You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/dbformat.h

428 lines
14 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdio.h>
#include <string>
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/table.h"
#include "rocksdb/types.h"
#include "util/coding.h"
#include "util/logging.h"
namespace rocksdb {
class InternalKey;
// Value types encoded as the last component of internal keys.
// DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
// data structures.
// The highest bit of the value type needs to be reserved to SST tables
// for them to do more flexible encoding.
enum ValueType : unsigned char {
kTypeDeletion = 0x0,
kTypeValue = 0x1,
kTypeMerge = 0x2,
// Following types are used only in write ahead logs. They are not used in
// memtables or sst files:
kTypeLogData = 0x3,
kTypeColumnFamilyDeletion = 0x4,
kTypeColumnFamilyValue = 0x5,
kTypeColumnFamilyMerge = 0x6,
kMaxValue = 0x7F
};
// kValueTypeForSeek defines the ValueType that should be passed when
// constructing a ParsedInternalKey object for seeking to a particular
// sequence number (since we sort sequence numbers in decreasing order
// and the value type is embedded as the low 8 bits in the sequence
// number in internal keys, we need to use the highest-numbered
// ValueType, not the lowest).
static const ValueType kValueTypeForSeek = kTypeMerge;
// We leave eight bits empty at the bottom so a type and sequence#
// can be packed together into 64-bits.
static const SequenceNumber kMaxSequenceNumber =
((0x1ull << 56) - 1);
struct ParsedInternalKey {
Slice user_key;
SequenceNumber sequence;
ValueType type;
ParsedInternalKey() { } // Intentionally left uninitialized (for speed)
ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
: user_key(u), sequence(seq), type(t) { }
std::string DebugString(bool hex = false) const;
};
// Return the length of the encoding of "key".
inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
return key.user_key.size() + 8;
}
// Pack a sequence number and a ValueType into a uint64_t
extern uint64_t PackSequenceAndType(uint64_t seq, ValueType t);
// Given the result of PackSequenceAndType, store the sequence number in *seq
// and the ValueType in *t.
extern void UnPackSequenceAndType(uint64_t packed, uint64_t* seq, ValueType* t);
// Append the serialization of "key" to *result.
extern void AppendInternalKey(std::string* result,
const ParsedInternalKey& key);
// Attempt to parse an internal key from "internal_key". On success,
// stores the parsed data in "*result", and returns true.
//
// On error, returns false, leaves "*result" in an undefined state.
extern bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result);
// Returns the user key portion of an internal key.
inline Slice ExtractUserKey(const Slice& internal_key) {
assert(internal_key.size() >= 8);
return Slice(internal_key.data(), internal_key.size() - 8);
}
inline ValueType ExtractValueType(const Slice& internal_key) {
assert(internal_key.size() >= 8);
const size_t n = internal_key.size();
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff;
return static_cast<ValueType>(c);
}
// A comparator for internal keys that uses a specified comparator for
// the user key portion and breaks ties by decreasing sequence number.
class InternalKeyComparator : public Comparator {
private:
const Comparator* user_comparator_;
std::string name_;
public:
explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c),
name_("rocksdb.InternalKeyComparator:" +
std::string(user_comparator_->Name())) {
}
virtual ~InternalKeyComparator() {}
virtual const char* Name() const override;
virtual int Compare(const Slice& a, const Slice& b) const override;
virtual void FindShortestSeparator(std::string* start,
const Slice& limit) const override;
virtual void FindShortSuccessor(std::string* key) const override;
const Comparator* user_comparator() const { return user_comparator_; }
int Compare(const InternalKey& a, const InternalKey& b) const;
int Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const;
};
// Modules in this directory should keep internal keys wrapped inside
// the following class instead of plain strings so that we do not
// incorrectly use string comparisons instead of an InternalKeyComparator.
