You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/util/env_test.cc

879 lines
27 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <sys/types.h>
#include <iostream>
#include <unordered_set>
#include <atomic>
#ifdef OS_LINUX
#include <sys/stat.h>
#include <unistd.h>
#endif
#ifdef ROCKSDB_FALLOCATE_PRESENT
#include <errno.h>
#include <fcntl.h>
#endif
#include "rocksdb/env.h"
#include "port/port.h"
#include "util/coding.h"
#include "util/log_buffer.h"
#include "util/mutexlock.h"
#include "util/testharness.h"
namespace rocksdb {
static const int kDelayMicros = 100000;
class EnvPosixTest {
private:
port::Mutex mu_;
std::string events_;
public:
Env* env_;
EnvPosixTest() : env_(Env::Default()) { }
};
static void SetBool(void* ptr) {
reinterpret_cast<std::atomic<bool>*>(ptr)
->store(true, std::memory_order_relaxed);
}
TEST(EnvPosixTest, RunImmediately) {
std::atomic<bool> called(false);
env_->Schedule(&SetBool, &called);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(called.load(std::memory_order_relaxed));
}
TEST(EnvPosixTest, RunMany) {
std::atomic<int> last_id(0);
struct CB {
std::atomic<int>* last_id_ptr; // Pointer to shared slot
int id; // Order# for the execution of this callback
CB(std::atomic<int>* p, int i) : last_id_ptr(p), id(i) {}
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
int cur = cb->last_id_ptr->load(std::memory_order_relaxed);
ASSERT_EQ(cb->id - 1, cur);
cb->last_id_ptr->store(cb->id, std::memory_order_release);
}
};
// Schedule in different order than start time
CB cb1(&last_id, 1);
CB cb2(&last_id, 2);
CB cb3(&last_id, 3);
CB cb4(&last_id, 4);
env_->Schedule(&CB::Run, &cb1);
env_->Schedule(&CB::Run, &cb2);
env_->Schedule(&CB::Run, &cb3);
env_->Schedule(&CB::Run, &cb4);
Env::Default()->SleepForMicroseconds(kDelayMicros);
int cur = last_id.load(std::memory_order_acquire);
ASSERT_EQ(4, cur);
}
struct State {
port::Mutex mu;
int val;
int num_running;
};
static void ThreadBody(void* arg) {
State* s = reinterpret_cast<State*>(arg);
s->mu.Lock();
s->val += 1;
s->num_running -= 1;
s->mu.Unlock();
}
TEST(EnvPosixTest, StartThread) {
State state;
state.val = 0;
state.num_running = 3;
for (int i = 0; i < 3; i++) {
env_->StartThread(&ThreadBody, &state);
}
while (true) {
state.mu.Lock();
int num = state.num_running;
state.mu.Unlock();
if (num == 0) {
break;
}
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(state.val, 3);
}
TEST(EnvPosixTest, TwoPools) {
class CB {
public:
CB(const std::string& pool_name, int pool_size)
: mu_(),
num_running_(0),
num_finished_(0),
pool_size_(pool_size),
pool_name_(pool_name) { }
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
cb->Run();
}
void Run() {
{
MutexLock l(&mu_);
num_running_++;
// make sure we don't have more than pool_size_ jobs running.
