You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/compaction/compaction_job.cc

1802 lines
70 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction_job.h"
#include <algorithm>
#include <cinttypes>
#include <functional>
#include <list>
#include <memory>
#include <random>
#include <set>
#include <thread>
#include <utility>
#include <vector>
#include "db/builder.h"
#include "db/db_impl/db_impl.h"
#include "db/db_iter.h"
#include "db/dbformat.h"
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/memtable.h"
#include "db/memtable_list.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/range_del_aggregator.h"
#include "db/version_set.h"
#include "file/filename.h"
#include "file/read_write_util.h"
#include "file/sst_file_manager_impl.h"
#include "file/writable_file_writer.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/thread_status_util.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/sst_partitioner.h"
#include "rocksdb/statistics.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/merging_iterator.h"
#include "table/table_builder.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/hash.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
const char* GetCompactionReasonString(CompactionReason compaction_reason) {
switch (compaction_reason) {
case CompactionReason::kUnknown:
return "Unknown";
case CompactionReason::kLevelL0FilesNum:
return "LevelL0FilesNum";
case CompactionReason::kLevelMaxLevelSize:
return "LevelMaxLevelSize";
case CompactionReason::kUniversalSizeAmplification:
return "UniversalSizeAmplification";
case CompactionReason::kUniversalSizeRatio:
return "UniversalSizeRatio";
case CompactionReason::kUniversalSortedRunNum:
return "UniversalSortedRunNum";
case CompactionReason::kFIFOMaxSize:
return "FIFOMaxSize";
case CompactionReason::kFIFOReduceNumFiles:
return "FIFOReduceNumFiles";
case CompactionReason::kFIFOTtl:
return "FIFOTtl";
case CompactionReason::kManualCompaction:
return "ManualCompaction";
case CompactionReason::kFilesMarkedForCompaction:
return "FilesMarkedForCompaction";
case CompactionReason::kBottommostFiles:
return "BottommostFiles";
case CompactionReason::kTtl:
return "Ttl";
case CompactionReason::kFlush:
return "Flush";
case CompactionReason::kExternalSstIngestion:
return "ExternalSstIngestion";
case CompactionReason::kPeriodicCompaction:
return "PeriodicCompaction";
case CompactionReason::kNumOfReasons:
// fall through
default:
assert(false);
return "Invalid";
}
}
// Maintains state for each sub-compaction
struct CompactionJob::SubcompactionState {
const Compaction* compaction;
std::unique_ptr<CompactionIterator> c_iter;
// The boundaries of the key-range this compaction is interested in. No two
// subcompactions may have overlapping key-ranges.
// 'start' is inclusive, 'end' is exclusive, and nullptr means unbounded
Slice *start, *end;
// The return status of this subcompaction
Status status;
// The return IO Status of this subcompaction
IOStatus io_status;
// Files produced by this subcompaction
struct Output {
FileMetaData meta;
bool finished;
uint64_t paranoid_hash;
std::shared_ptr<const TableProperties> table_properties;
};
// State kept for output being generated
std::vector<Output> outputs;
std::unique_ptr<WritableFileWriter> outfile;
std::unique_ptr<TableBuilder> builder;
Output* current_output() {
if (outputs.empty()) {
// This subcompaction's output could be empty if compaction was aborted
// before this subcompaction had a chance to generate any output files.
// When subcompactions are executed sequentially this is more likely and
// will be particulalry likely for the later subcompactions to be empty.
// Once they are run in parallel however it should be much rarer.
return nullptr;
} else {
return &outputs.back();
}
}
uint64_t current_output_file_size = 0;
// State during the subcompaction
uint64_t total_bytes = 0;
uint64_t num_output_records = 0;
CompactionJobStats compaction_job_stats;
uint64_t approx_size = 0;
// An index that used to speed up ShouldStopBefore().
size_t grandparent_index = 0;
// The number of bytes overlapping between the current output and
// grandparent files used in ShouldStopBefore().
uint64_t overlapped_bytes = 0;
// A flag determine whether the key has been seen in ShouldStopBefore()
bool seen_key = false;
SubcompactionState(Compaction* c, Slice* _start, Slice* _end, uint64_t size)
: compaction(c), start(_start), end(_end), approx_size(size) {
assert(compaction != nullptr);
}
// Adds the key and value to the builder
// If paranoid is true, adds the key-value to the paranoid hash
void AddToBuilder(const Slice& key, const Slice& value, bool paranoid) {
auto curr = current_output();
assert(builder != nullptr);
assert(curr != nullptr);
if (paranoid) {
// Generate a rolling 64-bit hash of the key and values
curr->paranoid_hash = Hash64(key.data(), key.size(), curr->paranoid_hash);
curr->paranoid_hash =
Hash64(value.data(), value.size(), curr->paranoid_hash);
}
builder->Add(key, value);
}
// Returns true iff we should stop building the current output
// before processing "internal_key".
bool ShouldStopBefore(const Slice& internal_key, uint64_t curr_file_size) {
const InternalKeyComparator* icmp =
&compaction->column_family_data()->internal_comparator();
const std::vector<FileMetaData*>& grandparents = compaction->grandparents();
// Scan to find earliest grandparent file that contains key.
while (grandparent_index < grandparents.size() &&
icmp->Compare(internal_key,
grandparents[grandparent_index]->largest.Encode()) >
0) {
if (seen_key) {
overlapped_bytes += grandparents[grandparent_index]->fd.GetFileSize();
}
assert(grandparent_index + 1 >= grandparents.size() ||
icmp->Compare(
grandparents[grandparent_index]->largest.Encode(),
grandparents[grandparent_index + 1]->smallest.Encode()) <= 0);
grandparent_index++;
}
seen_key = true;
if (overlapped_bytes + curr_file_size >
compaction->max_compaction_bytes()) {
// Too much overlap for current output; start new output
overlapped_bytes = 0;
return true;
}
return false;
}
};
// Maintains state for the entire compaction
struct CompactionJob::CompactionState {
Compaction* const compaction;
// REQUIRED: subcompaction states are stored in order of increasing
// key-range
std::vector<CompactionJob::SubcompactionState> sub_compact_states;
Status status;
uint64_t total_bytes;
uint64_t num_output_records;
explicit CompactionState(Compaction* c)
: compaction(c),
total_bytes(0),
num_output_records(0) {}
size_t NumOutputFiles() {
size_t total = 0;
for (auto& s : sub_compact_states) {
total += s.outputs.size();
}
return total;
}
Slice SmallestUserKey() {
for (const auto& sub_compact_state : sub_compact_states) {
if (!sub_compact_state.outputs.empty() &&
sub_compact_state.outputs[0].finished) {
return sub_compact_state.outputs[0].meta.smallest.user_key();
}
}
// If there is no finished output, return an empty slice.
return Slice(nullptr, 0);
}
Slice LargestUserKey() {
for (auto it = sub_compact_states.rbegin(); it < sub_compact_states.rend();
++it) {
if (!it->outputs.empty() && it->current_output()->finished) {
assert(it->current_output() != nullptr);
return it->current_output()->meta.largest.user_key();
}
}
// If there is no finished output, return an empty slice.
