You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_compaction_test.cc

7397 lines
256 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <tuple>
#include "db/blob/blob_index.h"
#include "db/db_test_util.h"
#include "env/mock_env.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/concurrent_task_limiter.h"
#include "rocksdb/experimental.h"
#include "rocksdb/sst_file_writer.h"
#include "rocksdb/utilities/convenience.h"
#include "test_util/sync_point.h"
#include "test_util/testutil.h"
#include "util/concurrent_task_limiter_impl.h"
#include "util/random.h"
#include "utilities/fault_injection_env.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
// SYNC_POINT is not supported in released Windows mode.
#if !defined(ROCKSDB_LITE)
class DBCompactionTest : public DBTestBase {
public:
DBCompactionTest()
: DBTestBase("db_compaction_test", /*env_do_fsync=*/true) {}
};
class DBCompactionTestWithParam
: public DBTestBase,
public testing::WithParamInterface<std::tuple<uint32_t, bool>> {
public:
DBCompactionTestWithParam()
: DBTestBase("db_compaction_test", /*env_do_fsync=*/true) {
max_subcompactions_ = std::get<0>(GetParam());
exclusive_manual_compaction_ = std::get<1>(GetParam());
}
// Required if inheriting from testing::WithParamInterface<>
static void SetUpTestCase() {}
static void TearDownTestCase() {}
uint32_t max_subcompactions_;
bool exclusive_manual_compaction_;
};
class DBCompactionTestWithBottommostParam
: public DBTestBase,
public testing::WithParamInterface<BottommostLevelCompaction> {
public:
DBCompactionTestWithBottommostParam()
: DBTestBase("db_compaction_test", /*env_do_fsync=*/true) {
bottommost_level_compaction_ = GetParam();
}
BottommostLevelCompaction bottommost_level_compaction_;
};
class DBCompactionDirectIOTest : public DBCompactionTest,
public ::testing::WithParamInterface<bool> {
public:
DBCompactionDirectIOTest() : DBCompactionTest() {}
};
// Param = true : target level is non-empty
// Param = false: level between target level and source level
// is not empty.
class ChangeLevelConflictsWithAuto
: public DBCompactionTest,
public ::testing::WithParamInterface<bool> {
public:
ChangeLevelConflictsWithAuto() : DBCompactionTest() {}
};
namespace {
class FlushedFileCollector : public EventListener {
public:
FlushedFileCollector() {}
~FlushedFileCollector() override {}
void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override {
std::lock_guard<std::mutex> lock(mutex_);
flushed_files_.push_back(info.file_path);
}
std::vector<std::string> GetFlushedFiles() {
std::lock_guard<std::mutex> lock(mutex_);
std::vector<std::string> result;
for (auto fname : flushed_files_) {
result.push_back(fname);
}
return result;
}
void ClearFlushedFiles() { flushed_files_.clear(); }
private:
std::vector<std::string> flushed_files_;
std::mutex mutex_;
};
class CompactionStatsCollector : public EventListener {
public:
CompactionStatsCollector()
: compaction_completed_(static_cast<int>(CompactionReason::kNumOfReasons)) {
for (auto& v : compaction_completed_) {
v.store(0);
}
}
~CompactionStatsCollector() override {}
void OnCompactionCompleted(DB* /* db */,
const CompactionJobInfo& info) override {
int k = static_cast<int>(info.compaction_reason);
int num_of_reasons = static_cast<int>(CompactionReason::kNumOfReasons);
assert(k >= 0 && k < num_of_reasons);
compaction_completed_[k]++;
}
void OnExternalFileIngested(
DB* /* db */, const ExternalFileIngestionInfo& /* info */) override {
int k = static_cast<int>(CompactionReason::kExternalSstIngestion);
compaction_completed_[k]++;
}
void OnFlushCompleted(DB* /* db */, const FlushJobInfo& /* info */) override {
int k = static_cast<int>(CompactionReason::kFlush);
compaction_completed_[k]++;
}
int NumberOfCompactions(CompactionReason reason) const {
int num_of_reasons = static_cast<int>(CompactionReason::kNumOfReasons);
int k = static_cast<int>(reason);
assert(k >= 0 && k < num_of_reasons);
return compaction_completed_.at(k).load();
}
private:
std::vector<std::atomic<int>> compaction_completed_;
};
class SstStatsCollector : public EventListener {
public:
SstStatsCollector() : num_ssts_creation_started_(0) {}
void OnTableFileCreationStarted(
const TableFileCreationBriefInfo& /* info */) override {
++num_ssts_creation_started_;
}
int num_ssts_creation_started() { return num_ssts_creation_started_; }
private:
std::atomic<int> num_ssts_creation_started_;
};
static const int kCDTValueSize = 1000;
static const int kCDTKeysPerBuffer = 4;
static const int kCDTNumLevels = 8;
Options DeletionTriggerOptions(Options options) {
options.compression = kNoCompression;
options.write_buffer_size = kCDTKeysPerBuffer * (kCDTValueSize + 24);
options.min_write_buffer_number_to_merge = 1;
options.max_write_buffer_size_to_maintain = 0;
options.num_levels = kCDTNumLevels;
options.level0_file_num_compaction_trigger = 1;
options.target_file_size_base = options.write_buffer_size * 2;
options.target_file_size_multiplier = 2;
options.max_bytes_for_level_base =
options.target_file_size_base * options.target_file_size_multiplier;
options.max_bytes_for_level_multiplier = 2;
options.disable_auto_compactions = false;
options.compaction_options_universal.max_size_amplification_percent = 100;
return options;
}
bool HaveOverlappingKeyRanges(
const Comparator* c,
const SstFileMetaData& a, const SstFileMetaData& b) {
if (c->CompareWithoutTimestamp(a.smallestkey, b.smallestkey) >= 0) {
if (c->CompareWithoutTimestamp(a.smallestkey, b.largestkey) <= 0) {
// b.smallestkey <= a.smallestkey <= b.largestkey
return true;
}
} else if (c->CompareWithoutTimestamp(a.largestkey, b.smallestkey) >= 0) {
// a.smallestkey < b.smallestkey <= a.largestkey
return true;
}
if (c->CompareWithoutTimestamp(a.largestkey, b.largestkey) <= 0) {
if (c->CompareWithoutTimestamp(a.largestkey, b.smallestkey) >= 0) {
// b.smallestkey <= a.largestkey <= b.largestkey
return true;
}
} else if (c->CompareWithoutTimestamp(a.smallestkey, b.largestkey) <= 0) {
// a.smallestkey <= b.largestkey < a.largestkey
return true;
}
return false;
}
// Identifies all files between level "min_level" and "max_level"
// which has overlapping key range with "input_file_meta".
void GetOverlappingFileNumbersForLevelCompaction(
const ColumnFamilyMetaData& cf_meta,
const Comparator* comparator,
int min_level, int max_level,
const SstFileMetaData* input_file_meta,
std::set<std::string>* overlapping_file_names) {
std::set<const SstFileMetaData*> overlapping_files;
overlapping_files.insert(input_file_meta);
for (int m = min_level; m <= max_level; ++m) {
for (auto& file : cf_meta.levels[m].files) {
for (auto* included_file : overlapping_files) {
if (HaveOverlappingKeyRanges(
comparator, *included_file, file)) {
overlapping_files.insert(&file);
overlapping_file_names->insert(file.name);
break;
}
}
}
}
}
void VerifyCompactionResult(
const ColumnFamilyMetaData& cf_meta,
const std::set<std::string>& overlapping_file_numbers) {
#ifndef NDEBUG
for (auto& level : cf_meta.levels) {
for (auto& file : level.files) {
assert(overlapping_file_numbers.find(file.name) ==
overlapping_file_numbers.end());
}
}
#endif
}
/*
* Verifies compaction stats of cfd are valid.
*
* For each level of cfd, its compaction stats are valid if
* 1) sum(stat.counts) == stat.count, and
* 2) stat.counts[i] == collector.NumberOfCompactions(i)
*/
void VerifyCompactionStats(ColumnFamilyData& cfd,
const CompactionStatsCollector& collector) {
#ifndef NDEBUG
InternalStats* internal_stats_ptr = cfd.internal_stats();
ASSERT_NE(internal_stats_ptr, nullptr);
const std::vector<InternalStats::CompactionStats>& comp_stats =
internal_stats_ptr->TEST_GetCompactionStats();
const int num_of_reasons = static_cast<int>(CompactionReason::kNumOfReasons);
std::vector<int> counts(num_of_reasons, 0);
// Count the number of compactions caused by each CompactionReason across
// all levels.
for (const auto& stat : comp_stats) {
int sum = 0;
for (int i = 0; i < num_of_reasons; i++) {
counts[i] += stat.counts[i];
sum += stat.counts[i];
}
ASSERT_EQ(sum, stat.count);
}
// Verify InternalStats bookkeeping matches that of CompactionStatsCollector,
// assuming that all compactions complete.
for (int i = 0; i < num_of_reasons; i++) {
ASSERT_EQ(collector.NumberOfCompactions(static_cast<CompactionReason>(i)), counts[i]);
}
#endif /* NDEBUG */
}
const SstFileMetaData* PickFileRandomly(
const ColumnFamilyMetaData& cf_meta,
Random* rand,
int* level = nullptr) {
auto file_id = rand->Uniform(static_cast<int>(
cf_meta.file_count)) + 1;
for (auto& level_meta : cf_meta.levels) {
if (file_id <= level_meta.files.size()) {
if (level != nullptr) {
*level = level_meta.level;
}
auto result = rand->Uniform(file_id);
return &(level_meta.files[result]);
}
file_id -= static_cast<uint32_t>(level_meta.files.size());
}
assert(false);
return nullptr;
}
} // anonymous namespace
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// All the TEST_P tests run once with sub_compactions disabled (i.e.
// options.max_subcompactions = 1) and once with it enabled
TEST_P(DBCompactionTestWithParam, CompactionDeletionTrigger) {
for (int tid = 0; tid < 3; ++tid) {
uint64_t db_size[2];
Options options = DeletionTriggerOptions(CurrentOptions());
options.max_subcompactions = max_subcompactions_;
if (tid == 1) {
// the following only disable stats update in DB::Open()
// and should not affect the result of this test.
options.skip_stats_update_on_db_open = true;
} else if (tid == 2) {
// third pass with universal compaction
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
}
DestroyAndReopen(options);
Random rnd(301);
const int kTestSize = kCDTKeysPerBuffer * 1024;
std::vector<std::string> values;
for (int k = 0; k < kTestSize; ++k) {
values.push_back(rnd.RandomString(kCDTValueSize));
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[0]));
for (int k = 0; k < kTestSize; ++k) {
ASSERT_OK(Delete(Key(k)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[1]));
if (options.compaction_style == kCompactionStyleUniversal) {
// Claim: in universal compaction none of the original data will remain
// once compactions settle.
//
// Proof: The compensated size of the file containing the most tombstones
// is enough on its own to trigger size amp compaction. Size amp
// compaction is a full compaction, so all tombstones meet the obsolete
// keys they cover.
ASSERT_EQ(0, db_size[1]);
} else {
// Claim: in level compaction at most `db_size[0] / 2` of the original
// data will remain once compactions settle.
//
// Proof: Assume the original data is all in the bottom level. If it were
// not, it would meet its tombstone sooner. The original data size is
// large enough to require fanout to bottom level to be greater than
// `max_bytes_for_level_multiplier == 2`. In the level just above,
// tombstones must cover less than `db_size[0] / 4` bytes since fanout >=
// 2 and file size is compensated by doubling the size of values we expect
// are covered (`kDeletionWeightOnCompaction == 2`). The tombstones in
// levels above must cover less than `db_size[0] / 8` bytes of original
// data, `db_size[0] / 16`, and so on.
ASSERT_GT(db_size[0] / 2, db_size[1]);
}
}
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_F(DBCompactionTest, SkipStatsUpdateTest) {
// This test verify UpdateAccumulatedStats is not on
// if options.skip_stats_update_on_db_open = true
// The test will need to be updated if the internal behavior changes.
