.smallest_output_key_prefix));
ASSERT_EQ(
std::string(current_stats.largest_output_key_prefix),
std::string(stats.largest_output_key_prefix));
}
// Add an expected compaction stats, which will be used to
// verify the CompactionJobStats returned by the OnCompactionCompleted()
// callback.
void AddExpectedStats(const CompactionJobStats& stats) {
std::lock_guard<std::mutex> lock(mutex_);
expected_stats_.push(stats);
}
void EnableCompression(bool flag) {
compression_enabled_ = flag;
}
bool verify_next_comp_io_stats() const { return verify_next_comp_io_stats_; }
private:
std::mutex mutex_;
std::queue<CompactionJobStats> expected_stats_;
bool compression_enabled_;
bool verify_next_comp_io_stats_;
};
// An EventListener which helps verify the compaction statistics in
// the test DeletionStatsTest.
class CompactionJobDeletionStatsChecker : public CompactionJobStatsChecker {
public:
// Verifies whether two CompactionJobStats match.
void Verify(const CompactionJobStats& current_stats,
const CompactionJobStats& stats) override {
ASSERT_EQ(
current_stats.num_input_deletion_records,
stats.num_input_deletion_records);
ASSERT_EQ(
current_stats.num_expired_deletion_records,
stats.num_expired_deletion_records);
ASSERT_EQ(
current_stats.num_records_replaced,
stats.num_records_replaced);
ASSERT_EQ(current_stats.num_corrupt_keys,
stats.num_corrupt_keys);
}
};
namespace {
uint64_t EstimatedFileSize(
uint64_t num_records, size_t key_size, size_t value_size,
double compression_ratio = 1.0,
size_t block_size = 4096,
int bloom_bits_per_key = 10) {
const size_t kPerKeyOverhead = 8;
const size_t kFooterSize = 512;
uint64_t data_size =
static_cast<uint64_t>(
num_records * (key_size + value_size * compression_ratio +
kPerKeyOverhead));
return data_size + kFooterSize
+ num_records * bloom_bits_per_key / 8 // filter block
+ data_size * (key_size + 8) / block_size; // index block
}
namespace {
void CopyPrefix(
const Slice& src, size_t prefix_length, std::string* dst) {
assert(prefix_length > 0);
size_t length = src.size() > prefix_length ? prefix_length : src.size();
dst->assign(src.data(), length);
}
} // namespace
CompactionJobStats NewManualCompactionJobStats(
const std::string& smallest_key, const std::string& largest_key,
size_t num_input_files, size_t num_input_files_at_output_level,
uint64_t num_input_records, size_t key_size, size_t value_size,
size_t num_output_files, uint64_t num_output_records,
double compression_ratio, uint64_t num_records_replaced,
bool is_full = false, bool is_manual = true) {
CompactionJobStats stats;
stats.Reset();
stats.num_input_records = num_input_records;
stats.num_input_files = num_input_files;
stats.num_input_files_at_output_level = num_input_files_at_output_level;
stats.num_output_records = num_output_records;
stats.num_output_files = num_output_files;
stats.total_input_bytes =
EstimatedFileSize(
num_input_records / num_input_files,
key_size, value_size, compression_ratio) * num_input_files;
stats.total_output_bytes =
EstimatedFileSize(
num_output_records / num_output_files,
key_size, value_size, compression_ratio) * num_output_files;
stats.total_input_raw_key_bytes =
num_input_records * (key_size + 8);
stats.total_input_raw_value_bytes =
num_input_records * value_size;
stats.is_full_compaction = is_full;
stats.is_manual_compaction = is_manual;
stats.num_records_replaced = num_records_replaced;
CopyPrefix(smallest_key,
CompactionJobStats::kMaxPrefixLength,
&stats.smallest_output_key_prefix);
CopyPrefix(largest_key,
CompactionJobStats::kMaxPrefixLength,
&stats.largest_output_key_prefix);
return stats;
}
CompressionType GetAnyCompression() {
if (Snappy_Supported()) {
return kSnappyCompression;
} else if (Zlib_Supported()) {
return kZlibCompression;
} else if (BZip2_Supported()) {
return kBZip2Compression;
} else if (LZ4_Supported()) {
return kLZ4Compression;
} else if (XPRESS_Supported()) {
return kXpressCompression;
}
return kNoCompression;
}
} // namespace
TEST_P(CompactionJobStatsTest, CompactionJobStatsTest) {
Random rnd(301);
const int kBufSize = 100;
char buf[kBufSize];
uint64_t key_base = 100000000l;
// Note: key_base must be multiple of num_keys_per_L0_file
int num_keys_per_L0_file = 100;
const int kTestScale = 8;
const int kKeySize = 10;
const int kValueSize = 1000;
const double kCompressionRatio = 0.5;
double compression_ratio = 1.0;
uint64_t key_interval = key_base / num_keys_per_L0_file;
// Whenever a compaction completes, this listener will try to
// verify whether the returned CompactionJobStats matches
// what we expect. The expected CompactionJobStats is added
// via AddExpectedStats().