return Slice(nullptr, 0);
}
};
void CompactionJob::AggregateStatistics() {
for (SubcompactionState& sc : compact_->sub_compact_states) {
compact_->total_bytes += sc.total_bytes;
compact_->num_output_records += sc.num_output_records;
}
if (compaction_job_stats_) {
for (SubcompactionState& sc : compact_->sub_compact_states) {
compaction_job_stats_->Add(sc.compaction_job_stats);
}
}
}
CompactionJob::CompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const FileOptions& file_options, VersionSet* versions,
const std::atomic<bool>* shutting_down,
const SequenceNumber preserve_deletes_seqnum, LogBuffer* log_buffer,
FSDirectory* db_directory, FSDirectory* output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
SequenceNumber earliest_write_conflict_snapshot,
const SnapshotChecker* snapshot_checker, std::shared_ptr<Cache> table_cache,
EventLogger* event_logger, bool paranoid_file_checks, bool measure_io_stats,
const std::string& dbname, CompactionJobStats* compaction_job_stats,
Env::Priority thread_pri, const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<int>* manual_compaction_paused, const std::string& db_id,
const std::string& db_session_id)
: job_id_(job_id),
compact_(new CompactionState(compaction)),
compaction_job_stats_(compaction_job_stats),
compaction_stats_(compaction->compaction_reason(), 1),
dbname_(dbname),
db_id_(db_id),
db_session_id_(db_session_id),
db_options_(db_options),
file_options_(file_options),
env_(db_options.env),
io_tracer_(io_tracer),
fs_(db_options.fs, io_tracer),
file_options_for_read_(
fs_->OptimizeForCompactionTableRead(file_options, db_options_)),
versions_(versions),
shutting_down_(shutting_down),
manual_compaction_paused_(manual_compaction_paused),
preserve_deletes_seqnum_(preserve_deletes_seqnum),
log_buffer_(log_buffer),
db_directory_(db_directory),
output_directory_(output_directory),
stats_(stats),
db_mutex_(db_mutex),
db_error_handler_(db_error_handler),
existing_snapshots_(std::move(existing_snapshots)),
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
snapshot_checker_(snapshot_checker),
table_cache_(std::move(table_cache)),
event_logger_(event_logger),
bottommost_level_(false),
paranoid_file_checks_(paranoid_file_checks),
measure_io_stats_(measure_io_stats),
write_hint_(Env::WLTH_NOT_SET),
thread_pri_(thread_pri) {
assert(log_buffer_ != nullptr);
const auto* cfd = compact_->compaction->column_family_data();
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
db_options_.enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
ReportStartedCompaction(compaction);
}
CompactionJob::~CompactionJob() {
assert(compact_ == nullptr);
ThreadStatusUtil::ResetThreadStatus();
}
void CompactionJob::ReportStartedCompaction(Compaction* compaction) {
const auto* cfd = compact_->compaction->column_family_data();
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
db_options_.enable_thread_tracking);
ThreadStatusUtil::SetThreadOperationProperty(ThreadStatus::COMPACTION_JOB_ID,
job_id_);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_INPUT_OUTPUT_LEVEL,
(static_cast<uint64_t>(compact_->compaction->start_level()) << 32) +
compact_->compaction->output_level());
// In the current design, a CompactionJob is always created
// for non-trivial compaction.
assert(compaction->IsTrivialMove() == false ||
compaction->is_manual_compaction() == true);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_PROP_FLAGS,
compaction->is_manual_compaction() +
(compaction->deletion_compaction() << 1));
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_TOTAL_INPUT_BYTES,
compaction->CalculateTotalInputSize());
IOSTATS_RESET(bytes_written);
IOSTATS_RESET(bytes_read);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, 0);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, 0);
// Set the thread operation after operation properties
// to ensure GetThreadList() can always show them all together.
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
if (compaction_job_stats_) {
compaction_job_stats_->is_manual_compaction =
compaction->is_manual_compaction();
}
}
void CompactionJob::Prepare() {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PREPARE);
// Generate file_levels_ for compaction berfore making Iterator
auto* c = compact_->compaction;
assert(c->column_family_data() != nullptr);
assert(c->column_family_data()->current()->storage_info()->NumLevelFiles(
compact_->compaction->level()) > 0);
write_hint_ =
c->column_family_data()->CalculateSSTWriteHint(c->output_level());
bottommost_level_ = c->bottommost_level();
if (c->ShouldFormSubcompactions()) {
{
StopWatch sw(env_, stats_, SUBCOMPACTION_SETUP_TIME);
GenSubcompactionBoundaries();
}
assert(sizes_.size() == boundaries_.size() + 1);
for (size_t i = 0; i <= boundaries_.size(); i++) {
Slice* start = i == 0 ? nullptr : &boundaries_[i - 1];
Slice* end = i == boundaries_.size() ? nullptr : &boundaries_[i];
compact_->sub_compact_states.emplace_back(c, start, end, sizes_[i]);
}
RecordInHistogram(stats_, NUM_SUBCOMPACTIONS_SCHEDULED,
compact_->sub_compact_states.size());
} else {
constexpr Slice* start = nullptr;
constexpr Slice* end = nullptr;
constexpr uint64_t size = 0;
compact_->sub_compact_states.emplace_back(c, start, end, size);
}
}
struct RangeWithSize {
Range range;
uint64_t size;
RangeWithSize(const Slice& a, const Slice& b, uint64_t s = 0)
: range(a, b), size(s) {}
};
void CompactionJob::GenSubcompactionBoundaries() {
auto* c = compact_->compaction;
auto* cfd = c->column_family_data();
const Comparator* cfd_comparator = cfd->user_comparator();
std::vector<Slice> bounds;
int start_lvl = c->start_level();
int out_lvl = c->output_level();
// Add the starting and/or ending key of certain input files as a potential
// boundary
for (size_t lvl_idx = 0; lvl_idx < c->num_input_levels(); lvl_idx++) {
int lvl = c->level(lvl_idx);
if (lvl >= start_lvl && lvl <= out_lvl) {
const LevelFilesBrief* flevel = c->input_levels(lvl_idx);
size_t num_files = flevel->num_files;
if (num_files == 0) {
continue;
}
if (lvl == 0) {
// For level 0 add the starting and ending key of each file since the
// files may have greatly differing key ranges (not range-partitioned)
for (size_t i = 0; i < num_files; i++) {
bounds.emplace_back(flevel->files[i].smallest_key);
bounds.emplace_back(flevel->files[i].largest_key);
}
} else {
// For all other levels add the smallest/largest key in the level to
// encompass the range covered by that level
bounds.emplace_back(flevel->files[0].smallest_key);
bounds.emplace_back(flevel->files[num_files - 1].largest_key);
if (lvl == out_lvl) {
// For the last level include the starting keys of all files since
// the last level is the largest and probably has the widest key
// range. Since it's range partitioned, the ending key of one file
// and the starting key of the next are very close (or identical).