Options options = DeletionTriggerOptions(CurrentOptions());
options.disable_auto_compactions = true;
options.env = env_;
DestroyAndReopen(options);
Random rnd(301);
const int kTestSize = kCDTKeysPerBuffer * 512;
std::vector<std::string> values;
for (int k = 0; k < kTestSize; ++k) {
values.push_back(rnd.RandomString(kCDTValueSize));
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(Flush());
Close();
int update_acc_stats_called = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"VersionStorageInfo::UpdateAccumulatedStats",
[&](void* /* arg */) { ++update_acc_stats_called; });
SyncPoint::GetInstance()->EnableProcessing();
// Reopen the DB with stats-update disabled
options.skip_stats_update_on_db_open = true;
options.max_open_files = 20;
Reopen(options);
ASSERT_EQ(update_acc_stats_called, 0);
// Repeat the reopen process, but this time we enable
// stats-update.
options.skip_stats_update_on_db_open = false;
Reopen(options);
ASSERT_GT(update_acc_stats_called, 0);
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, TestTableReaderForCompaction) {
Options options = CurrentOptions();
options.env = env_;
options.max_open_files = 20;
options.level0_file_num_compaction_trigger = 3;
// Avoid many shards with small max_open_files, where as little as
// two table insertions could lead to an LRU eviction, depending on
// hash values.
options.table_cache_numshardbits = 2;
DestroyAndReopen(options);
Random rnd(301);
int num_table_cache_lookup = 0;
int num_new_table_reader = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TableCache::FindTable:0", [&](void* arg) {
assert(arg != nullptr);
bool no_io = *(reinterpret_cast<bool*>(arg));
if (!no_io) {
// filter out cases for table properties queries.
num_table_cache_lookup++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TableCache::GetTableReader:0",
[&](void* /*arg*/) { num_new_table_reader++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int k = 0; k < options.level0_file_num_compaction_trigger; ++k) {
ASSERT_OK(Put(Key(k), Key(k)));
ASSERT_OK(Put(Key(10 - k), "bar"));
if (k < options.level0_file_num_compaction_trigger - 1) {
num_table_cache_lookup = 0;
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// preloading iterator issues one table cache lookup and create
// a new table reader, if not preloaded.
int old_num_table_cache_lookup = num_table_cache_lookup;
ASSERT_GE(num_table_cache_lookup, 1);
ASSERT_EQ(num_new_table_reader, 1);
num_table_cache_lookup = 0;
num_new_table_reader = 0;
ASSERT_EQ(Key(k), Get(Key(k)));
// lookup iterator from table cache and no need to create a new one.
ASSERT_EQ(old_num_table_cache_lookup + num_table_cache_lookup, 2);
ASSERT_EQ(num_new_table_reader, 0);
}
}
num_table_cache_lookup = 0;
num_new_table_reader = 0;
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Preloading iterator issues one table cache lookup and creates
// a new table reader. One file is created for flush and one for compaction.
// Compaction inputs make no table cache look-up for data/range deletion
// iterators
// May preload table cache too.
ASSERT_GE(num_table_cache_lookup, 2);
int old_num_table_cache_lookup2 = num_table_cache_lookup;
// Create new iterator for:
// (1) 1 for verifying flush results
// (2) 1 for verifying compaction results.
// (3) New TableReaders will not be created for compaction inputs
ASSERT_EQ(num_new_table_reader, 2);
num_table_cache_lookup = 0;
num_new_table_reader = 0;
ASSERT_EQ(Key(1), Get(Key(1)));
ASSERT_EQ(num_table_cache_lookup + old_num_table_cache_lookup2, 5);
ASSERT_EQ(num_new_table_reader, 0);
num_table_cache_lookup = 0;
num_new_table_reader = 0;
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// Only verifying compaction outputs issues one table cache lookup
// for both data block and range deletion block).
// May preload table cache too.
ASSERT_GE(num_table_cache_lookup, 1);
old_num_table_cache_lookup2 = num_table_cache_lookup;
// One for verifying compaction results.
// No new iterator created for compaction.
ASSERT_EQ(num_new_table_reader, 1);
num_table_cache_lookup = 0;
num_new_table_reader = 0;
ASSERT_EQ(Key(1), Get(Key(1)));
ASSERT_EQ(num_table_cache_lookup + old_num_table_cache_lookup2, 3);
ASSERT_EQ(num_new_table_reader, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_P(DBCompactionTestWithParam, CompactionDeletionTriggerReopen) {
for (int tid = 0; tid < 2; ++tid) {
uint64_t db_size[3];
Options options = DeletionTriggerOptions(CurrentOptions());
options.max_subcompactions = max_subcompactions_;
if (tid == 1) {
// second pass with universal compaction
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
}
DestroyAndReopen(options);
Random rnd(301);
// round 1 --- insert key/value pairs.
const int kTestSize = kCDTKeysPerBuffer * 512;
std::vector<std::string> values;
for (int k = 0; k < kTestSize; ++k) {
values.push_back(rnd.RandomString(kCDTValueSize));
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[0]));
Close();
// round 2 --- disable auto-compactions and issue deletions.
options.create_if_missing = false;
options.disable_auto_compactions = true;
Reopen(options);
for (int k = 0; k < kTestSize; ++k) {
ASSERT_OK(Delete(Key(k)));
}
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[1]));
Close();
// as auto_compaction is off, we shouldn't see any reduction in db size.
ASSERT_LE(db_size[0], db_size[1]);
// round 3 --- reopen db with auto_compaction on and see if
// deletion compensation still work.
options.disable_auto_compactions = false;
Reopen(options);
// insert relatively small amount of data to trigger auto compaction.
for (int k = 0; k < kTestSize / 10; ++k) {
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[2]));
// this time we're expecting significant drop in size.
//
// See "CompactionDeletionTrigger" test for proof that at most
// `db_size[0] / 2` of the original data remains. In addition to that, this
// test inserts `db_size[0] / 10` to push the tombstones into SST files and
// then through automatic compactions. So in total `3 * db_size[0] / 5` of
// the original data may remain.
ASSERT_GT(3 * db_size[0] / 5, db_size[2]);
}
}
TEST_F(DBCompactionTest, CompactRangeBottomPri) {
ASSERT_OK(Put(Key(50), ""));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(100), ""));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(200), ""));
ASSERT_OK(Flush());
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,0,3", FilesPerLevel(0));
ASSERT_OK(Put(Key(1), ""));
ASSERT_OK(Put(Key(199), ""));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(2), ""));
ASSERT_OK(Put(Key(199), ""));
ASSERT_OK(Flush());
ASSERT_EQ("2,0,3", FilesPerLevel(0));
// Now we have 2 L0 files, and 3 L2 files, and a manual compaction will
// be triggered.
// Two compaction jobs will run. One compacts 2 L0 files in Low Pri Pool
// and one compact to L2 in bottom pri pool.
int low_pri_count = 0;
int bottom_pri_count = 0;
SyncPoint::GetInstance()->SetCallBack(
"ThreadPoolImpl::Impl::BGThread:BeforeRun", [&](void* arg) {
Env::Priority* pri = reinterpret_cast<Env::Priority*>(arg);
// First time is low pri pool in the test case.
if (low_pri_count == 0 && bottom_pri_count == 0) {
ASSERT_EQ(Env::Priority::LOW, *pri);
}
if (*pri == Env::Priority::LOW) {
low_pri_count++;
} else {
bottom_pri_count++;
}
});
SyncPoint::GetInstance()->EnableProcessing();
env_->SetBackgroundThreads(1, Env::Priority::BOTTOM);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(1, low_pri_count);
ASSERT_EQ(1, bottom_pri_count);
ASSERT_EQ("0,0,2", FilesPerLevel(0));
// Recompact bottom most level uses bottom pool
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ(1, low_pri_count);
ASSERT_EQ(2, bottom_pri_count);
env_->SetBackgroundThreads(0, Env::Priority::BOTTOM);
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
// Low pri pool is used if bottom pool has size 0.
ASSERT_EQ(2, low_pri_count);
ASSERT_EQ(2, bottom_pri_count);
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, DisableStatsUpdateReopen) {
uint64_t db_size[3];
for (int test = 0; test < 2; ++test) {
Options options = DeletionTriggerOptions(CurrentOptions());
options.skip_stats_update_on_db_open = (test == 0);
env_->random_read_counter_.Reset();
DestroyAndReopen(options);
Random rnd(301);
// round 1 --- insert key/value pairs.
const int kTestSize = kCDTKeysPerBuffer * 512;
std::vector<std::string> values;
for (int k = 0; k < kTestSize; ++k) {
values.push_back(rnd.RandomString(kCDTValueSize));
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// L1 and L2 can fit deletions iff size compensation does not take effect,
// i.e., when `skip_stats_update_on_db_open == true`. Move any remaining
// files at or above L2 down to L3 to ensure obsolete data does not
// accidentally meet its tombstone above L3. This makes the final size more
// deterministic and easy to see whether size compensation for deletions
// took effect.
MoveFilesToLevel(3 /* level */);
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[0]));
Close();
// round 2 --- disable auto-compactions and issue deletions.
options.create_if_missing = false;
options.disable_auto_compactions = true;
env_->random_read_counter_.Reset();
Reopen(options);
for (int k = 0; k < kTestSize; ++k) {
ASSERT_OK(Delete(Key(k)));
}
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[1]));
Close();
// as auto_compaction is off, we shouldn't see any reduction in db size.
ASSERT_LE(db_size[0], db_size[1]);
// round 3 --- reopen db with auto_compaction on and see if
// deletion compensation still work.
options.disable_auto_compactions = false;
Reopen(options);
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Size(Key(0), Key(kTestSize - 1), &db_size[2]));
if (options.skip_stats_update_on_db_open) {
// If update stats on DB::Open is disable, we don't expect
// deletion entries taking effect.
//
// The deletions are small enough to fit in L1 and L2, and obsolete keys
// were moved to L3+, so none of the original data should have been
// dropped.
ASSERT_LE(db_size[0], db_size[2]);
} else {
// Otherwise, we should see a significant drop in db size.
//
// See "CompactionDeletionTrigger" test for proof that at most
// `db_size[0] / 2` of the original data remains.
ASSERT_GT(db_size[0] / 2, db_size[2]);
}
}
}
TEST_P(DBCompactionTestWithParam, CompactionTrigger) {
const int kNumKeysPerFile = 100;
Options options = CurrentOptions();
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.num_levels = 3;
options.level0_file_num_compaction_trigger = 3;
options.max_subcompactions = max_subcompactions_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
std::vector<std::string> values;
// Write 100KB (100 values, each 1K)
for (int i = 0; i < kNumKeysPerFile; i++) {
values.push_back(rnd.RandomString(990));
ASSERT_OK(Put(1, Key(i), values[i]));
}
// put extra key to trigger flush
ASSERT_OK(Put(1, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_EQ(NumTableFilesAtLevel(0, 1), num + 1);
}
// generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < kNumKeysPerFile; i++) {
values.push_back(rnd.RandomString(990));
ASSERT_OK(Put(1, Key(i), values[i]));
}
// put extra key to trigger flush
ASSERT_OK(Put(1, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_EQ(NumTableFilesAtLevel(1, 1), 1);
}
TEST_F(DBCompactionTest, BGCompactionsAllowed) {
// Create several column families. Make compaction triggers in all of them
// and see number of compactions scheduled to be less than allowed.
const int kNumKeysPerFile = 100;
Options options = CurrentOptions();
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.num_levels = 3;
// Should speed up compaction when there are 4 files.
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 20;
options.soft_pending_compaction_bytes_limit = 1 << 30; // Infinitely large
options.max_background_compactions = 3;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
// Block all threads in thread pool.
const size_t kTotalTasks = 4;
env_->SetBackgroundThreads(4, Env::LOW);
test::SleepingBackgroundTask sleeping_tasks[kTotalTasks];
for (size_t i = 0; i < kTotalTasks; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_tasks[i], Env::Priority::LOW);
sleeping_tasks[i].WaitUntilSleeping();
}
CreateAndReopenWithCF({"one", "two", "three"}, options);
Random rnd(301);
for (int cf = 0; cf < 4; cf++) {
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(cf, Key(i), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(cf, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[cf]));
ASSERT_EQ(NumTableFilesAtLevel(0, cf), num + 1);
}
}
// Now all column families qualify compaction but only one should be
// scheduled, because no column family hits speed up condition.
ASSERT_EQ(1u, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
// Create two more files for one column family, which triggers speed up
// condition, three compactions will be scheduled.