ASSERT_LE(num_running_, pool_size_.load());
}
// sleep for 1 sec
Env::Default()->SleepForMicroseconds(1000000);
{
MutexLock l(&mu_);
num_running_--;
num_finished_++;
}
}
int NumFinished() {
MutexLock l(&mu_);
return num_finished_;
}
void Reset(int pool_size) {
pool_size_.store(pool_size);
num_finished_ = 0;
}
private:
port::Mutex mu_;
int num_running_;
int num_finished_;
std::atomic<int> pool_size_;
std::string pool_name_;
};
const int kLowPoolSize = 2;
const int kHighPoolSize = 4;
const int kJobs = 8;
CB low_pool_job("low", kLowPoolSize);
CB high_pool_job("high", kHighPoolSize);
env_->SetBackgroundThreads(kLowPoolSize);
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// call IncBackgroundThreadsIfNeeded to two pools. One increasing and
// the other decreasing
env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW);
env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH);
high_pool_job.Reset(kHighPoolSize + 1);
low_pool_job.Reset(kLowPoolSize);
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
}
TEST(EnvPosixTest, DecreaseNumBgThreads) {
class SleepingBackgroundTask {
public:
explicit SleepingBackgroundTask()
: bg_cv_(&mutex_), should_sleep_(true), sleeping_(false) {}
void DoSleep() {
MutexLock l(&mutex_);
sleeping_ = true;
while (should_sleep_) {
bg_cv_.Wait();
}
sleeping_ = false;
bg_cv_.SignalAll();
}
void WakeUp() {
MutexLock l(&mutex_);
should_sleep_ = false;
bg_cv_.SignalAll();
while (sleeping_) {
bg_cv_.Wait();
}
}
bool IsSleeping() {
MutexLock l(&mutex_);
return sleeping_;
}
static void DoSleepTask(void* arg) {
reinterpret_cast<SleepingBackgroundTask*>(arg)->DoSleep();
}
private:
port::Mutex mutex_;
port::CondVar bg_cv_; // Signalled when background work finishes
bool should_sleep_;
bool sleeping_;
};
std::vector<SleepingBackgroundTask> tasks(10);
// Set number of thread to 1 first.
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
// Schedule 3 tasks. 0 running; Task 1, 2 waiting.
for (size_t i = 0; i < 3; i++) {
env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 2 threads. Task 0, 1 running; 2 waiting
env_->SetBackgroundThreads(2, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Shrink back to 1 thread. Still task 0, 1 running, 2 waiting
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// The last task finishes. Task 0 running, 2 waiting.
tasks[1].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 5 threads. Task 0 and 2 running.
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[2].IsSleeping());
// Change number of threads a couple of times while there is no sufficient
// tasks.
env_->SetBackgroundThreads(7, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
tasks[2].WakeUp();
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(3, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
Env::Default()->SleepForMicroseconds(kDelayMicros * 50);
// Enqueue 5 more tasks. Thread pool size now is 4.
// Task 0, 3, 4, 5 running;6, 7 waiting.
for (size_t i = 3; i < 8; i++) {
env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
}
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[3].IsSleeping());
ASSERT_TRUE(tasks[4].IsSleeping());
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(!tasks[7].IsSleeping());
// Wake up task 0, 3 and 4. Task 5, 6, 7 running.
tasks[0].WakeUp();
tasks[3].WakeUp();
tasks[4].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
for (size_t i = 5; i < 8; i++) {
ASSERT_TRUE(tasks[i].IsSleeping());
}
// Shrink back to 1 thread. Still task 5, 6, 7 running
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up task 6. Task 5, 7 running
tasks[6].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up threads 7. Task 5 running
tasks[7].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[7].IsSleeping());
// Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running.
env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[8],
Env::Priority::HIGH);
env_->Schedule(&SleepingBackgroundTask::DoSleepTask, &tasks[9],
Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0);
ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping());
// Increase to 4 threads. Task 5, 8, 9 running.
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[8].IsSleeping());
ASSERT_TRUE(tasks[9].IsSleeping());
// Shrink to 1 thread
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
// Wake up thread 9.
tasks[9].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[9].IsSleeping());
ASSERT_TRUE(tasks[8].IsSleeping());
// Wake up thread 8
tasks[8].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[8].IsSleeping());
// Wake up the last thread
tasks[5].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[5].IsSleeping());
}
#ifdef OS_LINUX
// Travis doesn't support fallocate or getting unique ID from files for whatever
// reason.