class InternalKey {
private:
std::string rep_;
public:
InternalKey() { } // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice& _user_key, SequenceNumber s, ValueType t) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, s, t));
}
// sets the internal key to be bigger or equal to all internal keys with this
// user key
void SetMaxPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, kMaxSequenceNumber,
kValueTypeForSeek));
}
// sets the internal key to be smaller or equal to all internal keys with this
// user key
void SetMinPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(
&rep_, ParsedInternalKey(_user_key, 0, static_cast<ValueType>(0)));
}
bool Valid() const {
ParsedInternalKey parsed;
return ParseInternalKey(Slice(rep_), &parsed);
}
void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Slice Encode() const {
assert(!rep_.empty());
return rep_;
}
Slice user_key() const { return ExtractUserKey(rep_); }
void SetFrom(const ParsedInternalKey& p) {
rep_.clear();
AppendInternalKey(&rep_, p);
}
void Clear() { rep_.clear(); }
std::string DebugString(bool hex = false) const;
};
inline int InternalKeyComparator::Compare(
const InternalKey& a, const InternalKey& b) const {
return Compare(a.Encode(), b.Encode());
}
inline bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result) {
const size_t n = internal_key.size();
if (n < 8) return false;
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff;
result->sequence = num >> 8;
result->type = static_cast<ValueType>(c);
assert(result->type <= ValueType::kMaxValue);
result->user_key = Slice(internal_key.data(), n - 8);
return (c <= static_cast<unsigned char>(kValueTypeForSeek));
}
// Update the sequence number in the internal key.
// Guarantees not to invalidate ikey.data().
inline void UpdateInternalKey(std::string* ikey,
uint64_t seq, ValueType t) {
size_t ikey_sz = ikey->size();
assert(ikey_sz >= 8);
uint64_t newval = (seq << 8) | t;
// Note: Since C++11, strings are guaranteed to be stored contiguously and
// string::operator[]() is guaranteed not to change ikey.data().
EncodeFixed64(&(*ikey)[ikey_sz - 8], newval);
}
// Get the sequence number from the internal key
inline uint64_t GetInternalKeySeqno(const Slice& internal_key) {
const size_t n = internal_key.size();
assert(n >= 8);
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
return num >> 8;
}
// A helper class useful for DBImpl::Get()
class LookupKey {
public:
// Initialize *this for looking up user_key at a snapshot with
// the specified sequence number.
LookupKey(const Slice& _user_key, SequenceNumber sequence);
~LookupKey();
// Return a key suitable for lookup in a MemTable.
Slice memtable_key() const {
return Slice(start_, static_cast<size_t>(end_ - start_));
}
// Return an internal key (suitable for passing to an internal iterator)
Slice internal_key() const {
return Slice(kstart_, static_cast<size_t>(end_ - kstart_));
}
// Return the user key
Slice user_key() const {
return Slice(kstart_, static_cast<size_t>(end_ - kstart_ - 8));
}
private:
// We construct a char array of the form:
// klength varint32 <-- start_
// userkey char[klength] <-- kstart_
// tag uint64
// <-- end_
// The array is a suitable MemTable key.
// The suffix starting with "userkey" can be used as an InternalKey.