for (size_t i = 1; i < num_files; i++) {
bounds.emplace_back(flevel->files[i].smallest_key);
}
}
}
}
}
std::sort(bounds.begin(), bounds.end(),
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
return cfd_comparator->Compare(ExtractUserKey(a),
ExtractUserKey(b)) < 0;
});
// Remove duplicated entries from bounds
bounds.erase(
std::unique(bounds.begin(), bounds.end(),
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
return cfd_comparator->Compare(ExtractUserKey(a),
ExtractUserKey(b)) == 0;
}),
bounds.end());
// Combine consecutive pairs of boundaries into ranges with an approximate
// size of data covered by keys in that range
uint64_t sum = 0;
std::vector<RangeWithSize> ranges;
// Get input version from CompactionState since it's already referenced
// earlier in SetInputVersioCompaction::SetInputVersion and will not change
// when db_mutex_ is released below
auto* v = compact_->compaction->input_version();
for (auto it = bounds.begin();;) {
const Slice a = *it;
++it;
if (it == bounds.end()) {
break;
}
const Slice b = *it;
// ApproximateSize could potentially create table reader iterator to seek
// to the index block and may incur I/O cost in the process. Unlock db
// mutex to reduce contention
db_mutex_->Unlock();
uint64_t size = versions_->ApproximateSize(SizeApproximationOptions(), v, a,
b, start_lvl, out_lvl + 1,
TableReaderCaller::kCompaction);
db_mutex_->Lock();
ranges.emplace_back(a, b, size);
sum += size;
}
// Group the ranges into subcompactions
const double min_file_fill_percent = 4.0 / 5;
int base_level = v->storage_info()->base_level();
uint64_t max_output_files = static_cast<uint64_t>(std::ceil(
sum / min_file_fill_percent /
MaxFileSizeForLevel(*(c->mutable_cf_options()), out_lvl,
c->immutable_cf_options()->compaction_style, base_level,
c->immutable_cf_options()->level_compaction_dynamic_level_bytes)));
uint64_t subcompactions =
std::min({static_cast<uint64_t>(ranges.size()),
static_cast<uint64_t>(c->max_subcompactions()),
max_output_files});
if (subcompactions > 1) {
double mean = sum * 1.0 / subcompactions;
// Greedily add ranges to the subcompaction until the sum of the ranges'
// sizes becomes >= the expected mean size of a subcompaction
sum = 0;
for (size_t i = 0; i + 1 < ranges.size(); i++) {
sum += ranges[i].size;
if (subcompactions == 1) {
// If there's only one left to schedule then it goes to the end so no
// need to put an end boundary
continue;
}
if (sum >= mean) {
boundaries_.emplace_back(ExtractUserKey(ranges[i].range.limit));
sizes_.emplace_back(sum);
subcompactions--;
sum = 0;
}
}
sizes_.emplace_back(sum + ranges.back().size);
} else {
// Only one range so its size is the total sum of sizes computed above
sizes_.emplace_back(sum);
}
}
Status CompactionJob::Run() {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_RUN);
TEST_SYNC_POINT("CompactionJob::Run():Start");
log_buffer_->FlushBufferToLog();
LogCompaction();
const size_t num_threads = compact_->sub_compact_states.size();
assert(num_threads > 0);
const uint64_t start_micros = env_->NowMicros();
// Launch a thread for each of subcompactions 1...num_threads-1
std::vector<port::Thread> thread_pool;
thread_pool.reserve(num_threads - 1);
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(&CompactionJob::ProcessKeyValueCompaction, this,
&compact_->sub_compact_states[i]);
}
// Always schedule the first subcompaction (whether or not there are also
// others) in the current thread to be efficient with resources
ProcessKeyValueCompaction(&compact_->sub_compact_states[0]);
// Wait for all other threads (if there are any) to finish execution
for (auto& thread : thread_pool) {
thread.join();
}
compaction_stats_.micros = env_->NowMicros() - start_micros;
compaction_stats_.cpu_micros = 0;
for (size_t i = 0; i < compact_->sub_compact_states.size(); i++) {
compaction_stats_.cpu_micros +=
compact_->sub_compact_states[i].compaction_job_stats.cpu_micros;
}
RecordTimeToHistogram(stats_, COMPACTION_TIME, compaction_stats_.micros);
RecordTimeToHistogram(stats_, COMPACTION_CPU_TIME,
compaction_stats_.cpu_micros);
TEST_SYNC_POINT("CompactionJob::Run:BeforeVerify");
// Check if any thread encountered an error during execution
Status status;
IOStatus io_s;
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
io_s = state.io_status;
break;
}
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok() && output_directory_) {
io_s = output_directory_->Fsync(IOOptions(), nullptr);
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
status = io_s;
}
if (status.ok()) {
thread_pool.clear();
std::vector<const CompactionJob::SubcompactionState::Output*> files_output;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.outputs) {
files_output.emplace_back(&output);
}
}
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
auto prefix_extractor =
compact_->compaction->mutable_cf_options()->prefix_extractor.get();
std::atomic<size_t> next_file_idx(0);
auto verify_table = [&](Status& output_status) {
while (true) {
size_t file_idx = next_file_idx.fetch_add(1);
if (file_idx >= files_output.size()) {
break;
}
// Verify that the table is usable
// We set for_compaction to false and don't OptimizeForCompactionTableRead
// here because this is a special case after we finish the table building
// No matter whether use_direct_io_for_flush_and_compaction is true,
// we will regard this verification as user reads since the goal is
// to cache it here for further user reads
ReadOptions read_options;
InternalIterator* iter = cfd->table_cache()->NewIterator(
read_options, file_options_, cfd->internal_comparator(),
files_output[file_idx]->meta, /*range_del_agg=*/nullptr,
prefix_extractor,
/*table_reader_ptr=*/nullptr,
cfd->internal_stats()->GetFileReadHist(
compact_->compaction->output_level()),
TableReaderCaller::kCompactionRefill, /*arena=*/nullptr,
/*skip_filters=*/false, compact_->compaction->output_level(),
MaxFileSizeForL0MetaPin(
*compact_->compaction->mutable_cf_options()),
/*smallest_compaction_key=*/nullptr,
/*largest_compaction_key=*/nullptr,
/*allow_unprepared_value=*/false);
auto s = iter->status();
if (s.ok() && paranoid_file_checks_) {
uint64_t hash = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
// Generate a rolling 64-bit hash of the key and values, using the
hash = Hash64(iter->key().data(), iter->key().size(), hash);
hash = Hash64(iter->value().data(), iter->value().size(), hash);
}
s = iter->status();
if (s.ok() && hash != files_output[file_idx]->paranoid_hash) {
s = Status::Corruption("Paranoid checksums do not match");
}
}
delete iter;
if (!s.ok()) {
output_status = s;
break;
}
}
};
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(verify_table,
std::ref(compact_->sub_compact_states[i].status));
}
verify_table(compact_->sub_compact_states[0].status);
for (auto& thread : thread_pool) {
thread.join();
}
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
break;
}
}
}
TablePropertiesCollection tp;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.outputs) {
auto fn =
TableFileName(state.compaction->immutable_cf_options()->cf_paths,
output.meta.fd.GetNumber(), output.meta.fd.GetPathId());
tp[fn] = output.table_properties;
}
}
compact_->compaction->SetOutputTableProperties(std::move(tp));
// Finish up all book-keeping to unify the subcompaction results
AggregateStatistics();
UpdateCompactionStats();
RecordCompactionIOStats();
LogFlush(db_options_.info_log);
TEST_SYNC_POINT("CompactionJob::Run():End");
compact_->status = status;
return status;
}
Status CompactionJob::Install(const MutableCFOptions& mutable_cf_options) {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_INSTALL);
db_mutex_->AssertHeld();
Status status = compact_->status;
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
cfd->internal_stats()->AddCompactionStats(
compact_->compaction->output_level(), thread_pri_, compaction_stats_);
if (status.ok()) {
status = InstallCompactionResults(mutable_cf_options);
}
if (!versions_->io_status().ok()) {
io_status_ = versions_->io_status();
}
VersionStorageInfo::LevelSummaryStorage tmp;
auto vstorage = cfd->current()->storage_info();
const auto& stats = compaction_stats_;
double read_write_amp = 0.0;
double write_amp = 0.0;
double bytes_read_per_sec = 0;
double bytes_written_per_sec = 0;
if (stats.bytes_read_non_output_levels > 0) {
read_write_amp = (stats.bytes_written + stats.bytes_read_output_level +
stats.bytes_read_non_output_levels) /