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(2, Key(i), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(2, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[2]));
ASSERT_EQ(options.level0_file_num_compaction_trigger + num + 1,
NumTableFilesAtLevel(0, 2));
}
ASSERT_EQ(3U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
// Unblock all threads to unblock all compactions.
for (size_t i = 0; i < kTotalTasks; i++) {
sleeping_tasks[i].WakeUp();
sleeping_tasks[i].WaitUntilDone();
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify number of compactions allowed will come back to 1.
for (size_t i = 0; i < kTotalTasks; i++) {
sleeping_tasks[i].Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_tasks[i], Env::Priority::LOW);
sleeping_tasks[i].WaitUntilSleeping();
}
for (int cf = 0; cf < 4; cf++) {
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(cf, Key(i), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(cf, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[cf]));
ASSERT_EQ(NumTableFilesAtLevel(0, cf), num + 1);
}
}
// Now all column families qualify compaction but only one should be
// scheduled, because no column family hits speed up condition.
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
for (size_t i = 0; i < kTotalTasks; i++) {
sleeping_tasks[i].WakeUp();
sleeping_tasks[i].WaitUntilDone();
}
}
TEST_P(DBCompactionTestWithParam, CompactionsGenerateMultipleFiles) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.max_subcompactions = max_subcompactions_;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(rnd.RandomString(100000));
ASSERT_OK(Put(1, Key(i), values[i]));
}
// Reopening moves updates to level-0
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1],
true /* disallow trivial move */));
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GT(NumTableFilesAtLevel(1, 1), 1);
for (int i = 0; i < 80; i++) {
ASSERT_EQ(Get(1, Key(i)), values[i]);
}
}
TEST_F(DBCompactionTest, MinorCompactionsHappen) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 10000;
CreateAndReopenWithCF({"pikachu"}, options);
const int N = 500;
int starting_num_tables = TotalTableFiles(1);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(1, Key(i), Key(i) + std::string(1000, 'v')));
}
int ending_num_tables = TotalTableFiles(1);
ASSERT_GT(ending_num_tables, starting_num_tables);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(1, Key(i)));
}
ReopenWithColumnFamilies({"default", "pikachu"}, options);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(1, Key(i)));
}
} while (ChangeCompactOptions());
}
TEST_F(DBCompactionTest, UserKeyCrossFile1) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 3;
DestroyAndReopen(options);
// create first file and flush to l0
ASSERT_OK(Put("4", "A"));
ASSERT_OK(Put("3", "A"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(Put("2", "A"));
ASSERT_OK(Delete("3"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ("NOT_FOUND", Get("3"));
// move both files down to l1
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ("NOT_FOUND", Get("3"));
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put("2", "B"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("NOT_FOUND", Get("3"));
}
TEST_F(DBCompactionTest, UserKeyCrossFile2) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 3;
DestroyAndReopen(options);
// create first file and flush to l0
ASSERT_OK(Put("4", "A"));
ASSERT_OK(Put("3", "A"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(Put("2", "A"));
ASSERT_OK(SingleDelete("3"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ("NOT_FOUND", Get("3"));
// move both files down to l1
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ("NOT_FOUND", Get("3"));
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put("2", "B"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("NOT_FOUND", Get("3"));
}
TEST_F(DBCompactionTest, CompactionSstPartitioner) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 3;
std::shared_ptr<SstPartitionerFactory> factory(
NewSstPartitionerFixedPrefixFactory(4));
options.sst_partitioner_factory = factory;
DestroyAndReopen(options);
// create first file and flush to l0
ASSERT_OK(Put("aaaa1", "A"));
ASSERT_OK(Put("bbbb1", "B"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(Put("aaaa1", "A2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
// move both files down to l1
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
std::vector<LiveFileMetaData> files;
dbfull()->GetLiveFilesMetaData(&files);
ASSERT_EQ(2, files.size());
ASSERT_EQ("A2", Get("aaaa1"));
ASSERT_EQ("B", Get("bbbb1"));
}
TEST_F(DBCompactionTest, CompactionSstPartitionerNonTrivial) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 1;
std::shared_ptr<SstPartitionerFactory> factory(
NewSstPartitionerFixedPrefixFactory(4));
options.sst_partitioner_factory = factory;
DestroyAndReopen(options);
// create first file and flush to l0
ASSERT_OK(Put("aaaa1", "A"));
ASSERT_OK(Put("bbbb1", "B"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact(true));
std::vector<LiveFileMetaData> files;
dbfull()->GetLiveFilesMetaData(&files);
ASSERT_EQ(2, files.size());
ASSERT_EQ("A", Get("aaaa1"));
ASSERT_EQ("B", Get("bbbb1"));
}
TEST_F(DBCompactionTest, ZeroSeqIdCompaction) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 3;
FlushedFileCollector* collector = new FlushedFileCollector();
options.listeners.emplace_back(collector);
// compaction options
CompactionOptions compact_opt;
compact_opt.compression = kNoCompression;
compact_opt.output_file_size_limit = 4096;
const size_t key_len =
static_cast<size_t>(compact_opt.output_file_size_limit) / 5;
DestroyAndReopen(options);
std::vector<const Snapshot*> snaps;
// create first file and flush to l0
for (auto& key : {"1", "2", "3", "3", "3", "3"}) {
ASSERT_OK(Put(key, std::string(key_len, 'A')));
snaps.push_back(dbfull()->GetSnapshot());
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
// create second file and flush to l0
for (auto& key : {"3", "4", "5", "6", "7", "8"}) {
ASSERT_OK(Put(key, std::string(key_len, 'A')));
snaps.push_back(dbfull()->GetSnapshot());
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
// move both files down to l1
ASSERT_OK(
dbfull()->CompactFiles(compact_opt, collector->GetFlushedFiles(), 1));
// release snap so that first instance of key(3) can have seqId=0
for (auto snap : snaps) {
dbfull()->ReleaseSnapshot(snap);
}
// create 3 files in l0 so to trigger compaction
for (int i = 0; i < options.level0_file_num_compaction_trigger; i++) {
ASSERT_OK(Put("2", std::string(1, 'A')));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Put("", ""));
}
TEST_F(DBCompactionTest, ManualCompactionUnknownOutputSize) {
// github issue #2249
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.level0_file_num_compaction_trigger = 3;
DestroyAndReopen(options);
// create two files in l1 that we can compact
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < options.level0_file_num_compaction_trigger; j++) {
// make l0 files' ranges overlap to avoid trivial move
ASSERT_OK(Put(std::to_string(2 * i), std::string(1, 'A')));
ASSERT_OK(Put(std::to_string(2 * i + 1), std::string(1, 'A')));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1, 0), i + 1);
}
ColumnFamilyMetaData cf_meta;
dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta);
ASSERT_EQ(2, cf_meta.levels[1].files.size());
std::vector<std::string> input_filenames;
for (const auto& sst_file : cf_meta.levels[1].files) {
input_filenames.push_back(sst_file.name);
}
// note CompactionOptions::output_file_size_limit is unset.
CompactionOptions compact_opt;
compact_opt.compression = kNoCompression;
ASSERT_OK(dbfull()->CompactFiles(compact_opt, input_filenames, 1));
}
// Check that writes done during a memtable compaction are recovered
// if the database is shutdown during the memtable compaction.
TEST_F(DBCompactionTest, RecoverDuringMemtableCompaction) {
do {
Options options = CurrentOptions();
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
// Trigger a long memtable compaction and reopen the database during it
ASSERT_OK(Put(1, "foo", "v1")); // Goes to 1st log file
ASSERT_OK(Put(1, "big1", std::string(10000000, 'x'))); // Fills memtable
ASSERT_OK(Put(1, "big2", std::string(1000, 'y'))); // Triggers compaction
ASSERT_OK(Put(1, "bar", "v2")); // Goes to new log file
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v2", Get(1, "bar"));
ASSERT_EQ(std::string(10000000, 'x'), Get(1, "big1"));
ASSERT_EQ(std::string(1000, 'y'), Get(1, "big2"));
} while (ChangeOptions());
}
TEST_P(DBCompactionTestWithParam, TrivialMoveOneFile) {
int32_t trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.write_buffer_size = 100000000;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
int32_t num_keys = 80;
int32_t value_size = 100 * 1024; // 100 KB
Random rnd(301);
std::vector<std::string> values;
for (int i = 0; i < num_keys; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(Key(i), values[i]));
}
// Reopening moves updates to L0
Reopen(options);
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 1); // 1 file in L0
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // 0 files in L1
std::vector<LiveFileMetaData> metadata;
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(metadata.size(), 1U);
LiveFileMetaData level0_file = metadata[0]; // L0 file meta
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
// Compaction will initiate a trivial move from L0 to L1
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
// File moved From L0 to L1
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0); // 0 files in L0
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 1); // 1 file in L1
metadata.clear();
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(metadata.size(), 1U);
ASSERT_EQ(metadata[0].name /* level1_file.name */, level0_file.name);
ASSERT_EQ(metadata[0].size /* level1_file.size */, level0_file.size);
for (int i = 0; i < num_keys; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
ASSERT_EQ(trivial_move, 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBCompactionTestWithParam, TrivialMoveNonOverlappingFiles) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
// non overlapping ranges
std::vector<std::pair<int32_t, int32_t>> ranges = {
{100, 199},
{300, 399},
{0, 99},
{200, 299},
{600, 699},
{400, 499},
{500, 550},
{551, 599},
};
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::map<int32_t, std::string> values;
for (size_t i = 0; i < ranges.size(); i++) {
for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) {
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
ASSERT_OK(Flush());
}
int32_t level0_files = NumTableFilesAtLevel(0, 0);
ASSERT_EQ(level0_files, ranges.size()); // Multiple files in L0
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // No files in L1
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
// Since data is non-overlapping we expect compaction to initiate
// a trivial move
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// We expect that all the files were trivially moved from L0 to L1
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1, 0) /* level1_files */, level0_files);
for (size_t i = 0; i < ranges.size(); i++) {
for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) {
ASSERT_EQ(Get(Key(j)), values[j]);
}
}
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
trivial_move = 0;
non_trivial_move = 0;
values.clear();
DestroyAndReopen(options);
// Same ranges as above but overlapping
ranges = {
{100, 199},
{300, 399},
{0, 99},
{200, 299},
{600, 699},
{400, 499},
{500, 560}, // this range overlap with the next one
{551, 599},
};
for (size_t i = 0; i < ranges.size(); i++) {
for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) {
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
ASSERT_OK(Flush());
}
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
for (size_t i = 0; i < ranges.size(); i++) {
for (int32_t j = ranges[i].first; j <= ranges[i].second; j++) {
ASSERT_EQ(Get(Key(j)), values[j]);
}
}
ASSERT_EQ(trivial_move, 0);
ASSERT_EQ(non_trivial_move, 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBCompactionTestWithParam, TrivialMoveTargetLevel) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
options.num_levels = 7;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
// Add 2 non-overlapping files
Random rnd(301);
std::map<int32_t, std::string> values;
// file 1 [0 => 300]
for (int32_t i = 0; i <= 300; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 2 [600 => 700]
for (int32_t i = 600; i <= 700; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 2 files in L0
ASSERT_EQ("2", FilesPerLevel(0));
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 6;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
// 2 files in L6
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
for (int32_t i = 0; i <= 300; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
for (int32_t i = 600; i <= 700; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST_P(DBCompactionTestWithParam, ManualCompactionPartial) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
bool first = true;
// Purpose of dependencies:
// 4 -> 1: ensure the order of two non-trivial compactions
// 5 -> 2 and 5 -> 3: ensure we do a check before two non-trivial compactions
// are installed
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBCompaction::ManualPartial:4", "DBCompaction::ManualPartial:1"},
{"DBCompaction::ManualPartial:5", "DBCompaction::ManualPartial:2"},
{"DBCompaction::ManualPartial:5", "DBCompaction::ManualPartial:3"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial:AfterRun", [&](void* /*arg*/) {
if (first) {
first = false;
TEST_SYNC_POINT("DBCompaction::ManualPartial:4");
TEST_SYNC_POINT("DBCompaction::ManualPartial:3");
} else { // second non-trivial compaction
TEST_SYNC_POINT("DBCompaction::ManualPartial:2");
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.write_buffer_size = 10 * 1024 * 1024;
options.num_levels = 7;
options.max_subcompactions = max_subcompactions_;
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 3;
options.target_file_size_base = 1 << 23; // 8 MB
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
// Add 2 non-overlapping files
Random rnd(301);
std::map<int32_t, std::string> values;
// file 1 [0 => 100]
for (int32_t i = 0; i < 100; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 2 [100 => 300]
for (int32_t i = 100; i < 300; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 2 files in L0
ASSERT_EQ("2", FilesPerLevel(0));
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 6;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
// Trivial move the two non-overlapping files to level 6
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
// 2 files in L6
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
// file 3 [ 0 => 200]
for (int32_t i = 0; i < 200; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 1 files in L0
ASSERT_EQ("1,0,0,0,0,0,2", FilesPerLevel(0));
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, nullptr, false));
ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, nullptr, nullptr, false));
ASSERT_OK(dbfull()->TEST_CompactRange(2, nullptr, nullptr, nullptr, false));
ASSERT_OK(dbfull()->TEST_CompactRange(3, nullptr, nullptr, nullptr, false));
ASSERT_OK(dbfull()->TEST_CompactRange(4, nullptr, nullptr, nullptr, false));
// 2 files in L6, 1 file in L5
ASSERT_EQ("0,0,0,0,0,1,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 6);
ASSERT_EQ(non_trivial_move, 0);
ROCKSDB_NAMESPACE::port::Thread threads([&] {
compact_options.change_level = false;
compact_options.exclusive_manual_compaction = false;
std::string begin_string = Key(0);
std::string end_string = Key(199);
Slice begin(begin_string);
Slice end(end_string);
// First non-trivial compaction is triggered
ASSERT_OK(db_->CompactRange(compact_options, &begin, &end));
});
TEST_SYNC_POINT("DBCompaction::ManualPartial:1");
// file 4 [300 => 400)
for (int32_t i = 300; i <= 400; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 5 [400 => 500)
for (int32_t i = 400; i <= 500; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 6 [500 => 600)
for (int32_t i = 500; i <= 600; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
// Second non-trivial compaction is triggered
ASSERT_OK(Flush());
// Before two non-trivial compactions are installed, there are 3 files in L0
ASSERT_EQ("3,0,0,0,0,1,2", FilesPerLevel(0));
TEST_SYNC_POINT("DBCompaction::ManualPartial:5");
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// After two non-trivial compactions are installed, there is 1 file in L6, and
// 1 file in L1
ASSERT_EQ("0,1,0,0,0,0,1", FilesPerLevel(0));
threads.join();
for (int32_t i = 0; i < 600; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
// Disable as the test is flaky.
