You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_bench.cc

376 lines
11 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "include/cache.h"
#include "include/db.h"
#include "include/env.h"
#include "include/write_batch.h"
#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"
// Comma-separated list of operations to run in the specified order
// Actual benchmarks:
// writeseq -- write N values in sequential key order
// writerandom -- write N values in random key order
// writebig -- write N/1000 100K valuesin random order
// readseq -- read N values sequentially
// readrandom -- read N values in random order
// Meta operations:
// compact -- Compact the entire DB
// heapprofile -- Dump a heap profile (if supported by this port)
// sync -- switch to synchronous writes (not the default)
// nosync -- switch to asynchronous writes (the default)
// tenth -- divide N by 10 (i.e., following benchmarks are smaller)
// normal -- reset N back to its normal value (1000000)
static const char* FLAGS_benchmarks =
"writeseq,"
"writeseq,"
"writerandom,"
"sync,tenth,tenth,writerandom,nosync,normal,"
"readseq,"
"readrandom,"
"compact,"
"readseq,"
"readrandom,"
"writebig";
// Number of key/values to place in database
static int FLAGS_num = 1000000;
// Size of each value
static int FLAGS_value_size = 100;
// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.25;
// Print histogram of operation timings
static bool FLAGS_histogram = false;
// Number of bytes to buffer in memtable before compacting
static int FLAGS_write_buffer_size = 1 << 20;
namespace leveldb {
// Helper for quickly generating random data.
namespace {
class RandomGenerator {
private:
std::string data_;
int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < 1048576) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
}
class Benchmark {
private:
Cache* cache_;
DB* db_;
int num_;
bool sync_;
int heap_counter_;
double start_;
double last_op_finish_;
int64_t bytes_;
std::string message_;
Histogram hist_;
RandomGenerator gen_;
Random rand_;
// State kept for progress messages
int done_;
int next_report_; // When to report next
void Start() {
start_ = Env::Default()->NowMicros() * 1e-6;
bytes_ = 0;
message_.clear();
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
next_report_ = 100;
}
void FinishedSingleOp() {
if (FLAGS_histogram) {
double now = Env::Default()->NowMicros() * 1e-6;
double micros = (now - last_op_finish_) * 1e6;
hist_.Add(micros);
if (micros > 20000) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (next_report_ < 1000) {
next_report_ += 100;
} else if (next_report_ < 10000) {
next_report_ += 1000;
} else if (next_report_ < 100000) {
next_report_ += 10000;
} else {
next_report_ += 100000;
}
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
fflush(stderr);
}
}
void Stop(const Slice& name) {
double finish = Env::Default()->NowMicros() * 1e-6;
// Pretend at least one op was done in case we are running a benchmark
// that does nto call FinishedSingleOp().
if (done_ < 1) done_ = 1;
if (bytes_ > 0) {
char rate[100];
snprintf(rate, sizeof(rate), "%5.1f MB/s",
(bytes_ / 1048576.0) / (finish - start_));
if (!message_.empty()) {
message_.push_back(' ');
}
message_.append(rate);
}
fprintf(stdout, "%-12s : %10.3f micros/op;%s%s\n",
name.ToString().c_str(),
(finish - start_) * 1e6 / done_,
(message_.empty() ? "" : " "),
message_.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
public:
enum Order { SEQUENTIAL, RANDOM };
Benchmark() : cache_(NewLRUCache(200<<20)),
db_(NULL),
num_(FLAGS_num),
sync_(false),
heap_counter_(0),
bytes_(0),
rand_(301) {
std::vector<std::string> files;
Env::Default()->GetChildren("/tmp/dbbench", &files);
for (int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
Env::Default()->DeleteFile("/tmp/dbbench/" + files[i]);
}
}
DestroyDB("/tmp/dbbench", Options());
}
~Benchmark() {
delete db_;
delete cache_;
}
void Run() {
Options options;