#ifndef TRAVIS
// To make sure the Env::GetUniqueId() related tests work correctly, The files
// should be stored in regular storage like "hard disk" or "flash device".
// Otherwise we cannot get the correct id.
//
// The following function act as the replacement of test::TmpDir() that may be
// customized by user to be on a storage that doesn't work with GetUniqueId().
//
// TODO(kailiu) This function still assumes /tmp/<test-dir> reside in regular
// storage system.
namespace {
bool IsSingleVarint(const std::string& s) {
Slice slice(s);
uint64_t v;
if (!GetVarint64(&slice, &v)) {
return false;
}
return slice.size() == 0;
}
bool IsUniqueIDValid(const std::string& s) {
return !s.empty() && !IsSingleVarint(s);
}
const size_t MAX_ID_SIZE = 100;
char temp_id[MAX_ID_SIZE];
std::string GetOnDiskTestDir() {
char base[100];
snprintf(base, sizeof(base), "/tmp/rocksdbtest-%d",
static_cast<int>(geteuid()));
// Directory may already exist
Env::Default()->CreateDirIfMissing(base);
return base;
}
} // namespace
// Only works in linux platforms
TEST(EnvPosixTest, RandomAccessUniqueID) {
// Create file.
const EnvOptions soptions;
std::string fname = GetOnDiskTestDir() + "/" + "testfile";
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
unique_ptr<RandomAccessFile> file;
// Get Unique ID
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id1(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id1));
// Get Unique ID again
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id2(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id2));
// Get Unique ID again after waiting some time.
env_->SleepForMicroseconds(1000000);
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id3(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id3));
// Check IDs are the same.
ASSERT_EQ(unique_id1, unique_id2);
ASSERT_EQ(unique_id2, unique_id3);
// Delete the file
env_->DeleteFile(fname);
}
// only works in linux platforms
#ifdef ROCKSDB_FALLOCATE_PRESENT
TEST(EnvPosixTest, AllocateTest) {
std::string fname = GetOnDiskTestDir() + "/preallocate_testfile";
// Try fallocate in a file to see whether the target file system supports it.
// Skip the test if fallocate is not supported.
std::string fname_test_fallocate =
GetOnDiskTestDir() + "/preallocate_testfile_2";
int fd = -1;
do {
fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
ASSERT_GT(fd, 0);
int alloc_status = fallocate(fd, 0, 0, 1);
int err_number = 0;
if (alloc_status != 0) {
err_number = errno;
fprintf(stderr, "Warning: fallocate() fails, %s\n", strerror(err_number));
}
close(fd);
ASSERT_OK(env_->DeleteFile(fname_test_fallocate));
if (alloc_status != 0 && err_number == EOPNOTSUPP) {
// The filesystem containing the file does not support fallocate
return;
}
EnvOptions soptions;
soptions.use_mmap_writes = false;
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
// allocate 100 MB
size_t kPreallocateSize = 100 * 1024 * 1024;
size_t kBlockSize = 512;
size_t kPageSize = 4096;
std::string data(1024 * 1024, 'a');
wfile->SetPreallocationBlockSize(kPreallocateSize);
ASSERT_OK(wfile->Append(Slice(data)));
ASSERT_OK(wfile->Flush());
struct stat f_stat;
stat(fname.c_str(), &f_stat);
ASSERT_EQ((unsigned int)data.size(), f_stat.st_size);
// verify that blocks are preallocated
// Note here that we don't check the exact number of blocks preallocated --
// we only require that number of allocated blocks is at least what we expect.
// It looks like some FS give us more blocks that we asked for. That's fine.
// It might be worth investigating further.
ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks);
// close the file, should deallocate the blocks
wfile.reset();
stat(fname.c_str(), &f_stat);
ASSERT_EQ((unsigned int)data.size(), f_stat.st_size);
// verify that preallocated blocks were deallocated on file close
// Because the FS might give us more blocks, we add a full page to the size
// and expect the number of blocks to be less or equal to that.
ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize, (unsigned int)f_stat.st_blocks);
}
#endif // ROCKSDB_FALLOCATE_PRESENT
// Returns true if any of the strings in ss are the prefix of another string.
bool HasPrefix(const std::unordered_set<std::string>& ss) {
for (const std::string& s: ss) {
if (s.empty()) {
return true;
}
for (size_t i = 1; i < s.size(); ++i) {
if (ss.count(s.substr(0, i)) != 0) {
return true;
}
}
}
return false;
}
// Only works in linux platforms
TEST(EnvPosixTest, RandomAccessUniqueIDConcurrent) {
// Check whether a bunch of concurrently existing files have unique IDs.
const EnvOptions soptions;
// Create the files
std::vector<std::string> fnames;
for (int i = 0; i < 1000; ++i) {
fnames.push_back(
GetOnDiskTestDir() + "/" + "testfile" + ToString(i));
// Create file.
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions));
}
// Collect and check whether the IDs are unique.
std::unordered_set<std::string> ids;
for (const std::string fname: fnames) {
unique_ptr<RandomAccessFile> file;
std::string unique_id;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
}
// Delete the files
for (const std::string fname: fnames) {
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
// Only works in linux platforms
TEST(EnvPosixTest, RandomAccessUniqueIDDeletes) {
const EnvOptions soptions;
std::string fname = GetOnDiskTestDir() + "/" + "testfile";
// Check that after file is deleted we don't get same ID again in a new file.
std::unordered_set<std::string> ids;
for (int i = 0; i < 1000; ++i) {
// Create file.
{
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
}
// Get Unique ID
std::string unique_id;
{
unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
}
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
// Only works in linux platforms
TEST(EnvPosixTest, InvalidateCache) {
const EnvOptions soptions;
std::string fname = test::TmpDir() + "/" + "testfile";
// Create file.
{
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
ASSERT_OK(wfile.get()->Append(Slice("Hello world")));
ASSERT_OK(wfile.get()->InvalidateCache(0, 0));
ASSERT_OK(wfile.get()->Close());
}
// Random Read
{
unique_ptr<RandomAccessFile> file;
char scratch[100];
Slice result;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
ASSERT_OK(file.get()->Read(0, 11, &result, scratch));
ASSERT_EQ(memcmp(scratch, "Hello world", 11), 0);
ASSERT_OK(file.get()->InvalidateCache(0, 11));
ASSERT_OK(file.get()->InvalidateCache(0, 0));
}
// Sequential Read
{
unique_ptr<SequentialFile> file;
char scratch[100];
Slice result;
ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions));
ASSERT_OK(file.get()->Read(11, &result, scratch));
ASSERT_EQ(memcmp(scratch, "Hello world", 11), 0);
ASSERT_OK(file.get()->InvalidateCache(0, 11));
ASSERT_OK(file.get()->InvalidateCache(0, 0));
}
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
}
#endif // not TRAVIS
#endif // OS_LINUX
TEST(EnvPosixTest, PosixRandomRWFileTest) {
EnvOptions soptions;
soptions.use_mmap_writes = soptions.use_mmap_reads = false;
std::string fname = test::TmpDir() + "/" + "testfile";
unique_ptr<RandomRWFile> file;
ASSERT_OK(env_->NewRandomRWFile(fname, &file, soptions));
// If you run the unit test on tmpfs, then tmpfs might not
// support fallocate. It is still better to trigger that
// code-path instead of eliminating it completely.