TEST_F(DBCompactionTest, DISABLED_ManualPartialFill) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
bool first = true;
bool second = true;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBCompaction::PartialFill:4", "DBCompaction::PartialFill:1"},
{"DBCompaction::PartialFill:2", "DBCompaction::PartialFill:3"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial:AfterRun", [&](void* /*arg*/) {
if (first) {
TEST_SYNC_POINT("DBCompaction::PartialFill:4");
first = false;
TEST_SYNC_POINT("DBCompaction::PartialFill:3");
} else if (second) {
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.write_buffer_size = 10 * 1024 * 1024;
options.max_bytes_for_level_multiplier = 2;
options.num_levels = 4;
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 3;
DestroyAndReopen(options);
// make sure all background compaction jobs can be scheduled
auto stop_token =
dbfull()->TEST_write_controler().GetCompactionPressureToken();
int32_t value_size = 10 * 1024; // 10 KB
// Add 2 non-overlapping files
Random rnd(301);
std::map<int32_t, std::string> values;
// file 1 [0 => 100]
for (int32_t i = 0; i < 100; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 2 [100 => 300]
for (int32_t i = 100; i < 300; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 2 files in L0
ASSERT_EQ("2", FilesPerLevel(0));
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 2;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
// 2 files in L2
ASSERT_EQ("0,0,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
// file 3 [ 0 => 200]
for (int32_t i = 0; i < 200; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 2 files in L2, 1 in L0
ASSERT_EQ("1,0,2", FilesPerLevel(0));
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, nullptr, false));
// 2 files in L2, 1 in L1
ASSERT_EQ("0,1,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 2);
ASSERT_EQ(non_trivial_move, 0);
ROCKSDB_NAMESPACE::port::Thread threads([&] {
compact_options.change_level = false;
compact_options.exclusive_manual_compaction = false;
std::string begin_string = Key(0);
std::string end_string = Key(199);
Slice begin(begin_string);
Slice end(end_string);
ASSERT_OK(db_->CompactRange(compact_options, &begin, &end));
});
TEST_SYNC_POINT("DBCompaction::PartialFill:1");
// Many files 4 [300 => 4300)
for (int32_t i = 0; i <= 5; i++) {
for (int32_t j = 300; j < 4300; j++) {
if (j == 2300) {
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
}
// Verify level sizes
uint64_t target_size = 4 * options.max_bytes_for_level_base;
for (int32_t i = 1; i < options.num_levels; i++) {
ASSERT_LE(SizeAtLevel(i), target_size);
target_size = static_cast<uint64_t>(target_size *
options.max_bytes_for_level_multiplier);
}
TEST_SYNC_POINT("DBCompaction::PartialFill:2");
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
threads.join();
for (int32_t i = 0; i < 4300; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST_F(DBCompactionTest, ManualCompactionWithUnorderedWrite) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::WriteImpl:UnorderedWriteAfterWriteWAL",
"DBCompactionTest::ManualCompactionWithUnorderedWrite:WaitWriteWAL"},
{"DBImpl::WaitForPendingWrites:BeforeBlock",
"DBImpl::WriteImpl:BeforeUnorderedWriteMemtable"}});
Options options = CurrentOptions();
options.unordered_write = true;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Flush());
ASSERT_OK(Put("bar", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer([&]() { ASSERT_OK(Put("foo", "v2")); });
TEST_SYNC_POINT(
"DBCompactionTest::ManualCompactionWithUnorderedWrite:WaitWriteWAL");
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
writer.join();
ASSERT_EQ(Get("foo"), "v2");
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
Reopen(options);
ASSERT_EQ(Get("foo"), "v2");
}
TEST_F(DBCompactionTest, DeleteFileRange) {
Options options = CurrentOptions();
options.write_buffer_size = 10 * 1024 * 1024;
options.max_bytes_for_level_multiplier = 2;
options.num_levels = 4;
options.level0_file_num_compaction_trigger = 3;
options.max_background_compactions = 3;
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
// Add 2 non-overlapping files
Random rnd(301);
std::map<int32_t, std::string> values;
// file 1 [0 => 100]
for (int32_t i = 0; i < 100; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// file 2 [100 => 300]
for (int32_t i = 100; i < 300; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// 2 files in L0
ASSERT_EQ("2", FilesPerLevel(0));
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 2;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
// 2 files in L2
ASSERT_EQ("0,0,2", FilesPerLevel(0));
// file 3 [ 0 => 200]
for (int32_t i = 0; i < 200; i++) {
values[i] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
// Many files 4 [300 => 4300)
for (int32_t i = 0; i <= 5; i++) {
for (int32_t j = 300; j < 4300; j++) {
if (j == 2300) {
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify level sizes
uint64_t target_size = 4 * options.max_bytes_for_level_base;
for (int32_t i = 1; i < options.num_levels; i++) {
ASSERT_LE(SizeAtLevel(i), target_size);
target_size = static_cast<uint64_t>(target_size *
options.max_bytes_for_level_multiplier);
}
const size_t old_num_files = CountFiles();
std::string begin_string = Key(1000);
std::string end_string = Key(2000);
Slice begin(begin_string);
Slice end(end_string);
ASSERT_OK(DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin, &end));
int32_t deleted_count = 0;
for (int32_t i = 0; i < 4300; i++) {
if (i < 1000 || i > 2000) {
ASSERT_EQ(Get(Key(i)), values[i]);
} else {
ReadOptions roptions;
std::string result;
Status s = db_->Get(roptions, Key(i), &result);
ASSERT_TRUE(s.IsNotFound() || s.ok());
if (s.IsNotFound()) {
deleted_count++;
}
}
}
ASSERT_GT(deleted_count, 0);
begin_string = Key(5000);
end_string = Key(6000);
Slice begin1(begin_string);
Slice end1(end_string);
// Try deleting files in range which contain no keys
ASSERT_OK(
DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin1, &end1));
// Push data from level 0 to level 1 to force all data to be deleted
// Note that we don't delete level 0 files
compact_options.change_level = true;
compact_options.target_level = 1;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(
DeleteFilesInRange(db_, db_->DefaultColumnFamily(), nullptr, nullptr));
int32_t deleted_count2 = 0;
for (int32_t i = 0; i < 4300; i++) {
ReadOptions roptions;
std::string result;
ASSERT_TRUE(db_->Get(roptions, Key(i), &result).IsNotFound());
deleted_count2++;
}
ASSERT_GT(deleted_count2, deleted_count);
const size_t new_num_files = CountFiles();
ASSERT_GT(old_num_files, new_num_files);
}
TEST_F(DBCompactionTest, DeleteFilesInRanges) {
Options options = CurrentOptions();
options.write_buffer_size = 10 * 1024 * 1024;
options.max_bytes_for_level_multiplier = 2;
options.num_levels = 4;
options.max_background_compactions = 3;
options.disable_auto_compactions = true;
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::map<int32_t, std::string> values;
// file [0 => 100), [100 => 200), ... [900, 1000)
for (auto i = 0; i < 10; i++) {
for (auto j = 0; j < 100; j++) {
auto k = i * 100 + j;
values[k] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(Flush());
}
ASSERT_EQ("10", FilesPerLevel(0));
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 2;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,10", FilesPerLevel(0));
// file [0 => 100), [200 => 300), ... [800, 900)
for (auto i = 0; i < 10; i+=2) {
for (auto j = 0; j < 100; j++) {
auto k = i * 100 + j;
ASSERT_OK(Put(Key(k), values[k]));
}
ASSERT_OK(Flush());
}
ASSERT_EQ("5,0,10", FilesPerLevel(0));
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr));
ASSERT_EQ("0,5,10", FilesPerLevel(0));
// Delete files in range [0, 299] (inclusive)
{
auto begin_str1 = Key(0), end_str1 = Key(100);
auto begin_str2 = Key(100), end_str2 = Key(200);
auto begin_str3 = Key(200), end_str3 = Key(299);
Slice begin1(begin_str1), end1(end_str1);
Slice begin2(begin_str2), end2(end_str2);
Slice begin3(begin_str3), end3(end_str3);
std::vector<RangePtr> ranges;
ranges.push_back(RangePtr(&begin1, &end1));
ranges.push_back(RangePtr(&begin2, &end2));
ranges.push_back(RangePtr(&begin3, &end3));
ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(),
ranges.data(), ranges.size()));
ASSERT_EQ("0,3,7", FilesPerLevel(0));
// Keys [0, 300) should not exist.
for (auto i = 0; i < 300; i++) {
ReadOptions ropts;
std::string result;
auto s = db_->Get(ropts, Key(i), &result);
ASSERT_TRUE(s.IsNotFound());
}
for (auto i = 300; i < 1000; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
// Delete files in range [600, 999) (exclusive)
{
auto begin_str1 = Key(600), end_str1 = Key(800);
auto begin_str2 = Key(700), end_str2 = Key(900);
auto begin_str3 = Key(800), end_str3 = Key(999);
Slice begin1(begin_str1), end1(end_str1);
Slice begin2(begin_str2), end2(end_str2);
Slice begin3(begin_str3), end3(end_str3);
std::vector<RangePtr> ranges;
ranges.push_back(RangePtr(&begin1, &end1));
ranges.push_back(RangePtr(&begin2, &end2));
ranges.push_back(RangePtr(&begin3, &end3));
ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(),
ranges.data(), ranges.size(), false));
ASSERT_EQ("0,1,4", FilesPerLevel(0));
// Keys [600, 900) should not exist.
for (auto i = 600; i < 900; i++) {
ReadOptions ropts;
std::string result;
auto s = db_->Get(ropts, Key(i), &result);
ASSERT_TRUE(s.IsNotFound());
}
for (auto i = 300; i < 600; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
for (auto i = 900; i < 1000; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
// Delete all files.