static_cast<double>(stats.bytes_read_non_output_levels);
write_amp = stats.bytes_written /
static_cast<double>(stats.bytes_read_non_output_levels);
}
if (stats.micros > 0) {
bytes_read_per_sec =
(stats.bytes_read_non_output_levels + stats.bytes_read_output_level) /
static_cast<double>(stats.micros);
bytes_written_per_sec =
stats.bytes_written / static_cast<double>(stats.micros);
}
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] compacted to: %s, MB/sec: %.1f rd, %.1f wr, level %d, "
"files in(%d, %d) out(%d) "
"MB in(%.1f, %.1f) out(%.1f), read-write-amplify(%.1f) "
"write-amplify(%.1f) %s, records in: %" PRIu64
", records dropped: %" PRIu64 " output_compression: %s\n",
cfd->GetName().c_str(), vstorage->LevelSummary(&tmp), bytes_read_per_sec,
bytes_written_per_sec, compact_->compaction->output_level(),
stats.num_input_files_in_non_output_levels,
stats.num_input_files_in_output_level, stats.num_output_files,
stats.bytes_read_non_output_levels / 1048576.0,
stats.bytes_read_output_level / 1048576.0,
stats.bytes_written / 1048576.0, read_write_amp, write_amp,
status.ToString().c_str(), stats.num_input_records,
stats.num_dropped_records,
CompressionTypeToString(compact_->compaction->output_compression())
.c_str());
UpdateCompactionJobStats(stats);
auto stream = event_logger_->LogToBuffer(log_buffer_);
stream << "job" << job_id_ << "event"
<< "compaction_finished"
<< "compaction_time_micros" << stats.micros
<< "compaction_time_cpu_micros" << stats.cpu_micros << "output_level"
<< compact_->compaction->output_level() << "num_output_files"
<< compact_->NumOutputFiles() << "total_output_size"
<< compact_->total_bytes << "num_input_records"
<< stats.num_input_records << "num_output_records"
<< compact_->num_output_records << "num_subcompactions"
<< compact_->sub_compact_states.size() << "output_compression"
<< CompressionTypeToString(compact_->compaction->output_compression());
if (compaction_job_stats_ != nullptr) {
stream << "num_single_delete_mismatches"
<< compaction_job_stats_->num_single_del_mismatch;
stream << "num_single_delete_fallthrough"
<< compaction_job_stats_->num_single_del_fallthru;
}
if (measure_io_stats_ && compaction_job_stats_ != nullptr) {
stream << "file_write_nanos" << compaction_job_stats_->file_write_nanos;
stream << "file_range_sync_nanos"
<< compaction_job_stats_->file_range_sync_nanos;
stream << "file_fsync_nanos" << compaction_job_stats_->file_fsync_nanos;
stream << "file_prepare_write_nanos"
<< compaction_job_stats_->file_prepare_write_nanos;
}
stream << "lsm_state";
stream.StartArray();
for (int level = 0; level < vstorage->num_levels(); ++level) {
stream << vstorage->NumLevelFiles(level);
}
stream.EndArray();
CleanupCompaction();
return status;
}
void CompactionJob::ProcessKeyValueCompaction(SubcompactionState* sub_compact) {
assert(sub_compact != nullptr);
uint64_t prev_cpu_micros = env_->NowCPUNanos() / 1000;
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
// Create compaction filter and fail the compaction if
// IgnoreSnapshots() = false because it is not supported anymore
const CompactionFilter* compaction_filter =
cfd->ioptions()->compaction_filter;
std::unique_ptr<CompactionFilter> compaction_filter_from_factory = nullptr;
if (compaction_filter == nullptr) {
compaction_filter_from_factory =
sub_compact->compaction->CreateCompactionFilter();
compaction_filter = compaction_filter_from_factory.get();
}
if (compaction_filter != nullptr && !compaction_filter->IgnoreSnapshots()) {
sub_compact->status = Status::NotSupported(
"CompactionFilter::IgnoreSnapshots() = false is not supported "
"anymore.");
return;
}
CompactionRangeDelAggregator range_del_agg(&cfd->internal_comparator(),
existing_snapshots_);
ReadOptions read_options;
read_options.verify_checksums = true;
read_options.fill_cache = false;
// Compaction iterators shouldn't be confined to a single prefix.
// Compactions use Seek() for
// (a) concurrent compactions,
// (b) CompactionFilter::Decision::kRemoveAndSkipUntil.
read_options.total_order_seek = true;
// Although the v2 aggregator is what the level iterator(s) know about,
// the AddTombstones calls will be propagated down to the v1 aggregator.
std::unique_ptr<InternalIterator> input(
versions_->MakeInputIterator(read_options, sub_compact->compaction,
&range_del_agg, file_options_for_read_));
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PROCESS_KV);
// I/O measurement variables
PerfLevel prev_perf_level = PerfLevel::kEnableTime;
const uint64_t kRecordStatsEvery = 1000;
uint64_t prev_write_nanos = 0;
uint64_t prev_fsync_nanos = 0;
uint64_t prev_range_sync_nanos = 0;
uint64_t prev_prepare_write_nanos = 0;
uint64_t prev_cpu_write_nanos = 0;
uint64_t prev_cpu_read_nanos = 0;
if (measure_io_stats_) {
prev_perf_level = GetPerfLevel();
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
prev_write_nanos = IOSTATS(write_nanos);
prev_fsync_nanos = IOSTATS(fsync_nanos);
prev_range_sync_nanos = IOSTATS(range_sync_nanos);
prev_prepare_write_nanos = IOSTATS(prepare_write_nanos);
prev_cpu_write_nanos = IOSTATS(cpu_write_nanos);
prev_cpu_read_nanos = IOSTATS(cpu_read_nanos);
}
MergeHelper merge(
env_, cfd->user_comparator(), cfd->ioptions()->merge_operator,
compaction_filter, db_options_.info_log.get(),
false /* internal key corruption is expected */,
existing_snapshots_.empty() ? 0 : existing_snapshots_.back(),
snapshot_checker_, compact_->compaction->level(),
db_options_.statistics.get());
TEST_SYNC_POINT("CompactionJob::Run():Inprogress");
TEST_SYNC_POINT_CALLBACK(
"CompactionJob::Run():PausingManualCompaction:1",
reinterpret_cast<void*>(
const_cast<std::atomic<int>*>(manual_compaction_paused_)));
Slice* start = sub_compact->start;
Slice* end = sub_compact->end;
if (start != nullptr) {
IterKey start_iter;
start_iter.SetInternalKey(*start, kMaxSequenceNumber, kValueTypeForSeek);
input->Seek(start_iter.GetInternalKey());
} else {
input->SeekToFirst();
}
Status status;
sub_compact->c_iter.reset(new CompactionIterator(
input.get(), cfd->user_comparator(), &merge, versions_->LastSequence(),
&existing_snapshots_, earliest_write_conflict_snapshot_,
snapshot_checker_, env_, ShouldReportDetailedTime(env_, stats_),
/*expect_valid_internal_key=*/true, &range_del_agg,
/* blob_file_builder */ nullptr, sub_compact->compaction,
compaction_filter, shutting_down_, preserve_deletes_seqnum_,
manual_compaction_paused_, db_options_.info_log));
auto c_iter = sub_compact->c_iter.get();
c_iter->SeekToFirst();
if (c_iter->Valid() && sub_compact->compaction->output_level() != 0) {
// ShouldStopBefore() maintains state based on keys processed so far. The
// compaction loop always calls it on the "next" key, thus won't tell it the
// first key. So we do that here.
sub_compact->ShouldStopBefore(c_iter->key(),
sub_compact->current_output_file_size);
}
const auto& c_iter_stats = c_iter->iter_stats();
std::unique_ptr<SstPartitioner> partitioner =
sub_compact->compaction->output_level() == 0
? nullptr
: sub_compact->compaction->CreateSstPartitioner();
std::string last_key_for_partitioner;
while (status.ok() && !cfd->IsDropped() && c_iter->Valid()) {
// Invariant: c_iter.status() is guaranteed to be OK if c_iter->Valid()
// returns true.
const Slice& key = c_iter->key();
const Slice& value = c_iter->value();
// If an end key (exclusive) is specified, check if the current key is
// >= than it and exit if it is because the iterator is out of its range
if (end != nullptr &&
cfd->user_comparator()->Compare(c_iter->user_key(), *end) >= 0) {
break;
}
if (c_iter_stats.num_input_records % kRecordStatsEvery ==
kRecordStatsEvery - 1) {
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
c_iter->ResetRecordCounts();
RecordCompactionIOStats();
}
// Open output file if necessary
if (sub_compact->builder == nullptr) {
status = OpenCompactionOutputFile(sub_compact);
if (!status.ok()) {
break;
}
}
sub_compact->AddToBuilder(key, value, paranoid_file_checks_);
sub_compact->current_output_file_size =
sub_compact->builder->EstimatedFileSize();
const ParsedInternalKey& ikey = c_iter->ikey();
sub_compact->current_output()->meta.UpdateBoundaries(
key, value, ikey.sequence, ikey.type);
sub_compact->num_output_records++;
// Close output file if it is big enough. Two possibilities determine it's
// time to close it: (1) the current key should be this file's last key, (2)
// the next key should not be in this file.