options.create_if_missing = true;
options.max_open_files = 10000;
options.block_cache = cache_;
options.write_buffer_size = FLAGS_write_buffer_size;
Start();
Status s = DB::Open(options, "/tmp/dbbench", &db_);
Stop("open");
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
const char* benchmarks = FLAGS_benchmarks;
while (benchmarks != NULL) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == NULL) {
name = benchmarks;
benchmarks = NULL;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
Start();
if (name == Slice("writeseq")) {
Write(SEQUENTIAL, num_, FLAGS_value_size);
} else if (name == Slice("writerandom")) {
Write(RANDOM, num_, FLAGS_value_size);
} else if (name == Slice("writebig")) {
Write(RANDOM, num_ / 1000, 100 * 1000);
} else if (name == Slice("readseq")) {
Read(SEQUENTIAL);
} else if (name == Slice("readrandom")) {
Read(RANDOM);
} else if (name == Slice("compact")) {
Compact();
} else if (name == Slice("heapprofile")) {
HeapProfile();
} else if (name == Slice("sync")) {
sync_ = true;
} else if (name == Slice("nosync")) {
sync_ = false;
} else if (name == Slice("tenth")) {
num_ = num_ / 10;
} else if (name == Slice("normal")) {
num_ = FLAGS_num;
} else {
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
Stop(name);
}
}
void Write(Order order, int num_entries, int value_size) {
WriteBatch batch;
Status s;
std::string val;
WriteOptions options;
options.sync = sync_;
for (int i = 0; i < num_entries; i++) {
const int k = (order == SEQUENTIAL) ? i : (rand_.Next() % FLAGS_num);
char key[100];
snprintf(key, sizeof(key), "%012d", k);
batch.Clear();
batch.Put(key, gen_.Generate(value_size));
s = db_->Write(options, &batch);
bytes_ += value_size + strlen(key);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
FinishedSingleOp();
}
}
void Read(Order order) {
ReadOptions options;
if (order == SEQUENTIAL) {
Iterator* iter = db_->NewIterator(options);
int i = 0;
for (iter->SeekToFirst(); i < num_ && iter->Valid(); iter->Next()) {
bytes_ += iter->key().size() + iter->value().size();
FinishedSingleOp();
++i;
}
delete iter;
} else {
std::string value;
for (int i = 0; i < num_; i++) {
char key[100];
const int k = (order == SEQUENTIAL) ? i : (rand_.Next() % FLAGS_num);
snprintf(key, sizeof(key), "%012d", k);
db_->Get(options, key, &value);
FinishedSingleOp();
}
}
}
void Compact() {
DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);
dbi->TEST_CompactMemTable();
int max_level_with_files = 1;
for (int level = 1; level < config::kNumLevels; level++) {
uint64_t v;
char name[100];
snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level);
if (db_->GetProperty(name, &v) && v > 0) {
max_level_with_files = level;
}
}
for (int level = 0; level < max_level_with_files; level++) {
dbi->TEST_CompactRange(level, "", "~");
}
}
static void WriteToFile(void* arg, const char* buf, int n) {
reinterpret_cast<WritableFile*>(arg)->Append(Slice(buf, n));
}
void HeapProfile() {
char fname[100];
snprintf(fname, sizeof(fname), "/tmp/dbbench/heap-%04d", ++heap_counter_);
WritableFile* file;
Status s = Env::Default()->NewWritableFile(fname, &file);
if (!s.ok()) {
message_ = s.ToString();
return;
}
bool ok = port::GetHeapProfile(WriteToFile, file);
delete file;
if (!ok) {
message_ = "not supported";
Env::Default()->DeleteFile(fname);
}
}
};
}
int main(int argc, char** argv) {
for (int i = 1; i < argc; i++) {
double d;
int n;
char junk;
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
FLAGS_compression_ratio = d;
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_histogram = n;
} else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
FLAGS_num = n;
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
FLAGS_value_size = n;
} else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
FLAGS_write_buffer_size = n;
} else {
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
exit(1);
}
}
leveldb::Benchmark benchmark;
benchmark.Run();
return 0;
}