{
RangePtr range;
ASSERT_OK(DeleteFilesInRanges(db_, db_->DefaultColumnFamily(), &range, 1));
ASSERT_EQ("", FilesPerLevel(0));
for (auto i = 0; i < 1000; i++) {
ReadOptions ropts;
std::string result;
auto s = db_->Get(ropts, Key(i), &result);
ASSERT_TRUE(s.IsNotFound());
}
}
}
TEST_F(DBCompactionTest, DeleteFileRangeFileEndpointsOverlapBug) {
// regression test for #2833: groups of files whose user-keys overlap at the
// endpoints could be split by `DeleteFilesInRange`. This caused old data to
// reappear, either because a new version of the key was removed, or a range
// deletion was partially dropped. It could also cause non-overlapping
// invariant to be violated if the files dropped by DeleteFilesInRange were
// a subset of files that a range deletion spans.
const int kNumL0Files = 2;
const int kValSize = 8 << 10; // 8KB
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
options.target_file_size_base = 1 << 10; // 1KB
DestroyAndReopen(options);
// The snapshot prevents key 1 from having its old version dropped. The low
// `target_file_size_base` ensures two keys will be in each output file.
const Snapshot* snapshot = nullptr;
Random rnd(301);
// The value indicates which flush the key belonged to, which is enough
// for us to determine the keys' relative ages. After L0 flushes finish,
// files look like:
//
// File 0: 0 -> vals[0], 1 -> vals[0]
// File 1: 1 -> vals[1], 2 -> vals[1]
//
// Then L0->L1 compaction happens, which outputs keys as follows:
//
// File 0: 0 -> vals[0], 1 -> vals[1]
// File 1: 1 -> vals[0], 2 -> vals[1]
//
// DeleteFilesInRange shouldn't be allowed to drop just file 0, as that
// would cause `1 -> vals[0]` (an older key) to reappear.
std::string vals[kNumL0Files];
for (int i = 0; i < kNumL0Files; ++i) {
vals[i] = rnd.RandomString(kValSize);
ASSERT_OK(Put(Key(i), vals[i]));
ASSERT_OK(Put(Key(i + 1), vals[i]));
ASSERT_OK(Flush());
if (i == 0) {
snapshot = db_->GetSnapshot();
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Verify `DeleteFilesInRange` can't drop only file 0 which would cause
// "1 -> vals[0]" to reappear.
std::string begin_str = Key(0), end_str = Key(1);
Slice begin = begin_str, end = end_str;
ASSERT_OK(DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin, &end));
ASSERT_EQ(vals[1], Get(Key(1)));
db_->ReleaseSnapshot(snapshot);
}
TEST_P(DBCompactionTestWithParam, TrivialMoveToLastLevelWithFiles) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.write_buffer_size = 100000000;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::vector<std::string> values;
// File with keys [ 0 => 99 ]
for (int i = 0; i < 100; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
ASSERT_EQ("1", FilesPerLevel(0));
// Compaction will do L0=>L1 (trivial move) then move L1 files to L3
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 3;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,0,1", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
// File with keys [ 100 => 199 ]
for (int i = 100; i < 200; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(Key(i), values[i]));
}
ASSERT_OK(Flush());
ASSERT_EQ("1,0,0,1", FilesPerLevel(0));
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
// Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves)
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ("0,0,0,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 4);
ASSERT_EQ(non_trivial_move, 0);
for (int i = 0; i < 200; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBCompactionTestWithParam, LevelCompactionThirdPath) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024);
options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024);
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are not going to second path.
// After that, (100K, 200K)
for (int num = 0; num < 3; num++) {
GenerateNewFile(&rnd, &key_idx);
}
// Another 110KB triggers a compaction to 400K file to fill up first path
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(3, GetSstFileCount(options.db_paths[1].path));
// (1, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4", FilesPerLevel(0));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 1)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,1", FilesPerLevel(0));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 2)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,2", FilesPerLevel(0));
ASSERT_EQ(2, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 3)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,3", FilesPerLevel(0));
ASSERT_EQ(3, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,4", FilesPerLevel(0));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 5)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,5", FilesPerLevel(0));
ASSERT_EQ(5, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 6)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,6", FilesPerLevel(0));
ASSERT_EQ(6, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 7)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,7", FilesPerLevel(0));
ASSERT_EQ(7, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
// (1, 4, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,8", FilesPerLevel(0));
ASSERT_EQ(8, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(4, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Reopen(options);
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Destroy(options);
}
TEST_P(DBCompactionTestWithParam, LevelCompactionPathUse) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024);
options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024);
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
Random rnd(301);
int key_idx = 0;
// Always gets compacted into 1 Level1 file,
// 0/1 Level 0 file
for (int num = 0; num < 3; num++) {
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
}
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1", FilesPerLevel(0));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("0,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("0,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("0,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("0,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1", FilesPerLevel(0));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[2].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(dbname_));
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Reopen(options);
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Destroy(options);
}
TEST_P(DBCompactionTestWithParam, LevelCompactionCFPathUse) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 500 * 1024);
options.db_paths.emplace_back(dbname_ + "_2", 4 * 1024 * 1024);
options.db_paths.emplace_back(dbname_ + "_3", 1024 * 1024 * 1024);
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_subcompactions = max_subcompactions_;
std::vector<Options> option_vector;
option_vector.emplace_back(options);
ColumnFamilyOptions cf_opt1(options), cf_opt2(options);
// Configure CF1 specific paths.
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1", 500 * 1024);
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_2", 4 * 1024 * 1024);
cf_opt1.cf_paths.emplace_back(dbname_ + "cf1_3", 1024 * 1024 * 1024);
option_vector.emplace_back(DBOptions(options), cf_opt1);
CreateColumnFamilies({"one"},option_vector[1]);
// Configure CF2 specific paths.
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2", 500 * 1024);
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_2", 4 * 1024 * 1024);
cf_opt2.cf_paths.emplace_back(dbname_ + "cf2_3", 1024 * 1024 * 1024);
option_vector.emplace_back(DBOptions(options), cf_opt2);
CreateColumnFamilies({"two"},option_vector[2]);
ReopenWithColumnFamilies({"default", "one", "two"}, option_vector);
Random rnd(301);
int key_idx = 0;
int key_idx1 = 0;
int key_idx2 = 0;
auto generate_file = [&]() {
GenerateNewFile(0, &rnd, &key_idx);
GenerateNewFile(1, &rnd, &key_idx1);
GenerateNewFile(2, &rnd, &key_idx2);
};
auto check_sstfilecount = [&](int path_id, int expected) {
ASSERT_EQ(expected, GetSstFileCount(options.db_paths[path_id].path));
ASSERT_EQ(expected, GetSstFileCount(cf_opt1.cf_paths[path_id].path));
ASSERT_EQ(expected, GetSstFileCount(cf_opt2.cf_paths[path_id].path));
};
auto check_filesperlevel = [&](const std::string& expected) {
ASSERT_EQ(expected, FilesPerLevel(0));
ASSERT_EQ(expected, FilesPerLevel(1));
ASSERT_EQ(expected, FilesPerLevel(2));
};
auto check_getvalues = [&]() {
for (int i = 0; i < key_idx; i++) {
auto v = Get(0, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
for (int i = 0; i < key_idx1; i++) {
auto v = Get(1, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
for (int i = 0; i < key_idx2; i++) {
auto v = Get(2, Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
};
// Check that default column family uses db_paths.
// And Column family "one" uses cf_paths.
// The compaction in level0 outputs the sst files in level1.
// The first path cannot hold level1's data(400KB+400KB > 500KB),
// so every compaction move a sst file to second path. Please
// refer to LevelCompactionBuilder::GetPathId.
for (int num = 0; num < 3; num++) {
generate_file();
}
check_sstfilecount(0, 1);
check_sstfilecount(1, 2);
generate_file();
check_sstfilecount(1, 3);
// (1, 4)
generate_file();
check_filesperlevel("1,4");
check_sstfilecount(1, 4);
check_sstfilecount(0, 1);
// (1, 4, 1)
generate_file();
check_filesperlevel("1,4,1");
check_sstfilecount(2, 1);
check_sstfilecount(1, 4);
check_sstfilecount(0, 1);
// (1, 4, 2)
generate_file();
check_filesperlevel("1,4,2");
check_sstfilecount(2, 2);
check_sstfilecount(1, 4);
check_sstfilecount(0, 1);
check_getvalues();
ReopenWithColumnFamilies({"default", "one", "two"}, option_vector);
check_getvalues();
Destroy(options, true);
}
TEST_P(DBCompactionTestWithParam, ConvertCompactionStyle) {
Random rnd(301);
int max_key_level_insert = 200;
int max_key_universal_insert = 600;
// Stage 1: generate a db with level compaction
Options options = CurrentOptions();
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.num_levels = 4;
options.level0_file_num_compaction_trigger = 3;
options.max_bytes_for_level_base = 500 << 10; // 500KB
options.max_bytes_for_level_multiplier = 1;
options.target_file_size_base = 200 << 10; // 200KB
options.target_file_size_multiplier = 1;
options.max_subcompactions = max_subcompactions_;
CreateAndReopenWithCF({"pikachu"}, options);
for (int i = 0; i <= max_key_level_insert; i++) {
// each value is 10K
ASSERT_OK(Put(1, Key(i), rnd.RandomString(10000)));
}
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(TotalTableFiles(1, 4), 1);
int non_level0_num_files = 0;
for (int i = 1; i < options.num_levels; i++) {
non_level0_num_files += NumTableFilesAtLevel(i, 1);
}
ASSERT_GT(non_level0_num_files, 0);
// Stage 2: reopen with universal compaction - should fail
options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 1;
options = CurrentOptions(options);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(s.IsInvalidArgument());
// Stage 3: compact into a single file and move the file to level 0
options = CurrentOptions();
options.disable_auto_compactions = true;
options.target_file_size_base = INT_MAX;
options.target_file_size_multiplier = 1;
options.max_bytes_for_level_base = INT_MAX;
options.max_bytes_for_level_multiplier = 1;
options.num_levels = 4;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 0;
// cannot use kForceOptimized here because the compaction here is expected
// to generate one output file
compact_options.bottommost_level_compaction =
BottommostLevelCompaction::kForce;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(
dbfull()->CompactRange(compact_options, handles_[1], nullptr, nullptr));
// Only 1 file in L0
ASSERT_EQ("1", FilesPerLevel(1));
// Stage 4: re-open in universal compaction style and do some db operations
options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = 4;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 3;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
options.num_levels = 1;
ReopenWithColumnFamilies({"default", "pikachu"}, options);
for (int i = max_key_level_insert / 2; i <= max_key_universal_insert; i++) {
ASSERT_OK(Put(1, Key(i), rnd.RandomString(10000)));
}
ASSERT_OK(dbfull()->Flush(FlushOptions()));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
for (int i = 1; i < options.num_levels; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i, 1), 0);
}
// verify keys inserted in both level compaction style and universal
// compaction style
std::string keys_in_db;
Iterator* iter = dbfull()->NewIterator(ReadOptions(), handles_[1]);
ASSERT_OK(iter->status());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
keys_in_db.append(iter->key().ToString());
keys_in_db.push_back(',');
}
delete iter;
std::string expected_keys;
for (int i = 0; i <= max_key_universal_insert; i++) {
expected_keys.append(Key(i));
expected_keys.push_back(',');
}
ASSERT_EQ(keys_in_db, expected_keys);
}
TEST_F(DBCompactionTest, L0_CompactionBug_Issue44_a) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "b", "v"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Delete(1, "b"));
ASSERT_OK(Delete(1, "a"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Delete(1, "a"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "a", "v"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("(a->v)", Contents(1));
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(a->v)", Contents(1));
} while (ChangeCompactOptions());
}
TEST_F(DBCompactionTest, L0_CompactionBug_Issue44_b) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "", ""));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Delete(1, "e"));
ASSERT_OK(Put(1, "", ""));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "c", "cv"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "", ""));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "", ""));
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "d", "dv"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "", ""));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_OK(Delete(1, "d"));
ASSERT_OK(Delete(1, "b"));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("(->)(c->cv)", Contents(1));
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(->)(c->cv)", Contents(1));
} while (ChangeCompactOptions());
}
TEST_F(DBCompactionTest, ManualAutoRace) {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkCompaction", "DBCompactionTest::ManualAutoRace:1"},
{"DBImpl::RunManualCompaction:WaitScheduled",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(1, "foo", ""));
ASSERT_OK(Put(1, "bar", ""));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "foo", ""));
ASSERT_OK(Put(1, "bar", ""));
// Generate four files in CF 0, which should trigger an auto compaction
ASSERT_OK(Put("foo", ""));
ASSERT_OK(Put("bar", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", ""));
ASSERT_OK(Put("bar", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", ""));
ASSERT_OK(Put("bar", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", ""));
ASSERT_OK(Put("bar", ""));
ASSERT_OK(Flush());
// The auto compaction is scheduled but waited until here
TEST_SYNC_POINT("DBCompactionTest::ManualAutoRace:1");
// The auto compaction will wait until the manual compaction is registerd
// before processing so that it will be cancelled.