//
// TODO(aekmekji): determine if file should be closed earlier than this
// during subcompactions (i.e. if output size, estimated by input size, is
// going to be 1.2MB and max_output_file_size = 1MB, prefer to have 0.6MB
// and 0.6MB instead of 1MB and 0.2MB)
bool output_file_ended = false;
if (sub_compact->compaction->output_level() != 0 &&
sub_compact->current_output_file_size >=
sub_compact->compaction->max_output_file_size()) {
// (1) this key terminates the file. For historical reasons, the iterator
// status before advancing will be given to FinishCompactionOutputFile().
output_file_ended = true;
}
TEST_SYNC_POINT_CALLBACK(
"CompactionJob::Run():PausingManualCompaction:2",
reinterpret_cast<void*>(
const_cast<std::atomic<int>*>(manual_compaction_paused_)));
if (partitioner.get()) {
last_key_for_partitioner.assign(c_iter->user_key().data_,
c_iter->user_key().size_);
}
c_iter->Next();
if (c_iter->status().IsManualCompactionPaused()) {
break;
}
if (!output_file_ended && c_iter->Valid()) {
if (((partitioner.get() &&
partitioner->ShouldPartition(PartitionerRequest(
last_key_for_partitioner, c_iter->user_key(),
sub_compact->current_output_file_size)) == kRequired) ||
(sub_compact->compaction->output_level() != 0 &&
sub_compact->ShouldStopBefore(
c_iter->key(), sub_compact->current_output_file_size))) &&
sub_compact->builder != nullptr) {
// (2) this key belongs to the next file. For historical reasons, the
// iterator status after advancing will be given to
// FinishCompactionOutputFile().
output_file_ended = true;
}
}
if (output_file_ended) {
const Slice* next_key = nullptr;
if (c_iter->Valid()) {
next_key = &c_iter->key();
}
CompactionIterationStats range_del_out_stats;
status = FinishCompactionOutputFile(input->status(), sub_compact,
&range_del_agg, &range_del_out_stats,
next_key);
RecordDroppedKeys(range_del_out_stats,
&sub_compact->compaction_job_stats);
}
}
sub_compact->compaction_job_stats.num_input_deletion_records =
c_iter_stats.num_input_deletion_records;
sub_compact->compaction_job_stats.num_corrupt_keys =
c_iter_stats.num_input_corrupt_records;
sub_compact->compaction_job_stats.num_single_del_fallthru =
c_iter_stats.num_single_del_fallthru;
sub_compact->compaction_job_stats.num_single_del_mismatch =
c_iter_stats.num_single_del_mismatch;
sub_compact->compaction_job_stats.total_input_raw_key_bytes +=
c_iter_stats.total_input_raw_key_bytes;
sub_compact->compaction_job_stats.total_input_raw_value_bytes +=
c_iter_stats.total_input_raw_value_bytes;
RecordTick(stats_, FILTER_OPERATION_TOTAL_TIME,
c_iter_stats.total_filter_time);
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
RecordCompactionIOStats();
if (status.ok() && cfd->IsDropped()) {
status =
Status::ColumnFamilyDropped("Column family dropped during compaction");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
shutting_down_->load(std::memory_order_relaxed)) {
status = Status::ShutdownInProgress("Database shutdown");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
(manual_compaction_paused_ &&
manual_compaction_paused_->load(std::memory_order_relaxed) > 0)) {
status = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
}
if (status.ok()) {
status = input->status();
}
if (status.ok()) {
status = c_iter->status();
}
if (status.ok() && sub_compact->builder == nullptr &&
sub_compact->outputs.size() == 0 && !range_del_agg.IsEmpty()) {
// handle subcompaction containing only range deletions
status = OpenCompactionOutputFile(sub_compact);
}
// Call FinishCompactionOutputFile() even if status is not ok: it needs to
// close the output file.
if (sub_compact->builder != nullptr) {
CompactionIterationStats range_del_out_stats;
Status s = FinishCompactionOutputFile(status, sub_compact, &range_del_agg,
&range_del_out_stats);
if (!s.ok() && status.ok()) {
status = s;
}
RecordDroppedKeys(range_del_out_stats, &sub_compact->compaction_job_stats);
}
sub_compact->compaction_job_stats.cpu_micros =
env_->NowCPUNanos() / 1000 - prev_cpu_micros;
if (measure_io_stats_) {
sub_compact->compaction_job_stats.file_write_nanos +=
IOSTATS(write_nanos) - prev_write_nanos;
sub_compact->compaction_job_stats.file_fsync_nanos +=
IOSTATS(fsync_nanos) - prev_fsync_nanos;
sub_compact->compaction_job_stats.file_range_sync_nanos +=
IOSTATS(range_sync_nanos) - prev_range_sync_nanos;
sub_compact->compaction_job_stats.file_prepare_write_nanos +=
IOSTATS(prepare_write_nanos) - prev_prepare_write_nanos;
sub_compact->compaction_job_stats.cpu_micros -=
(IOSTATS(cpu_write_nanos) - prev_cpu_write_nanos +
IOSTATS(cpu_read_nanos) - prev_cpu_read_nanos) /
1000;
if (prev_perf_level != PerfLevel::kEnableTimeAndCPUTimeExceptForMutex) {
SetPerfLevel(prev_perf_level);
}
}
#ifdef ROCKSDB_ASSERT_STATUS_CHECKED
if (!status.ok()) {
if (sub_compact->c_iter) {
sub_compact->c_iter->status().PermitUncheckedError();
}
if (input) {
input->status().PermitUncheckedError();
}
}
#endif // ROCKSDB_ASSERT_STATUS_CHECKED
sub_compact->c_iter.reset();
input.reset();
sub_compact->status = status;
}
void CompactionJob::RecordDroppedKeys(
const CompactionIterationStats& c_iter_stats,
CompactionJobStats* compaction_job_stats) {
if (c_iter_stats.num_record_drop_user > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_USER,
c_iter_stats.num_record_drop_user);
}
if (c_iter_stats.num_record_drop_hidden > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_NEWER_ENTRY,
c_iter_stats.num_record_drop_hidden);
if (compaction_job_stats) {
compaction_job_stats->num_records_replaced +=
c_iter_stats.num_record_drop_hidden;
}
}
if (c_iter_stats.num_record_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_OBSOLETE,
c_iter_stats.num_record_drop_obsolete);
if (compaction_job_stats) {
compaction_job_stats->num_expired_deletion_records +=
c_iter_stats.num_record_drop_obsolete;
}
}
if (c_iter_stats.num_record_drop_range_del > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_RANGE_DEL,
c_iter_stats.num_record_drop_range_del);
}
if (c_iter_stats.num_range_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_RANGE_DEL_DROP_OBSOLETE,
c_iter_stats.num_range_del_drop_obsolete);
}
if (c_iter_stats.num_optimized_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE,
c_iter_stats.num_optimized_del_drop_obsolete);
}
}
Status CompactionJob::FinishCompactionOutputFile(
const Status& input_status, SubcompactionState* sub_compact,
CompactionRangeDelAggregator* range_del_agg,
CompactionIterationStats* range_del_out_stats,
const Slice* next_table_min_key /* = nullptr */) {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_SYNC_FILE);
assert(sub_compact != nullptr);
assert(sub_compact->outfile);
assert(sub_compact->builder != nullptr);
assert(sub_compact->current_output() != nullptr);
uint64_t output_number = sub_compact->current_output()->meta.fd.GetNumber();
assert(output_number != 0);
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
const Comparator* ucmp = cfd->user_comparator();
std::string file_checksum = kUnknownFileChecksum;
std::string file_checksum_func_name = kUnknownFileChecksumFuncName;
// Check for iterator errors
Status s = input_status;
auto meta = &sub_compact->current_output()->meta;
assert(meta != nullptr);
if (s.ok()) {
Slice lower_bound_guard, upper_bound_guard;
std::string smallest_user_key;
const Slice *lower_bound, *upper_bound;
bool lower_bound_from_sub_compact = false;
if (sub_compact->outputs.size() == 1) {
// For the first output table, include range tombstones before the min key
// but after the subcompaction boundary.