const char* start_;
const char* kstart_;
const char* end_;
char space_[200]; // Avoid allocation for short keys
// No copying allowed
LookupKey(const LookupKey&);
void operator=(const LookupKey&);
};
inline LookupKey::~LookupKey() {
if (start_ != space_) delete[] start_;
}
class IterKey {
public:
IterKey() : key_(space_), buf_size_(sizeof(space_)), key_size_(0) {}
~IterKey() { ResetBuffer(); }
Slice GetKey() const { return Slice(key_, key_size_); }
size_t Size() { return key_size_; }
void Clear() { key_size_ = 0; }
// Append "non_shared_data" to its back, from "shared_len"
// This function is used in Block::Iter::ParseNextKey
// shared_len: bytes in [0, shard_len-1] would be remained
// non_shared_data: data to be append, its length must be >= non_shared_len
void TrimAppend(const size_t shared_len, const char* non_shared_data,
const size_t non_shared_len) {
assert(shared_len <= key_size_);
size_t total_size = shared_len + non_shared_len;
if (total_size <= buf_size_) {
key_size_ = total_size;
} else {
// Need to allocate space, delete previous space
char* p = new char[total_size];
memcpy(p, key_, shared_len);
if (key_ != nullptr && key_ != space_) {
delete[] key_;
}
key_ = p;
key_size_ = total_size;
buf_size_ = total_size;
}
memcpy(key_ + shared_len, non_shared_data, non_shared_len);
}
void SetKey(const Slice& key) {
size_t size = key.size();
EnlargeBufferIfNeeded(size);
memcpy(key_, key.data(), size);
key_size_ = size;
}
void SetInternalKey(const Slice& key_prefix, const Slice& user_key,
SequenceNumber s,
ValueType value_type = kValueTypeForSeek) {
size_t psize = key_prefix.size();
size_t usize = user_key.size();
EnlargeBufferIfNeeded(psize + usize + sizeof(uint64_t));
if (psize > 0) {
memcpy(key_, key_prefix.data(), psize);
}
memcpy(key_ + psize, user_key.data(), usize);
EncodeFixed64(key_ + usize + psize, PackSequenceAndType(s, value_type));
key_size_ = psize + usize + sizeof(uint64_t);
}
void SetInternalKey(const Slice& user_key, SequenceNumber s,
ValueType value_type = kValueTypeForSeek) {
SetInternalKey(Slice(), user_key, s, value_type);
}
void Reserve(size_t size) {
EnlargeBufferIfNeeded(size);
key_size_ = size;
}
void SetInternalKey(const ParsedInternalKey& parsed_key) {
SetInternalKey(Slice(), parsed_key);
}
void SetInternalKey(const Slice& key_prefix,
const ParsedInternalKey& parsed_key_suffix) {
SetInternalKey(key_prefix, parsed_key_suffix.user_key,
parsed_key_suffix.sequence, parsed_key_suffix.type);
}
void EncodeLengthPrefixedKey(const Slice& key) {
auto size = key.size();
EnlargeBufferIfNeeded(size + static_cast<size_t>(VarintLength(size)));
char* ptr = EncodeVarint32(key_, static_cast<uint32_t>(size));
memcpy(ptr, key.data(), size);
}
private:
char* key_;
size_t buf_size_;
size_t key_size_;
char space_[32]; // Avoid allocation for short keys
void ResetBuffer() {
if (key_ != nullptr && key_ != space_) {
delete[] key_;
}
key_ = space_;
buf_size_ = sizeof(space_);
key_size_ = 0;
}
// Enlarge the buffer size if needed based on key_size.
// By default, static allocated buffer is used. Once there is a key
// larger than the static allocated buffer, another buffer is dynamically
// allocated, until a larger key buffer is requested. In that case, we
// reallocate buffer and delete the old one.
void EnlargeBufferIfNeeded(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the static allocated one, as default
if (key_size > buf_size_) {
// Need to enlarge the buffer.
ResetBuffer();
key_ = new char[key_size];
buf_size_ = key_size;
}
}
// No copying allowed
IterKey(const IterKey&) = delete;
void operator=(const IterKey&) = delete;
};
class InternalKeySliceTransform : public SliceTransform {
public:
explicit InternalKeySliceTransform(const SliceTransform* transform)
: transform_(transform) {}
virtual const char* Name() const override { return transform_->Name(); }
virtual Slice Transform(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->Transform(user_key);
}
virtual bool InDomain(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->InDomain(user_key);
}
virtual bool InRange(const Slice& dst) const override {
auto user_key = ExtractUserKey(dst);
return transform_->InRange(user_key);
}
const SliceTransform* user_prefix_extractor() const { return transform_; }
private:
// Like comparator, InternalKeySliceTransform will not take care of the
// deletion of transform_
const SliceTransform* const transform_;
};
// Read record from a write batch piece from input.
// tag, column_family, key, value and blob are return values. Callers own the
// Slice they point to.
// Tag is defined as ValueType.
// input will be advanced to after the record.
extern Status ReadRecordFromWriteBatch(Slice* input, char* tag,
uint32_t* column_family, Slice* key,
Slice* value, Slice* blob);
} // namespace rocksdb