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr));
ASSERT_EQ("0,1", FilesPerLevel(1));
// Eventually the cancelled compaction will be rescheduled and executed.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,1", FilesPerLevel(0));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBCompactionTestWithParam, ManualCompaction) {
Options options = CurrentOptions();
options.max_subcompactions = max_subcompactions_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
CreateAndReopenWithCF({"pikachu"}, options);
// iter - 0 with 7 levels
// iter - 1 with 3 levels
for (int iter = 0; iter < 2; ++iter) {
MakeTables(3, "p", "q", 1);
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls before files
Compact(1, "", "c");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls after files
Compact(1, "r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range overlaps files
Compact(1, "p", "q");
ASSERT_EQ("0,0,1", FilesPerLevel(1));
// Populate a different range
MakeTables(3, "c", "e", 1);
ASSERT_EQ("1,1,2", FilesPerLevel(1));
// Compact just the new range
Compact(1, "b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel(1));
// Compact all
MakeTables(1, "a", "z", 1);
ASSERT_EQ("1,0,2", FilesPerLevel(1));
uint64_t prev_block_cache_add =
options.statistics->getTickerCount(BLOCK_CACHE_ADD);
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, handles_[1], nullptr, nullptr));
// Verify manual compaction doesn't fill block cache
ASSERT_EQ(prev_block_cache_add,
options.statistics->getTickerCount(BLOCK_CACHE_ADD));
ASSERT_EQ("0,0,1", FilesPerLevel(1));
if (iter == 0) {
options = CurrentOptions();
options.num_levels = 3;
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
}
}
}
TEST_P(DBCompactionTestWithParam, ManualLevelCompactionOutputPathId) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_ + "_2", 2 * 10485760);
options.db_paths.emplace_back(dbname_ + "_3", 100 * 10485760);
options.db_paths.emplace_back(dbname_ + "_4", 120 * 10485760);
options.max_subcompactions = max_subcompactions_;
CreateAndReopenWithCF({"pikachu"}, options);
// iter - 0 with 7 levels
// iter - 1 with 3 levels
for (int iter = 0; iter < 2; ++iter) {
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put(1, "p", "begin"));
ASSERT_OK(Put(1, "q", "end"));
ASSERT_OK(Flush(1));
}
ASSERT_EQ("3", FilesPerLevel(1));
ASSERT_EQ(3, GetSstFileCount(options.db_paths[0].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// Compaction range falls before files
Compact(1, "", "c");
ASSERT_EQ("3", FilesPerLevel(1));
// Compaction range falls after files
Compact(1, "r", "z");
ASSERT_EQ("3", FilesPerLevel(1));
// Compaction range overlaps files
Compact(1, "p", "q", 1);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,1", FilesPerLevel(1));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// Populate a different range
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put(1, "c", "begin"));
ASSERT_OK(Put(1, "e", "end"));
ASSERT_OK(Flush(1));
}
ASSERT_EQ("3,1", FilesPerLevel(1));
// Compact just the new range
Compact(1, "b", "f", 1);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,2", FilesPerLevel(1));
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
// Compact all
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
ASSERT_EQ("1,2", FilesPerLevel(1));
ASSERT_EQ(2, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[0].path));
CompactRangeOptions compact_options;
compact_options.target_path_id = 1;
compact_options.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(
db_->CompactRange(compact_options, handles_[1], nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,1", FilesPerLevel(1));
ASSERT_EQ(1, GetSstFileCount(options.db_paths[1].path));
ASSERT_EQ(0, GetSstFileCount(options.db_paths[0].path));
ASSERT_EQ(0, GetSstFileCount(dbname_));
if (iter == 0) {
DestroyAndReopen(options);
options = CurrentOptions();
options.db_paths.emplace_back(dbname_ + "_2", 2 * 10485760);
options.db_paths.emplace_back(dbname_ + "_3", 100 * 10485760);
options.db_paths.emplace_back(dbname_ + "_4", 120 * 10485760);
options.max_background_flushes = 1;
options.num_levels = 3;
options.create_if_missing = true;
CreateAndReopenWithCF({"pikachu"}, options);
}
}
}
TEST_F(DBCompactionTest, FilesDeletedAfterCompaction) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v2"));
Compact(1, "a", "z");
const size_t num_files = CountLiveFiles();
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(1, "foo", "v2"));
Compact(1, "a", "z");
}
ASSERT_EQ(CountLiveFiles(), num_files);
} while (ChangeCompactOptions());
}
// Check level comapction with compact files
TEST_P(DBCompactionTestWithParam, DISABLED_CompactFilesOnLevelCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 100;
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base = options.target_file_size_base * 2;
options.level0_stop_writes_trigger = 2;
options.max_bytes_for_level_multiplier = 2;
options.compression = kNoCompression;
options.max_subcompactions = max_subcompactions_;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
for (int key = 64 * kEntriesPerBuffer; key >= 0; --key) {
ASSERT_OK(Put(1, ToString(key), rnd.RandomString(kTestValueSize)));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ColumnFamilyMetaData cf_meta;
dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta);
int output_level = static_cast<int>(cf_meta.levels.size()) - 1;
for (int file_picked = 5; file_picked > 0; --file_picked) {
std::set<std::string> overlapping_file_names;
std::vector<std::string> compaction_input_file_names;
for (int f = 0; f < file_picked; ++f) {
int level = 0;
auto file_meta = PickFileRandomly(cf_meta, &rnd, &level);
compaction_input_file_names.push_back(file_meta->name);
GetOverlappingFileNumbersForLevelCompaction(
cf_meta, options.comparator, level, output_level,
file_meta, &overlapping_file_names);
}
ASSERT_OK(dbfull()->CompactFiles(
CompactionOptions(), handles_[1],
compaction_input_file_names,
output_level));
// Make sure all overlapping files do not exist after compaction
dbfull()->GetColumnFamilyMetaData(handles_[1], &cf_meta);
VerifyCompactionResult(cf_meta, overlapping_file_names);
}
// make sure all key-values are still there.
for (int key = 64 * kEntriesPerBuffer; key >= 0; --key) {
ASSERT_NE(Get(1, ToString(key)), "NOT_FOUND");
}
}
TEST_P(DBCompactionTestWithParam, PartialCompactionFailure) {
Options options;
const int kKeySize = 16;
const int kKvSize = 1000;
const int kKeysPerBuffer = 100;
const int kNumL1Files = 5;
options.create_if_missing = true;
options.write_buffer_size = kKeysPerBuffer * kKvSize;
options.max_write_buffer_number = 2;
options.target_file_size_base =
options.write_buffer_size *
(options.max_write_buffer_number - 1);
options.level0_file_num_compaction_trigger = kNumL1Files;
options.max_bytes_for_level_base =
options.level0_file_num_compaction_trigger *
options.target_file_size_base;
options.max_bytes_for_level_multiplier = 2;
options.compression = kNoCompression;
options.max_subcompactions = max_subcompactions_;
env_->SetBackgroundThreads(1, Env::HIGH);
env_->SetBackgroundThreads(1, Env::LOW);
// stop the compaction thread until we simulate the file creation failure.
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
options.env = env_;
DestroyAndReopen(options);
const int kNumInsertedKeys =
options.level0_file_num_compaction_trigger *
(options.max_write_buffer_number - 1) *
kKeysPerBuffer;
Random rnd(301);
std::vector<std::string> keys;
std::vector<std::string> values;
for (int k = 0; k < kNumInsertedKeys; ++k) {
keys.emplace_back(rnd.RandomString(kKeySize));
values.emplace_back(rnd.RandomString(kKvSize - kKeySize));
ASSERT_OK(Put(Slice(keys[k]), Slice(values[k])));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
// Make sure the number of L0 files can trigger compaction.
ASSERT_GE(NumTableFilesAtLevel(0),
options.level0_file_num_compaction_trigger);
auto previous_num_level0_files = NumTableFilesAtLevel(0);
// Fail the first file creation.
env_->non_writable_count_ = 1;
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
// Expect compaction to fail here as one file will fail its
// creation.
ASSERT_TRUE(!dbfull()->TEST_WaitForCompact().ok());
// Verify L0 -> L1 compaction does fail.
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
// Verify all L0 files are still there.
ASSERT_EQ(NumTableFilesAtLevel(0), previous_num_level0_files);
// All key-values must exist after compaction fails.
for (int k = 0; k < kNumInsertedKeys; ++k) {
ASSERT_EQ(values[k], Get(keys[k]));
}
env_->non_writable_count_ = 0;
// Make sure RocksDB will not get into corrupted state.
Reopen(options);
// Verify again after reopen.
for (int k = 0; k < kNumInsertedKeys; ++k) {
ASSERT_EQ(values[k], Get(keys[k]));
}
}
TEST_P(DBCompactionTestWithParam, DeleteMovedFileAfterCompaction) {
// iter 1 -- delete_obsolete_files_period_micros == 0
for (int iter = 0; iter < 2; ++iter) {
// This test triggers move compaction and verifies that the file is not
// deleted when it's part of move compaction
Options options = CurrentOptions();
options.env = env_;
if (iter == 1) {
options.delete_obsolete_files_period_micros = 0;
}
options.create_if_missing = true;
options.level0_file_num_compaction_trigger =
2; // trigger compaction when we have 2 files
OnFileDeletionListener* listener = new OnFileDeletionListener();
options.listeners.emplace_back(listener);
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
Random rnd(301);
// Create two 1MB sst files
for (int i = 0; i < 2; ++i) {
// Create 1MB sst file
for (int j = 0; j < 100; ++j) {
ASSERT_OK(Put(Key(i * 50 + j), rnd.RandomString(10 * 1024)));
}
ASSERT_OK(Flush());
}
// this should execute L0->L1
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,1", FilesPerLevel(0));
// block compactions
test::SleepingBackgroundTask sleeping_task;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
Env::Priority::LOW);
options.max_bytes_for_level_base = 1024 * 1024; // 1 MB
Reopen(options);
std::unique_ptr<Iterator> iterator(db_->NewIterator(ReadOptions()));
ASSERT_EQ("0,1", FilesPerLevel(0));
// let compactions go
sleeping_task.WakeUp();
sleeping_task.WaitUntilDone();
// this should execute L1->L2 (move)
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,0,1", FilesPerLevel(0));
std::vector<LiveFileMetaData> metadata;
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(metadata.size(), 1U);
auto moved_file_name = metadata[0].name;
// Create two more 1MB sst files
for (int i = 0; i < 2; ++i) {
// Create 1MB sst file
for (int j = 0; j < 100; ++j) {
ASSERT_OK(Put(Key(i * 50 + j + 100), rnd.RandomString(10 * 1024)));
}
ASSERT_OK(Flush());
}
// this should execute both L0->L1 and L1->L2 (merge with previous file)
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,0,2", FilesPerLevel(0));
// iterator is holding the file
ASSERT_OK(env_->FileExists(dbname_ + moved_file_name));
listener->SetExpectedFileName(dbname_ + moved_file_name);
ASSERT_OK(iterator->status());
iterator.reset();
// this file should have been compacted away
ASSERT_NOK(env_->FileExists(dbname_ + moved_file_name));
listener->VerifyMatchedCount(1);
}
}
TEST_P(DBCompactionTestWithParam, CompressLevelCompaction) {
if (!Zlib_Supported()) {
return;
}
Options options = CurrentOptions();
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_subcompactions = max_subcompactions_;
// First two levels have no compression, so that a trivial move between
// them will be allowed. Level 2 has Zlib compression so that a trivial
// move to level 3 will not be allowed
options.compression_per_level = {kNoCompression, kNoCompression,
kZlibCompression};
int matches = 0, didnt_match = 0, trivial_move = 0, non_trivial = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Compaction::InputCompressionMatchesOutput:Matches",
[&](void* /*arg*/) { matches++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Compaction::InputCompressionMatchesOutput:DidntMatch",
[&](void* /*arg*/) { didnt_match++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are going to level 0
// After that, (100K, 200K)
for (int num = 0; num < 3; num++) {
GenerateNewFile(&rnd, &key_idx);
}
// Another 110KB triggers a compaction to 400K file to fill up level 0
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ(4, GetSstFileCount(dbname_));
// (1, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4", FilesPerLevel(0));
// (1, 4, 1)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,1", FilesPerLevel(0));
// (1, 4, 2)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,2", FilesPerLevel(0));
// (1, 4, 3)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,3", FilesPerLevel(0));
// (1, 4, 4)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,4", FilesPerLevel(0));
// (1, 4, 5)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,5", FilesPerLevel(0));
// (1, 4, 6)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,6", FilesPerLevel(0));
// (1, 4, 7)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,7", FilesPerLevel(0));
// (1, 4, 8)
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,4,8", FilesPerLevel(0));
ASSERT_EQ(matches, 12);
// Currently, the test relies on the number of calls to
// InputCompressionMatchesOutput() per compaction.