lower_bound = sub_compact->start;
lower_bound_from_sub_compact = true;
} else if (meta->smallest.size() > 0) {
// For subsequent output tables, only include range tombstones from min
// key onwards since the previous file was extended to contain range
// tombstones falling before min key.
smallest_user_key = meta->smallest.user_key().ToString(false /*hex*/);
lower_bound_guard = Slice(smallest_user_key);
lower_bound = &lower_bound_guard;
} else {
lower_bound = nullptr;
}
if (next_table_min_key != nullptr) {
// This may be the last file in the subcompaction in some cases, so we
// need to compare the end key of subcompaction with the next file start
// key. When the end key is chosen by the subcompaction, we know that
// it must be the biggest key in output file. Therefore, it is safe to
// use the smaller key as the upper bound of the output file, to ensure
// that there is no overlapping between different output files.
upper_bound_guard = ExtractUserKey(*next_table_min_key);
if (sub_compact->end != nullptr &&
ucmp->Compare(upper_bound_guard, *sub_compact->end) >= 0) {
upper_bound = sub_compact->end;
} else {
upper_bound = &upper_bound_guard;
}
} else {
// This is the last file in the subcompaction, so extend until the
// subcompaction ends.
upper_bound = sub_compact->end;
}
auto earliest_snapshot = kMaxSequenceNumber;
if (existing_snapshots_.size() > 0) {
earliest_snapshot = existing_snapshots_[0];
}
bool has_overlapping_endpoints;
if (upper_bound != nullptr && meta->largest.size() > 0) {
has_overlapping_endpoints =
ucmp->Compare(meta->largest.user_key(), *upper_bound) == 0;
} else {
has_overlapping_endpoints = false;
}
// The end key of the subcompaction must be bigger or equal to the upper
// bound. If the end of subcompaction is null or the upper bound is null,
// it means that this file is the last file in the compaction. So there
// will be no overlapping between this file and others.
assert(sub_compact->end == nullptr ||
upper_bound == nullptr ||
ucmp->Compare(*upper_bound , *sub_compact->end) <= 0);
auto it = range_del_agg->NewIterator(lower_bound, upper_bound,
has_overlapping_endpoints);
// Position the range tombstone output iterator. There may be tombstone
// fragments that are entirely out of range, so make sure that we do not
// include those.
if (lower_bound != nullptr) {
it->Seek(*lower_bound);
} else {
it->SeekToFirst();
}
TEST_SYNC_POINT("CompactionJob::FinishCompactionOutputFile1");
for (; it->Valid(); it->Next()) {
auto tombstone = it->Tombstone();
if (upper_bound != nullptr) {
int cmp = ucmp->Compare(*upper_bound, tombstone.start_key_);
if ((has_overlapping_endpoints && cmp < 0) ||
(!has_overlapping_endpoints && cmp <= 0)) {
// Tombstones starting after upper_bound only need to be included in
// the next table. If the current SST ends before upper_bound, i.e.,
// `has_overlapping_endpoints == false`, we can also skip over range
// tombstones that start exactly at upper_bound. Such range tombstones
// will be included in the next file and are not relevant to the point
// keys or endpoints of the current file.
break;
}
}
if (bottommost_level_ && tombstone.seq_ <= earliest_snapshot) {
// TODO(andrewkr): tombstones that span multiple output files are
// counted for each compaction output file, so lots of double counting.
range_del_out_stats->num_range_del_drop_obsolete++;
range_del_out_stats->num_record_drop_obsolete++;
continue;
}
auto kv = tombstone.Serialize();
assert(lower_bound == nullptr ||
ucmp->Compare(*lower_bound, kv.second) < 0);
sub_compact->AddToBuilder(kv.first.Encode(), kv.second,
paranoid_file_checks_);
InternalKey smallest_candidate = std::move(kv.first);
if (lower_bound != nullptr &&
ucmp->Compare(smallest_candidate.user_key(), *lower_bound) <= 0) {
// Pretend the smallest key has the same user key as lower_bound
// (the max key in the previous table or subcompaction) in order for
// files to appear key-space partitioned.
//
// When lower_bound is chosen by a subcompaction, we know that
// subcompactions over smaller keys cannot contain any keys at
// lower_bound. We also know that smaller subcompactions exist, because
// otherwise the subcompaction woud be unbounded on the left. As a
// result, we know that no other files on the output level will contain
// actual keys at lower_bound (an output file may have a largest key of
// lower_bound@kMaxSequenceNumber, but this only indicates a large range
// tombstone was truncated). Therefore, it is safe to use the
// tombstone's sequence number, to ensure that keys at lower_bound at
// lower levels are covered by truncated tombstones.
//
// If lower_bound was chosen by the smallest data key in the file,
// choose lowest seqnum so this file's smallest internal key comes after
// the previous file's largest. The fake seqnum is OK because the read
// path's file-picking code only considers user key.
smallest_candidate = InternalKey(
*lower_bound, lower_bound_from_sub_compact ? tombstone.seq_ : 0,
kTypeRangeDeletion);
}
InternalKey largest_candidate = tombstone.SerializeEndKey();
if (upper_bound != nullptr &&
ucmp->Compare(*upper_bound, largest_candidate.user_key()) <= 0) {
// Pretend the largest key has the same user key as upper_bound (the
// min key in the following table or subcompaction) in order for files
// to appear key-space partitioned.
//
// Choose highest seqnum so this file's largest internal key comes
// before the next file's/subcompaction's smallest. The fake seqnum is
// OK because the read path's file-picking code only considers the user
// key portion.
//
// Note Seek() also creates InternalKey with (user_key,
// kMaxSequenceNumber), but with kTypeDeletion (0x7) instead of
// kTypeRangeDeletion (0xF), so the range tombstone comes before the
// Seek() key in InternalKey's ordering. So Seek() will look in the
// next file for the user key.
largest_candidate =
InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion);
}
#ifndef NDEBUG
SequenceNumber smallest_ikey_seqnum = kMaxSequenceNumber;
if (meta->smallest.size() > 0) {
smallest_ikey_seqnum = GetInternalKeySeqno(meta->smallest.Encode());
}
#endif
meta->UpdateBoundariesForRange(smallest_candidate, largest_candidate,
tombstone.seq_,
cfd->internal_comparator());
// The smallest key in a file is used for range tombstone truncation, so
// it cannot have a seqnum of 0 (unless the smallest data key in a file
// has a seqnum of 0). Otherwise, the truncated tombstone may expose
// deleted keys at lower levels.
assert(smallest_ikey_seqnum == 0 ||
ExtractInternalKeyFooter(meta->smallest.Encode()) !=
PackSequenceAndType(0, kTypeRangeDeletion));
}
meta->marked_for_compaction = sub_compact->builder->NeedCompact();
}
const uint64_t current_entries = sub_compact->builder->NumEntries();
if (s.ok()) {
s = sub_compact->builder->Finish();
} else {
sub_compact->builder->Abandon();
}
IOStatus io_s = sub_compact->builder->io_status();
if (s.ok()) {
s = io_s;
}
const uint64_t current_bytes = sub_compact->builder->FileSize();
if (s.ok()) {
meta->fd.file_size = current_bytes;
}
sub_compact->current_output()->finished = true;
sub_compact->total_bytes += current_bytes;
// Finish and check for file errors
if (s.ok()) {
StopWatch sw(env_, stats_, COMPACTION_OUTFILE_SYNC_MICROS);
io_s = sub_compact->outfile->Sync(db_options_.use_fsync);
}
if (s.ok() && io_s.ok()) {
io_s = sub_compact->outfile->Close();
}
if (s.ok() && io_s.ok()) {
// Add the checksum information to file metadata.