auto* stats_checker = new CompactionJobStatsChecker();
Options options;
options.listeners.emplace_back(stats_checker);
options.create_if_missing = true;
// just enough setting to hold off auto-compaction.
options.level0_file_num_compaction_trigger = kTestScale + 1;
options.num_levels = 3;
options.compression = kNoCompression;
options.max_subcompactions = max_subcompactions_;
options.bytes_per_sync = 512 * 1024;
options.report_bg_io_stats = true;
for (int test = 0; test < 2; ++test) {
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// 1st Phase: generate "num_L0_files" L0 files.
int num_L0_files = 0;
for (uint64_t start_key = key_base;
start_key <= key_base * kTestScale;
start_key += key_base) {
MakeTableWithKeyValues(
&rnd, start_key, start_key + key_base - 1,
kKeySize, kValueSize, key_interval,
compression_ratio, 1);
snprintf(buf, kBufSize, "%d", ++num_L0_files);
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
}
ASSERT_EQ(ToString(num_L0_files), FilesPerLevel(1));
// 2nd Phase: perform L0 -> L1 compaction.
int L0_compaction_count = 6;
int count = 1;
std::string smallest_key;
std::string largest_key;
for (uint64_t start_key = key_base;
start_key <= key_base * L0_compaction_count;
start_key += key_base, count++) {
smallest_key = Key(start_key, 10);
largest_key = Key(start_key + key_base - key_interval, 10);
stats_checker->AddExpectedStats(
NewManualCompactionJobStats(
smallest_key, largest_key,
1, 0, num_keys_per_L0_file,
kKeySize, kValueSize,
1, num_keys_per_L0_file,
compression_ratio, 0));
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
TEST_Compact(0, 1, smallest_key, largest_key);
snprintf(buf, kBufSize, "%d,%d", num_L0_files - count, count);
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
}
// compact two files into one in the last L0 -> L1 compaction
int num_remaining_L0 = num_L0_files - L0_compaction_count;
smallest_key = Key(key_base * (L0_compaction_count + 1), 10);
largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
stats_checker->AddExpectedStats(
NewManualCompactionJobStats(
smallest_key, largest_key,
num_remaining_L0,
0, num_keys_per_L0_file * num_remaining_L0,
kKeySize, kValueSize,
1, num_keys_per_L0_file * num_remaining_L0,
compression_ratio, 0));
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
TEST_Compact(0, 1, smallest_key, largest_key);
int num_L1_files = num_L0_files - num_remaining_L0 + 1;
num_L0_files = 0;
snprintf(buf, kBufSize, "%d,%d", num_L0_files, num_L1_files);
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
// 3rd Phase: generate sparse L0 files (wider key-range, same num of keys)
int sparseness = 2;
for (uint64_t start_key = key_base;
start_key <= key_base * kTestScale;
start_key += key_base * sparseness) {
MakeTableWithKeyValues(
&rnd, start_key, start_key + key_base * sparseness - 1,
kKeySize, kValueSize,
key_base * sparseness / num_keys_per_L0_file,
compression_ratio, 1);
snprintf(buf, kBufSize, "%d,%d", ++num_L0_files, num_L1_files);
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
}
// 4th Phase: perform L0 -> L1 compaction again, expect higher write amp
// When subcompactions are enabled, the number of output files increases
// by 1 because multiple threads are consuming the input and generating
// output files without coordinating to see if the output could fit into
// a smaller number of files like it does when it runs sequentially
int num_output_files = options.max_subcompactions > 1 ? 2 : 1;
for (uint64_t start_key = key_base;
num_L0_files > 1;
start_key += key_base * sparseness) {
smallest_key = Key(start_key, 10);
largest_key =
Key(start_key + key_base * sparseness - key_interval, 10);
stats_checker->AddExpectedStats(
NewManualCompactionJobStats(
smallest_key, largest_key,
3, 2, num_keys_per_L0_file * 3,
kKeySize, kValueSize,
num_output_files,
num_keys_per_L0_file * 2, // 1/3 of the data will be updated.
compression_ratio,
num_keys_per_L0_file));
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
Compact(1, smallest_key, largest_key);
if (options.max_subcompactions == 1) {
--num_L1_files;
}
snprintf(buf, kBufSize, "%d,%d", --num_L0_files, num_L1_files);
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
}
// 5th Phase: Do a full compaction, which involves in two sub-compactions.