const int kCallsToInputCompressionMatch = 2;
ASSERT_EQ(didnt_match, 8 * kCallsToInputCompressionMatch);
ASSERT_EQ(trivial_move, 12);
ASSERT_EQ(non_trivial, 8);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Reopen(options);
for (int i = 0; i < key_idx; i++) {
auto v = Get(Key(i));
ASSERT_NE(v, "NOT_FOUND");
ASSERT_TRUE(v.size() == 1 || v.size() == 990);
}
Destroy(options);
}
TEST_F(DBCompactionTest, SanitizeCompactionOptionsTest) {
Options options = CurrentOptions();
options.max_background_compactions = 5;
options.soft_pending_compaction_bytes_limit = 0;
options.hard_pending_compaction_bytes_limit = 100;
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_EQ(100, db_->GetOptions().soft_pending_compaction_bytes_limit);
options.max_background_compactions = 3;
options.soft_pending_compaction_bytes_limit = 200;
options.hard_pending_compaction_bytes_limit = 150;
DestroyAndReopen(options);
ASSERT_EQ(150, db_->GetOptions().soft_pending_compaction_bytes_limit);
}
// This tests for a bug that could cause two level0 compactions running
// concurrently
// TODO(aekmekji): Make sure that the reason this fails when run with
// max_subcompactions > 1 is not a correctness issue but just inherent to
// running parallel L0-L1 compactions
TEST_F(DBCompactionTest, SuggestCompactRangeNoTwoLevel0Compactions) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10;
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_write_buffer_number = 2;
options.max_background_compactions = 2;
DestroyAndReopen(options);
// fill up the DB
Random rnd(301);
for (int num = 0; num < 10; num++) {
GenerateNewRandomFile(&rnd);
}
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"CompactionJob::Run():Start",
"DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:1"},
{"DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:2",
"CompactionJob::Run():End"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// trigger L0 compaction
for (int num = 0; num < options.level0_file_num_compaction_trigger + 1;
num++) {
GenerateNewRandomFile(&rnd, /* nowait */ true);
ASSERT_OK(Flush());
}
TEST_SYNC_POINT(
"DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:1");
GenerateNewRandomFile(&rnd, /* nowait */ true);
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(experimental::SuggestCompactRange(db_, nullptr, nullptr));
for (int num = 0; num < options.level0_file_num_compaction_trigger + 1;
num++) {
GenerateNewRandomFile(&rnd, /* nowait */ true);
ASSERT_OK(Flush());
}
TEST_SYNC_POINT(
"DBCompactionTest::SuggestCompactRangeNoTwoLevel0Compactions:2");
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
static std::string ShortKey(int i) {
assert(i < 10000);
char buf[100];
snprintf(buf, sizeof(buf), "key%04d", i);
return std::string(buf);
}
TEST_P(DBCompactionTestWithParam, ForceBottommostLevelCompaction) {
int32_t trivial_move = 0;
int32_t non_trivial_move = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:TrivialMove",
[&](void* /*arg*/) { trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial",
[&](void* /*arg*/) { non_trivial_move++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// The key size is guaranteed to be <= 8
class ShortKeyComparator : public Comparator {
int Compare(const ROCKSDB_NAMESPACE::Slice& a,
const ROCKSDB_NAMESPACE::Slice& b) const override {
assert(a.size() <= 8);
assert(b.size() <= 8);
return BytewiseComparator()->Compare(a, b);
}
const char* Name() const override { return "ShortKeyComparator"; }
void FindShortestSeparator(
std::string* start,
const ROCKSDB_NAMESPACE::Slice& limit) const override {
return BytewiseComparator()->FindShortestSeparator(start, limit);
}
void FindShortSuccessor(std::string* key) const override {
return BytewiseComparator()->FindShortSuccessor(key);
}
} short_key_cmp;
Options options = CurrentOptions();
options.target_file_size_base = 100000000;
options.write_buffer_size = 100000000;
options.max_subcompactions = max_subcompactions_;
options.comparator = &short_key_cmp;
DestroyAndReopen(options);
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::vector<std::string> values;
// File with keys [ 0 => 99 ]
for (int i = 0; i < 100; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(ShortKey(i), values[i]));
}
ASSERT_OK(Flush());
ASSERT_EQ("1", FilesPerLevel(0));
// Compaction will do L0=>L1 (trivial move) then move L1 files to L3
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 3;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,0,1", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 1);
ASSERT_EQ(non_trivial_move, 0);
// File with keys [ 100 => 199 ]
for (int i = 100; i < 200; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(ShortKey(i), values[i]));
}
ASSERT_OK(Flush());
ASSERT_EQ("1,0,0,1", FilesPerLevel(0));
// Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves)
// then compacte the bottommost level L3=>L3 (non trivial move)
compact_options = CompactRangeOptions();
compact_options.bottommost_level_compaction =
BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,0,1", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 4);
ASSERT_EQ(non_trivial_move, 1);
// File with keys [ 200 => 299 ]
for (int i = 200; i < 300; i++) {
values.push_back(rnd.RandomString(value_size));
ASSERT_OK(Put(ShortKey(i), values[i]));
}
ASSERT_OK(Flush());
ASSERT_EQ("1,0,0,1", FilesPerLevel(0));
trivial_move = 0;
non_trivial_move = 0;
compact_options = CompactRangeOptions();
compact_options.bottommost_level_compaction =
BottommostLevelCompaction::kSkip;
// Compaction will do L0=>L1 L1=>L2 L2=>L3 (3 trivial moves)
// and will skip bottommost level compaction
ASSERT_OK(db_->CompactRange(compact_options, nullptr, nullptr));
ASSERT_EQ("0,0,0,2", FilesPerLevel(0));
ASSERT_EQ(trivial_move, 3);
ASSERT_EQ(non_trivial_move, 0);
for (int i = 0; i < 300; i++) {
ASSERT_EQ(Get(ShortKey(i)), values[i]);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBCompactionTestWithParam, IntraL0Compaction) {
Options options = CurrentOptions();
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = 5;
options.max_background_compactions = 2;
options.max_subcompactions = max_subcompactions_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.write_buffer_size = 2 << 20; // 2MB
BlockBasedTableOptions table_options;
table_options.block_cache = NewLRUCache(64 << 20); // 64MB
table_options.cache_index_and_filter_blocks = true;
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
const size_t kValueSize = 1 << 20;
Random rnd(301);
std::string value(rnd.RandomString(kValueSize));
// The L0->L1 must be picked before we begin flushing files to trigger
// intra-L0 compaction, and must not finish until after an intra-L0
// compaction has been picked.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"LevelCompactionPicker::PickCompaction:Return",
"DBCompactionTest::IntraL0Compaction:L0ToL1Ready"},
{"LevelCompactionPicker::PickCompactionBySize:0",
"CompactionJob::Run():Start"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// index: 0 1 2 3 4 5 6 7 8 9
// size: 1MB 1MB 1MB 1MB 1MB 2MB 1MB 1MB 1MB 1MB
// score: 1.5 1.3 1.5 2.0 inf
//
// Files 0-4 will be included in an L0->L1 compaction.
//
// L0->L0 will be triggered since the sync points guarantee compaction to base
// level is still blocked when files 5-9 trigger another compaction.
//
// Files 6-9 are the longest span of available files for which
// work-per-deleted-file decreases (see "score" row above).
for (int i = 0; i < 10; ++i) {
ASSERT_OK(Put(Key(0), "")); // prevents trivial move
if (i == 5) {
TEST_SYNC_POINT("DBCompactionTest::IntraL0Compaction:L0ToL1Ready");
ASSERT_OK(Put(Key(i + 1), value + value));
} else {
ASSERT_OK(Put(Key(i + 1), value));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
ASSERT_GE(level_to_files.size(), 2); // at least L0 and L1
// L0 has the 2MB file (not compacted) and 4MB file (output of L0->L0)
ASSERT_EQ(2, level_to_files[0].size());
ASSERT_GT(level_to_files[1].size(), 0);
for (int i = 0; i < 2; ++i) {
ASSERT_GE(level_to_files[0][i].fd.file_size, 1 << 21);
}
// The index/filter in the file produced by intra-L0 should not be pinned.
// That means clearing unref'd entries in block cache and re-accessing the
// file produced by intra-L0 should bump the index block miss count.
uint64_t prev_index_misses =
TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS);
table_options.block_cache->EraseUnRefEntries();
ASSERT_EQ("", Get(Key(0)));
ASSERT_EQ(prev_index_misses + 1,
TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
}
TEST_P(DBCompactionTestWithParam, IntraL0CompactionDoesNotObsoleteDeletions) {
// regression test for issue #2722: L0->L0 compaction can resurrect deleted
// keys from older L0 files if L1+ files' key-ranges do not include the key.
Options options = CurrentOptions();
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = 5;
options.max_background_compactions = 2;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
const size_t kValueSize = 1 << 20;
Random rnd(301);
std::string value(rnd.RandomString(kValueSize));
// The L0->L1 must be picked before we begin flushing files to trigger
// intra-L0 compaction, and must not finish until after an intra-L0
// compaction has been picked.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"LevelCompactionPicker::PickCompaction:Return",
"DBCompactionTest::IntraL0CompactionDoesNotObsoleteDeletions:"
"L0ToL1Ready"},
{"LevelCompactionPicker::PickCompactionBySize:0",
"CompactionJob::Run():Start"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// index: 0 1 2 3 4 5 6 7 8 9
// size: 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB
// score: 1.25 1.33 1.5 2.0 inf
//
// Files 0-4 will be included in an L0->L1 compaction.
//
// L0->L0 will be triggered since the sync points guarantee compaction to base
// level is still blocked when files 5-9 trigger another compaction. All files
// 5-9 are included in the L0->L0 due to work-per-deleted file decreasing.
//
// Put a key-value in files 0-4. Delete that key in files 5-9. Verify the
// L0->L0 preserves the deletion such that the key remains deleted.
for (int i = 0; i < 10; ++i) {
// key 0 serves both to prevent trivial move and as the key we want to
// verify is not resurrected by L0->L0 compaction.
if (i < 5) {
ASSERT_OK(Put(Key(0), ""));
} else {
ASSERT_OK(Delete(Key(0)));
}
if (i == 5) {
TEST_SYNC_POINT(
"DBCompactionTest::IntraL0CompactionDoesNotObsoleteDeletions:"
"L0ToL1Ready");
}
ASSERT_OK(Put(Key(i + 1), value));
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
ASSERT_GE(level_to_files.size(), 2); // at least L0 and L1
// L0 has a single output file from L0->L0
ASSERT_EQ(1, level_to_files[0].size());
ASSERT_GT(level_to_files[1].size(), 0);
ASSERT_GE(level_to_files[0][0].fd.file_size, 1 << 22);
ReadOptions roptions;
std::string result;
ASSERT_TRUE(db_->Get(roptions, Key(0), &result).IsNotFound());
}
TEST_P(DBCompactionTestWithParam, FullCompactionInBottomPriThreadPool) {
const int kNumFilesTrigger = 3;
Env::Default()->SetBackgroundThreads(1, Env::Priority::BOTTOM);
for (bool use_universal_compaction : {false, true}) {
Options options = CurrentOptions();
if (use_universal_compaction) {
options.compaction_style = kCompactionStyleUniversal;
} else {
options.compaction_style = kCompactionStyleLevel;
options.level_compaction_dynamic_level_bytes = true;
}
options.num_levels = 4;
options.write_buffer_size = 100 << 10; // 100KB
options.target_file_size_base = 32 << 10; // 32KB
options.level0_file_num_compaction_trigger = kNumFilesTrigger;
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
DestroyAndReopen(options);
int num_bottom_pri_compactions = 0;
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BGWorkBottomCompaction",
[&](void* /*arg*/) { ++num_bottom_pri_compactions; });
SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int num = 0; num < kNumFilesTrigger; num++) {
ASSERT_EQ(NumSortedRuns(), num);
int key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(1, num_bottom_pri_compactions);
// Verify that size amplification did occur
ASSERT_EQ(NumSortedRuns(), 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
Env::Default()->SetBackgroundThreads(0, Env::Priority::BOTTOM);
}
TEST_F(DBCompactionTest, OptimizedDeletionObsoleting) {
// Deletions can be dropped when compacted to non-last level if they fall
// outside the lower-level files' key-ranges.
const int kNumL0Files = 4;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
// put key 1 and 3 in separate L1, L2 files.