meta->file_checksum = sub_compact->outfile->GetFileChecksum();
meta->file_checksum_func_name =
sub_compact->outfile->GetFileChecksumFuncName();
file_checksum = meta->file_checksum;
file_checksum_func_name = meta->file_checksum_func_name;
}
if (s.ok()) {
s = io_s;
}
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the
// "normal" status, it does not also need to be checked
sub_compact->io_status.PermitUncheckedError();
}
sub_compact->outfile.reset();
TableProperties tp;
if (s.ok()) {
tp = sub_compact->builder->GetTableProperties();
}
if (s.ok() && current_entries == 0 && tp.num_range_deletions == 0) {
// If there is nothing to output, no necessary to generate a sst file.
// This happens when the output level is bottom level, at the same time
// the sub_compact output nothing.
std::string fname =
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
meta->fd.GetNumber(), meta->fd.GetPathId());
env_->DeleteFile(fname);
// Also need to remove the file from outputs, or it will be added to the
// VersionEdit.
assert(!sub_compact->outputs.empty());
sub_compact->outputs.pop_back();
meta = nullptr;
}
if (s.ok() && (current_entries > 0 || tp.num_range_deletions > 0)) {
// Output to event logger and fire events.
sub_compact->current_output()->table_properties =
std::make_shared<TableProperties>(tp);
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Generated table #%" PRIu64 ": %" PRIu64
" keys, %" PRIu64 " bytes%s",
cfd->GetName().c_str(), job_id_, output_number,
current_entries, current_bytes,
meta->marked_for_compaction ? " (need compaction)" : "");
}
std::string fname;
FileDescriptor output_fd;
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber;
if (meta != nullptr) {
fname =
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
meta->fd.GetNumber(), meta->fd.GetPathId());
output_fd = meta->fd;
oldest_blob_file_number = meta->oldest_blob_file_number;
} else {
fname = "(nil)";
}
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname,
job_id_, output_fd, oldest_blob_file_number, tp,
TableFileCreationReason::kCompaction, s, file_checksum,
file_checksum_func_name);
#ifndef ROCKSDB_LITE
// Report new file to SstFileManagerImpl
auto sfm =
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
if (sfm && meta != nullptr && meta->fd.GetPathId() == 0) {
Status add_s = sfm->OnAddFile(fname);
if (!add_s.ok() && s.ok()) {
s = add_s;
}
if (sfm->IsMaxAllowedSpaceReached()) {
// TODO(ajkr): should we return OK() if max space was reached by the final
// compaction output file (similarly to how flush works when full)?
s = Status::SpaceLimit("Max allowed space was reached");
TEST_SYNC_POINT(
"CompactionJob::FinishCompactionOutputFile:"
"MaxAllowedSpaceReached");
InstrumentedMutexLock l(db_mutex_);
db_error_handler_->SetBGError(s, BackgroundErrorReason::kCompaction);
}
}
#endif
sub_compact->builder.reset();
sub_compact->current_output_file_size = 0;
return s;
}
Status CompactionJob::InstallCompactionResults(
const MutableCFOptions& mutable_cf_options) {
db_mutex_->AssertHeld();
auto* compaction = compact_->compaction;
// paranoia: verify that the files that we started with
// still exist in the current version and in the same original level.
// This ensures that a concurrent compaction did not erroneously
// pick the same files to compact_.
if (!versions_->VerifyCompactionFileConsistency(compaction)) {
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_ERROR(db_options_.info_log, "[%s] [JOB %d] Compaction %s aborted",
compaction->column_family_data()->GetName().c_str(),
job_id_, compaction->InputLevelSummary(&inputs_summary));
return Status::Corruption("Compaction input files inconsistent");
}
{
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_INFO(
db_options_.info_log, "[%s] [JOB %d] Compacted %s => %" PRIu64 " bytes",
compaction->column_family_data()->GetName().c_str(), job_id_,
compaction->InputLevelSummary(&inputs_summary), compact_->total_bytes);
}
// Add compaction inputs
compaction->AddInputDeletions(compact_->compaction->edit());
for (const auto& sub_compact : compact_->sub_compact_states) {
for (const auto& out : sub_compact.outputs) {
compaction->edit()->AddFile(compaction->output_level(), out.meta);
}
}
return versions_->LogAndApply(compaction->column_family_data(),
mutable_cf_options, compaction->edit(),
db_mutex_, db_directory_);
}
void CompactionJob::RecordCompactionIOStats() {
RecordTick(stats_, COMPACT_READ_BYTES, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES, IOSTATS(bytes_written));
CompactionReason compaction_reason =
compact_->compaction->compaction_reason();
if (compaction_reason == CompactionReason::kFilesMarkedForCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_MARKED, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_MARKED, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kPeriodicCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_PERIODIC, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_PERIODIC, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kTtl) {
RecordTick(stats_, COMPACT_READ_BYTES_TTL, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_TTL, IOSTATS(bytes_written));
}
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, IOSTATS(bytes_read));
IOSTATS_RESET(bytes_read);
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, IOSTATS(bytes_written));
IOSTATS_RESET(bytes_written);
}
Status CompactionJob::OpenCompactionOutputFile(
SubcompactionState* sub_compact) {
assert(sub_compact != nullptr);
assert(sub_compact->builder == nullptr);
// no need to lock because VersionSet::next_file_number_ is atomic
uint64_t file_number = versions_->NewFileNumber();
std::string fname =
TableFileName(sub_compact->compaction->immutable_cf_options()->cf_paths,
file_number, sub_compact->compaction->output_path_id());
// Fire events.
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
#ifndef ROCKSDB_LITE
EventHelpers::NotifyTableFileCreationStarted(
cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname, job_id_,
TableFileCreationReason::kCompaction);
#endif // !ROCKSDB_LITE
// Make the output file
std::unique_ptr<FSWritableFile> writable_file;
#ifndef NDEBUG
bool syncpoint_arg = file_options_.use_direct_writes;
TEST_SYNC_POINT_CALLBACK("CompactionJob::OpenCompactionOutputFile",
&syncpoint_arg);
#endif
Status s;
IOStatus io_s =
NewWritableFile(fs_.get(), fname, &writable_file, file_options_);
s = io_s;
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the io_s that is checked below as s,
// it does not also need to be checked.
sub_compact->io_status.PermitUncheckedError();
}
if (!s.ok()) {
ROCKS_LOG_ERROR(
db_options_.info_log,
"[%s] [JOB %d] OpenCompactionOutputFiles for table #%" PRIu64
" fails at NewWritableFile with status %s",
sub_compact->compaction->column_family_data()->GetName().c_str(),
job_id_, file_number, s.ToString().c_str());
LogFlush(db_options_.info_log);
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(),
fname, job_id_, FileDescriptor(), kInvalidBlobFileNumber,
TableProperties(), TableFileCreationReason::kCompaction, s,
kUnknownFileChecksum, kUnknownFileChecksumFuncName);
return s;
}
// Try to figure out the output file's oldest ancester time.
int64_t temp_current_time = 0;
auto get_time_status = env_->GetCurrentTime(&temp_current_time);
// Safe to proceed even if GetCurrentTime fails. So, log and proceed.