// Here we expect to have 1 L0 files and 4 L1 files
// In the first sub-compaction, we expect L0 compaction.
smallest_key = Key(key_base, 10);
largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
stats_checker->AddExpectedStats(
NewManualCompactionJobStats(
Key(key_base * (kTestScale + 1 - sparseness), 10), largest_key,
2, 1, num_keys_per_L0_file * 3,
kKeySize, kValueSize,
1, num_keys_per_L0_file * 2,
compression_ratio,
num_keys_per_L0_file));
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
Compact(1, smallest_key, largest_key);
num_L1_files = options.max_subcompactions > 1 ? 7 : 4;
char L1_buf[4];
snprintf(L1_buf, sizeof(L1_buf), "0,%d", num_L1_files);
std::string L1_files(L1_buf);
ASSERT_EQ(L1_files, FilesPerLevel(1));
options.compression = GetAnyCompression();
if (options.compression == kNoCompression) {
break;
}
stats_checker->EnableCompression(true);
compression_ratio = kCompressionRatio;
for (int i = 0; i < 5; i++) {
ASSERT_OK(Put(1, Slice(Key(key_base + i, 10)),
Slice(RandomString(&rnd, 512 * 1024, 1))));
}
ASSERT_OK(Flush(1));
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());
stats_checker->set_verify_next_comp_io_stats(true);
std::atomic<bool> first_prepare_write(true);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"WritableFileWriter::Append:BeforePrepareWrite", [&](void* /*arg*/) {
if (first_prepare_write.load()) {
options.env->SleepForMicroseconds(3);
first_prepare_write.store(false);
}
});
std::atomic<bool> first_flush(true);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"WritableFileWriter::Flush:BeforeAppend", [&](void* /*arg*/) {
if (first_flush.load()) {
options.env->SleepForMicroseconds(3);
first_flush.store(false);
}
});
std::atomic<bool> first_sync(true);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"WritableFileWriter::SyncInternal:0", [&](void* /*arg*/) {
if (first_sync.load()) {
options.env->SleepForMicroseconds(3);
first_sync.store(false);
}
});
std::atomic<bool> first_range_sync(true);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"WritableFileWriter::RangeSync:0", [&](void* /*arg*/) {
if (first_range_sync.load()) {
options.env->SleepForMicroseconds(3);
first_range_sync.store(false);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Compact(1, smallest_key, largest_key);
ASSERT_TRUE(!stats_checker->verify_next_comp_io_stats());
ASSERT_TRUE(!first_prepare_write.load());
ASSERT_TRUE(!first_flush.load());
ASSERT_TRUE(!first_sync.load());
ASSERT_TRUE(!first_range_sync.load());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
}
TEST_P(CompactionJobStatsTest, DeletionStatsTest) {
Random rnd(301);
uint64_t key_base = 100000l;
// Note: key_base must be multiple of num_keys_per_L0_file
int num_keys_per_L0_file = 20;
const int kTestScale = 8; // make sure this is even
const int kKeySize = 10;
const int kValueSize = 100;
double compression_ratio = 1.0;
uint64_t key_interval = key_base / num_keys_per_L0_file;
uint64_t largest_key_num = key_base * (kTestScale + 1) - key_interval;
uint64_t cutoff_key_num = key_base * (kTestScale / 2 + 1) - key_interval;
const std::string smallest_key = Key(key_base - 10, kKeySize);
const std::string largest_key = Key(largest_key_num + 10, kKeySize);
// Whenever a compaction completes, this listener will try to
// verify whether the returned CompactionJobStats matches
// what we expect.