file.get()->Allocate(0, 10*1024*1024);
ASSERT_OK(file.get()->Write(100, Slice("Hello world")));
ASSERT_OK(file.get()->Write(105, Slice("Hello world")));
ASSERT_OK(file.get()->Sync());
ASSERT_OK(file.get()->Fsync());
char scratch[100];
Slice result;
ASSERT_OK(file.get()->Read(100, 16, &result, scratch));
ASSERT_EQ(result.compare("HelloHello world"), 0);
ASSERT_OK(file.get()->Close());
}
class TestLogger : public Logger {
public:
using Logger::Logv;
virtual void Logv(const char* format, va_list ap) override {
log_count++;
char new_format[550];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
if (new_format[0] == '[') {
// "[DEBUG] "
ASSERT_TRUE(n <= 56 + (512 - static_cast<int>(sizeof(struct timeval))));
} else {
ASSERT_TRUE(n <= 48 + (512 - static_cast<int>(sizeof(struct timeval))));
}
va_end(backup_ap);
}
for (size_t i = 0; i < sizeof(new_format); i++) {
if (new_format[i] == 'x') {
char_x_count++;
} else if (new_format[i] == '\0') {
char_0_count++;
}
}
}
int log_count;
int char_x_count;
int char_0_count;
};
TEST(EnvPosixTest, LogBufferTest) {
TestLogger test_logger;
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
test_logger.log_count = 0;
test_logger.char_x_count = 0;
test_logger.char_0_count = 0;
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger);
char bytes200[200];
std::fill_n(bytes200, sizeof(bytes200), '1');
bytes200[sizeof(bytes200) - 1] = '\0';
char bytes600[600];
std::fill_n(bytes600, sizeof(bytes600), '1');
bytes600[sizeof(bytes600) - 1] = '\0';
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
LogToBuffer(&log_buffer, "x%sx", bytes200);
LogToBuffer(&log_buffer, "x%sx", bytes600);
LogToBuffer(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200);
LogToBuffer(&log_buffer, "x%sx%sx", bytes200, bytes600);
LogToBuffer(&log_buffer, "x%sx%sx", bytes600, bytes9000);
LogToBuffer(&log_buffer_debug, "x%sx", bytes200);
test_logger.SetInfoLogLevel(DEBUG_LEVEL);
LogToBuffer(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000, bytes200);
ASSERT_EQ(0, test_logger.log_count);
log_buffer.FlushBufferToLog();
log_buffer_debug.FlushBufferToLog();
ASSERT_EQ(6, test_logger.log_count);
ASSERT_EQ(6, test_logger.char_0_count);
ASSERT_EQ(10, test_logger.char_x_count);
}
class TestLogger2 : public Logger {
public:
explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {}
using Logger::Logv;
virtual void Logv(const char* format, va_list ap) override {
char new_format[2000];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
ASSERT_TRUE(
n <= 48 + static_cast<int>(max_log_size_ - sizeof(struct timeval)));
ASSERT_TRUE(n > static_cast<int>(max_log_size_ - sizeof(struct timeval)));
va_end(backup_ap);
}
}
size_t max_log_size_;
};
TEST(EnvPosixTest, LogBufferMaxSizeTest) {
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
for (size_t max_log_size = 256; max_log_size <= 1024;
max_log_size += 1024 - 256) {
TestLogger2 test_logger(max_log_size);
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
LogToBuffer(&log_buffer, max_log_size, "%s", bytes9000);
log_buffer.FlushBufferToLog();
}
}
TEST(EnvPosixTest, Preallocation) {
const std::string src = test::TmpDir() + "/" + "testfile";
unique_ptr<WritableFile> srcfile;
const EnvOptions soptions;
ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions));
srcfile->SetPreallocationBlockSize(1024 * 1024);
// No writes should mean no preallocation
size_t block_size, last_allocated_block;
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 0UL);
// Small write should preallocate one block
srcfile->Append("test");
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 1UL);
// Write an entire preallocation block, make sure we increased by two.
std::string buf(block_size, ' ');
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 2UL);
// Write five more blocks at once, ensure we're where we need to be.
buf = std::string(block_size * 5, ' ');
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 7UL);
}
} // namespace rocksdb
int main(int argc, char** argv) {
return rocksdb::test::RunAllTests();
}