if (!get_time_status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get current time. Status: %s",
get_time_status.ToString().c_str());
}
uint64_t current_time = static_cast<uint64_t>(temp_current_time);
uint64_t oldest_ancester_time =
sub_compact->compaction->MinInputFileOldestAncesterTime();
if (oldest_ancester_time == port::kMaxUint64) {
oldest_ancester_time = current_time;
}
// Initialize a SubcompactionState::Output and add it to sub_compact->outputs
{
SubcompactionState::Output out;
out.meta.fd = FileDescriptor(file_number,
sub_compact->compaction->output_path_id(), 0);
out.meta.oldest_ancester_time = oldest_ancester_time;
out.meta.file_creation_time = current_time;
out.finished = false;
out.paranoid_hash = 0;
sub_compact->outputs.push_back(out);
}
writable_file->SetIOPriority(Env::IOPriority::IO_LOW);
writable_file->SetWriteLifeTimeHint(write_hint_);
writable_file->SetPreallocationBlockSize(static_cast<size_t>(
sub_compact->compaction->OutputFilePreallocationSize()));
const auto& listeners =
sub_compact->compaction->immutable_cf_options()->listeners;
sub_compact->outfile.reset(new WritableFileWriter(
std::move(writable_file), fname, file_options_, env_, io_tracer_,
db_options_.statistics.get(), listeners,
db_options_.file_checksum_gen_factory.get()));
// If the Column family flag is to only optimize filters for hits,
// we can skip creating filters if this is the bottommost_level where
// data is going to be found
bool skip_filters =
cfd->ioptions()->optimize_filters_for_hits && bottommost_level_;
sub_compact->builder.reset(NewTableBuilder(
*cfd->ioptions(), *(sub_compact->compaction->mutable_cf_options()),
cfd->internal_comparator(), cfd->int_tbl_prop_collector_factories(),
cfd->GetID(), cfd->GetName(), sub_compact->outfile.get(),
sub_compact->compaction->output_compression(),
0 /*sample_for_compression */,
sub_compact->compaction->output_compression_opts(),
sub_compact->compaction->output_level(), skip_filters,
oldest_ancester_time, 0 /* oldest_key_time */,
sub_compact->compaction->max_output_file_size(), current_time, db_id_,
db_session_id_));
LogFlush(db_options_.info_log);
return s;
}
void CompactionJob::CleanupCompaction() {
for (SubcompactionState& sub_compact : compact_->sub_compact_states) {
const auto& sub_status = sub_compact.status;
if (sub_compact.builder != nullptr) {
// May happen if we get a shutdown call in the middle of compaction
sub_compact.builder->Abandon();
sub_compact.builder.reset();
} else {
assert(!sub_status.ok() || sub_compact.outfile == nullptr);
}
for (const auto& out : sub_compact.outputs) {
// If this file was inserted into the table cache then remove
// them here because this compaction was not committed.
if (!sub_status.ok()) {
TableCache::Evict(table_cache_.get(), out.meta.fd.GetNumber());
}
}
// TODO: sub_compact.io_status is not checked like status. Not sure if thats
// intentional. So ignoring the io_status as of now.
sub_compact.io_status.PermitUncheckedError();
}
delete compact_;
compact_ = nullptr;
}
#ifndef ROCKSDB_LITE
namespace {
void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
assert(prefix_length > 0);
size_t length = src.size() > prefix_length ? prefix_length : src.size();
dst->assign(src.data(), length);
}
} // namespace
#endif // !ROCKSDB_LITE
void CompactionJob::UpdateCompactionStats() {
Compaction* compaction = compact_->compaction;
compaction_stats_.num_input_files_in_non_output_levels = 0;
compaction_stats_.num_input_files_in_output_level = 0;
for (int input_level = 0;
input_level < static_cast<int>(compaction->num_input_levels());
++input_level) {
if (compaction->level(input_level) != compaction->output_level()) {
UpdateCompactionInputStatsHelper(
&compaction_stats_.num_input_files_in_non_output_levels,
&compaction_stats_.bytes_read_non_output_levels, input_level);
} else {
UpdateCompactionInputStatsHelper(
&compaction_stats_.num_input_files_in_output_level,
&compaction_stats_.bytes_read_output_level, input_level);
}
}
uint64_t num_output_records = 0;
for (const auto& sub_compact : compact_->sub_compact_states) {
size_t num_output_files = sub_compact.outputs.size();
if (sub_compact.builder != nullptr) {
// An error occurred so ignore the last output.
assert(num_output_files > 0);
--num_output_files;
}
compaction_stats_.num_output_files += static_cast<int>(num_output_files);
num_output_records += sub_compact.num_output_records;
for (const auto& out : sub_compact.outputs) {
compaction_stats_.bytes_written += out.meta.fd.file_size;
}
}
if (compaction_stats_.num_input_records > num_output_records) {
compaction_stats_.num_dropped_records =
compaction_stats_.num_input_records - num_output_records;
}
}
void CompactionJob::UpdateCompactionInputStatsHelper(int* num_files,
uint64_t* bytes_read,
int input_level) {
const Compaction* compaction = compact_->compaction;
auto num_input_files = compaction->num_input_files(input_level);
*num_files += static_cast<int>(num_input_files);
for (size_t i = 0; i < num_input_files; ++i) {
const auto* file_meta = compaction->input(input_level, i);
*bytes_read += file_meta->fd.GetFileSize();
compaction_stats_.num_input_records +=
static_cast<uint64_t>(file_meta->num_entries);
}
}
void CompactionJob::UpdateCompactionJobStats(
const InternalStats::CompactionStats& stats) const {
#ifndef ROCKSDB_LITE
if (compaction_job_stats_) {
compaction_job_stats_->elapsed_micros = stats.micros;
// input information
compaction_job_stats_->total_input_bytes =
stats.bytes_read_non_output_levels + stats.bytes_read_output_level;
compaction_job_stats_->num_input_records = stats.num_input_records;
compaction_job_stats_->num_input_files =
stats.num_input_files_in_non_output_levels +
stats.num_input_files_in_output_level;
compaction_job_stats_->num_input_files_at_output_level =
stats.num_input_files_in_output_level;
// output information
compaction_job_stats_->total_output_bytes = stats.bytes_written;
compaction_job_stats_->num_output_records = compact_->num_output_records;
compaction_job_stats_->num_output_files = stats.num_output_files;
if (compact_->NumOutputFiles() > 0U) {
CopyPrefix(compact_->SmallestUserKey(),
CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->smallest_output_key_prefix);
CopyPrefix(compact_->LargestUserKey(),
CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->largest_output_key_prefix);
}
}
#else
(void)stats;
#endif // !ROCKSDB_LITE
}
void CompactionJob::LogCompaction() {
Compaction* compaction = compact_->compaction;
ColumnFamilyData* cfd = compaction->column_family_data();
// Let's check if anything will get logged. Don't prepare all the info if
// we're not logging
if (db_options_.info_log_level <= InfoLogLevel::INFO_LEVEL) {
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_INFO(
db_options_.info_log, "[%s] [JOB %d] Compacting %s, score %.2f",
cfd->GetName().c_str(), job_id_,
compaction->InputLevelSummary(&inputs_summary), compaction->score());
char scratch[2345];
compaction->Summary(scratch, sizeof(scratch));
ROCKS_LOG_INFO(db_options_.info_log, "[%s] Compaction start summary: %s\n",
cfd->GetName().c_str(), scratch);
// build event logger report
auto stream = event_logger_->Log();
stream << "job" << job_id_ << "event"
<< "compaction_started"
<< "compaction_reason"
<< GetCompactionReasonString(compaction->compaction_reason());
for (size_t i = 0; i < compaction->num_input_levels(); ++i) {
stream << ("files_L" + ToString(compaction->level(i)));
stream.StartArray();
for (auto f : *compaction->inputs(i)) {
stream << f->fd.GetNumber();
}
stream.EndArray();
}
stream << "score" << compaction->score() << "input_data_size"
<< compaction->CalculateTotalInputSize();
}
}
} // namespace ROCKSDB_NAMESPACE