auto* stats_checker = new CompactionJobDeletionStatsChecker();
Options options;
options.listeners.emplace_back(stats_checker);
options.create_if_missing = true;
options.level0_file_num_compaction_trigger = kTestScale+1;
options.num_levels = 3;
options.compression = kNoCompression;
options.max_bytes_for_level_multiplier = 2;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Stage 1: Generate several L0 files and then send them to L2 by
// using CompactRangeOptions and CompactRange(). These files will
// have a strict subset of the keys from the full key-range
for (uint64_t start_key = key_base;
start_key <= key_base * kTestScale / 2;
start_key += key_base) {
MakeTableWithKeyValues(
&rnd, start_key, start_key + key_base - 1,
kKeySize, kValueSize, key_interval,
compression_ratio, 1);
}
CompactRangeOptions cr_options;
cr_options.change_level = true;
cr_options.target_level = 2;
ASSERT_OK(db_->CompactRange(cr_options, handles_[1], nullptr, nullptr));
ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);
// Stage 2: Generate files including keys from the entire key range
for (uint64_t start_key = key_base;
start_key <= key_base * kTestScale;
start_key += key_base) {
MakeTableWithKeyValues(
&rnd, start_key, start_key + key_base - 1,
kKeySize, kValueSize, key_interval,
compression_ratio, 1);
}
// Send these L0 files to L1
TEST_Compact(0, 1, smallest_key, largest_key);
ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
// Add a new record and flush so now there is a L0 file
// with a value too (not just deletions from the next step)
ASSERT_OK(Put(1, Key(key_base-6, kKeySize), "test"));
ASSERT_OK(Flush(1));
// Stage 3: Generate L0 files with some deletions so now
// there are files with the same key range in L0, L1, and L2
int deletion_interval = 3;
CompactionJobStats first_compaction_stats;
SelectivelyDeleteKeys(key_base, largest_key_num,
key_interval, deletion_interval, kKeySize, cutoff_key_num,
&first_compaction_stats, 1);
stats_checker->AddExpectedStats(first_compaction_stats);
// Stage 4: Trigger compaction and verify the stats
TEST_Compact(0, 1, smallest_key, largest_key);
}
namespace {
int GetUniversalCompactionInputUnits(uint32_t num_flushes) {
uint32_t compaction_input_units;
for (compaction_input_units = 1;
num_flushes >= compaction_input_units;
compaction_input_units *= 2) {
if ((num_flushes & compaction_input_units) != 0) {
return compaction_input_units > 1 ? compaction_input_units : 0;
}
}
return 0;
}
} // namespace
TEST_P(CompactionJobStatsTest, UniversalCompactionTest) {
Random rnd(301);
uint64_t key_base = 100000000l;
// Note: key_base must be multiple of num_keys_per_L0_file
int num_keys_per_table = 100;
const uint32_t kTestScale = 6;
const int kKeySize = 10;
const int kValueSize = 900;
double compression_ratio = 1.0;
uint64_t key_interval = key_base / num_keys_per_table;
auto* stats_checker = new CompactionJobStatsChecker();
Options options;
options.listeners.emplace_back(stats_checker);
options.create_if_missing = true;
options.num_levels = 3;
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = 2;
options.target_file_size_base = num_keys_per_table * 1000;
options.compaction_style = kCompactionStyleUniversal;
options.compaction_options_universal.size_ratio = 1;
options.compaction_options_universal.max_size_amplification_percent = 1000;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// Generates the expected CompactionJobStats for each compaction
for (uint32_t num_flushes = 2; num_flushes <= kTestScale; num_flushes++) {
// Here we treat one newly flushed file as an unit.
//
// For example, if a newly flushed file is 100k, and a compaction has
// 4 input units, then this compaction inputs 400k.
uint32_t num_input_units = GetUniversalCompactionInputUnits(num_flushes);
if (num_input_units == 0) {
continue;
}
// A full compaction only happens when the number of flushes equals to
// the number of compaction input runs.
bool is_full = num_flushes == num_input_units;
// The following statement determines the expected smallest key
// based on whether it is a full compaction.
uint64_t smallest_key = is_full ? key_base : key_base * (num_flushes - 1);
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
Key(smallest_key, 10),
Key(smallest_key + key_base * num_input_units - key_interval, 10),
num_input_units, num_input_units > 2 ? num_input_units / 2 : 0,
num_keys_per_table * num_input_units, kKeySize, kValueSize,
num_input_units, num_keys_per_table * num_input_units, 1.0, 0, is_full,
false));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 3U);
for (uint64_t start_key = key_base;
start_key <= key_base * kTestScale;
start_key += key_base) {
MakeTableWithKeyValues(
&rnd, start_key, start_key + key_base - 1,
kKeySize, kValueSize, key_interval,
compression_ratio, 1);
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());
}
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
}
INSTANTIATE_TEST_CASE_P(CompactionJobStatsTest, CompactionJobStatsTest,
::testing::Values(1, 4));
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#else
#include <stdio.h>
int main(int /*argc*/, char** /*argv*/) {
fprintf(stderr, "SKIPPED, not supported in ROCKSDB_LITE\n");
return 0;
}
#endif // !ROCKSDB_LITE
#else
int main(int /*argc*/, char** /*argv*/) { return 0; }
#endif // !defined(IOS_CROSS_COMPILE)