// So key 0, 2, and 4+ fall outside these levels' key-ranges.
for (int level = 2; level >= 1; --level) {
for (int i = 0; i < 2; ++i) {
ASSERT_OK(Put(Key(2 * i + 1), "val"));
ASSERT_OK(Flush());
}
MoveFilesToLevel(level);
ASSERT_EQ(2, NumTableFilesAtLevel(level));
}
// Delete keys in range [1, 4]. These L0 files will be compacted with L1:
// - Tombstones for keys 2 and 4 can be dropped early.
// - Tombstones for keys 1 and 3 must be kept due to L2 files' key-ranges.
for (int i = 0; i < kNumL0Files; ++i) {
ASSERT_OK(Put(Key(0), "val")); // sentinel to prevent trivial move
ASSERT_OK(Delete(Key(i + 1)));
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
for (int i = 0; i < kNumL0Files; ++i) {
std::string value;
ASSERT_TRUE(db_->Get(ReadOptions(), Key(i + 1), &value).IsNotFound());
}
ASSERT_EQ(2, options.statistics->getTickerCount(
COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE));
ASSERT_EQ(2,
options.statistics->getTickerCount(COMPACTION_KEY_DROP_OBSOLETE));
}
TEST_F(DBCompactionTest, CompactFilesPendingL0Bug) {
// https://www.facebook.com/groups/rocksdb.dev/permalink/1389452781153232/
// CompactFiles() had a bug where it failed to pick a compaction when an L0
// compaction existed, but marked it as scheduled anyways. It'd never be
// unmarked as scheduled, so future compactions or DB close could hang.
const int kNumL0Files = 5;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files - 1;
options.max_background_compactions = 2;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"LevelCompactionPicker::PickCompaction:Return",
"DBCompactionTest::CompactFilesPendingL0Bug:Picked"},
{"DBCompactionTest::CompactFilesPendingL0Bug:ManualCompacted",
"DBImpl::BackgroundCompaction:NonTrivial:AfterRun"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
auto schedule_multi_compaction_token =
dbfull()->TEST_write_controler().GetCompactionPressureToken();
// Files 0-3 will be included in an L0->L1 compaction.
//
// File 4 will be included in a call to CompactFiles() while the first
// compaction is running.
for (int i = 0; i < kNumL0Files - 1; ++i) {
ASSERT_OK(Put(Key(0), "val")); // sentinel to prevent trivial move
ASSERT_OK(Put(Key(i + 1), "val"));
ASSERT_OK(Flush());
}
TEST_SYNC_POINT("DBCompactionTest::CompactFilesPendingL0Bug:Picked");
// file 4 flushed after 0-3 picked
ASSERT_OK(Put(Key(kNumL0Files), "val"));
ASSERT_OK(Flush());
// previously DB close would hang forever as this situation caused scheduled
// compactions count to never decrement to zero.
ColumnFamilyMetaData cf_meta;
dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta);
ASSERT_EQ(kNumL0Files, cf_meta.levels[0].files.size());
std::vector<std::string> input_filenames;
input_filenames.push_back(cf_meta.levels[0].files.front().name);
ASSERT_OK(dbfull()
->CompactFiles(CompactionOptions(), input_filenames,
0 /* output_level */));
TEST_SYNC_POINT("DBCompactionTest::CompactFilesPendingL0Bug:ManualCompacted");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, CompactFilesOverlapInL0Bug) {
// Regression test for bug of not pulling in L0 files that overlap the user-
// specified input files in time- and key-ranges.
ASSERT_OK(Put(Key(0), "old_val"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(0), "new_val"));
ASSERT_OK(Flush());
ColumnFamilyMetaData cf_meta;
dbfull()->GetColumnFamilyMetaData(dbfull()->DefaultColumnFamily(), &cf_meta);
ASSERT_GE(cf_meta.levels.size(), 2);
ASSERT_EQ(2, cf_meta.levels[0].files.size());
// Compacting {new L0 file, L1 file} should pull in the old L0 file since it
// overlaps in key-range and time-range.
std::vector<std::string> input_filenames;
input_filenames.push_back(cf_meta.levels[0].files.front().name);
ASSERT_OK(dbfull()->CompactFiles(CompactionOptions(), input_filenames,
1 /* output_level */));
ASSERT_EQ("new_val", Get(Key(0)));
}
TEST_F(DBCompactionTest, DeleteFilesInRangeConflictWithCompaction) {
Options options = CurrentOptions();
DestroyAndReopen(options);
const Snapshot* snapshot = nullptr;
const int kMaxKey = 10;
for (int i = 0; i < kMaxKey; i++) {
ASSERT_OK(Put(Key(i), Key(i)));
ASSERT_OK(Delete(Key(i)));
if (!snapshot) {
snapshot = db_->GetSnapshot();
}
}
ASSERT_OK(Flush());
MoveFilesToLevel(1);
ASSERT_OK(Put(Key(kMaxKey), Key(kMaxKey)));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// test DeleteFilesInRange() deletes the files already picked for compaction
SyncPoint::GetInstance()->LoadDependency(
{{"VersionSet::LogAndApply:WriteManifestStart",
"BackgroundCallCompaction:0"},
{"DBImpl::BackgroundCompaction:Finish",
"VersionSet::LogAndApply:WriteManifestDone"}});
SyncPoint::GetInstance()->EnableProcessing();
// release snapshot which mark bottommost file for compaction
db_->ReleaseSnapshot(snapshot);
std::string begin_string = Key(0);
std::string end_string = Key(kMaxKey + 1);
Slice begin(begin_string);
Slice end(end_string);
ASSERT_OK(DeleteFilesInRange(db_, db_->DefaultColumnFamily(), &begin, &end));
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, CompactBottomLevelFilesWithDeletions) {
// bottom-level files may contain deletions due to snapshots protecting the
// deleted keys. Once the snapshot is released, we should see files with many
// such deletions undergo single-file compactions.
const int kNumKeysPerFile = 1024;
const int kNumLevelFiles = 4;
const int kValueSize = 128;
Options options = CurrentOptions();
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = kNumLevelFiles;
// inflate it a bit to account for key/metadata overhead
options.target_file_size_base = 120 * kNumKeysPerFile * kValueSize / 100;
CreateAndReopenWithCF({"one"}, options);
Random rnd(301);
const Snapshot* snapshot = nullptr;
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
if (i == kNumLevelFiles - 1) {
snapshot = db_->GetSnapshot();
// delete every other key after grabbing a snapshot, so these deletions
// and the keys they cover can't be dropped until after the snapshot is
// released.
for (int j = 0; j < kNumLevelFiles * kNumKeysPerFile; j += 2) {
ASSERT_OK(Delete(Key(j)));
}
}
ASSERT_OK(Flush());
if (i < kNumLevelFiles - 1) {
ASSERT_EQ(i + 1, NumTableFilesAtLevel(0));
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(kNumLevelFiles, NumTableFilesAtLevel(1));
std::vector<LiveFileMetaData> pre_release_metadata, post_release_metadata;
db_->GetLiveFilesMetaData(&pre_release_metadata);
// just need to bump seqnum so ReleaseSnapshot knows the newest key in the SST
// files does not need to be preserved in case of a future snapshot.
ASSERT_OK(Put(Key(0), "val"));
ASSERT_NE(kMaxSequenceNumber, dbfull()->bottommost_files_mark_threshold_);
// release snapshot and wait for compactions to finish. Single-file
// compactions should be triggered, which reduce the size of each bottom-level
// file without changing file count.
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(kMaxSequenceNumber, dbfull()->bottommost_files_mark_threshold_);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->compaction_reason() ==
CompactionReason::kBottommostFiles);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
db_->GetLiveFilesMetaData(&post_release_metadata);
ASSERT_EQ(pre_release_metadata.size(), post_release_metadata.size());
for (size_t i = 0; i < pre_release_metadata.size(); ++i) {
const auto& pre_file = pre_release_metadata[i];
const auto& post_file = post_release_metadata[i];
ASSERT_EQ(1, pre_file.level);
ASSERT_EQ(1, post_file.level);
// each file is smaller than it was before as it was rewritten without
// deletion markers/deleted keys.
ASSERT_LT(post_file.size, pre_file.size);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, NoCompactBottomLevelFilesWithDeletions) {
// bottom-level files may contain deletions due to snapshots protecting the
// deleted keys. Once the snapshot is released, we should see files with many
// such deletions undergo single-file compactions. But when disabling auto
// compactions, it shouldn't be triggered which may causing too many
// background jobs.
const int kNumKeysPerFile = 1024;
const int kNumLevelFiles = 4;
const int kValueSize = 128;
Options options = CurrentOptions();
options.compression = kNoCompression;
options.disable_auto_compactions = true;
options.level0_file_num_compaction_trigger = kNumLevelFiles;
// inflate it a bit to account for key/metadata overhead
options.target_file_size_base = 120 * kNumKeysPerFile * kValueSize / 100;
Reopen(options);
Random rnd(301);
const Snapshot* snapshot = nullptr;
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
if (i == kNumLevelFiles - 1) {
snapshot = db_->GetSnapshot();
// delete every other key after grabbing a snapshot, so these deletions
// and the keys they cover can't be dropped until after the snapshot is
// released.
for (int j = 0; j < kNumLevelFiles * kNumKeysPerFile; j += 2) {
ASSERT_OK(Delete(Key(j)));
}
}
ASSERT_OK(Flush());
if (i < kNumLevelFiles - 1) {
ASSERT_EQ(i + 1, NumTableFilesAtLevel(0));
}
}
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, nullptr));
ASSERT_EQ(kNumLevelFiles, NumTableFilesAtLevel(1));
std::vector<LiveFileMetaData> pre_release_metadata, post_release_metadata;
db_->GetLiveFilesMetaData(&pre_release_metadata);
// just need to bump seqnum so ReleaseSnapshot knows the newest key in the SST
// files does not need to be preserved in case of a future snapshot.
ASSERT_OK(Put(Key(0), "val"));
// release snapshot and no compaction should be triggered.
std::atomic<int> num_compactions{0};
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:Start",
[&](void* /*arg*/) { num_compactions.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
db_->ReleaseSnapshot(snapshot);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, num_compactions);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
db_->GetLiveFilesMetaData(&post_release_metadata);
ASSERT_EQ(pre_release_metadata.size(), post_release_metadata.size());
for (size_t i = 0; i < pre_release_metadata.size(); ++i) {
const auto& pre_file = pre_release_metadata[i];
const auto& post_file = post_release_metadata[i];
ASSERT_EQ(1, pre_file.level);
ASSERT_EQ(1, post_file.level);
// each file is same as before with deletion markers/deleted keys.
ASSERT_EQ(post_file.size, pre_file.size);
}
}
TEST_F(DBCompactionTest, LevelCompactExpiredTtlFiles) {
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 1024;
Options options = CurrentOptions();
options.compression = kNoCompression;
options.ttl = 24 * 60 * 60; // 24 hours
options.max_open_files = -1;
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(3);
ASSERT_EQ("0,0,0,2", FilesPerLevel());
// Delete previously written keys.
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(Delete(Key(i * kNumKeysPerFile + j)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2,0,0,2", FilesPerLevel());
MoveFilesToLevel(1);
ASSERT_EQ("0,2,0,2", FilesPerLevel());
env_->MockSleepForSeconds(36 * 60 * 60); // 36 hours
ASSERT_EQ("0,2,0,2", FilesPerLevel());
// Just do a simple write + flush so that the Ttl expired files get
// compacted.
ASSERT_OK(Put("a", "1"));
ASSERT_OK(Flush());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->compaction_reason() == CompactionReason::kTtl);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// All non-L0 files are deleted, as they contained only deleted data.
ASSERT_EQ("1", FilesPerLevel());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
// Test dynamically changing ttl.
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(3);
ASSERT_EQ("0,0,0,2", FilesPerLevel());
// Delete previously written keys.
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(Delete(Key(i * kNumKeysPerFile + j)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2,0,0,2", FilesPerLevel());
MoveFilesToLevel(1);
ASSERT_EQ("0,2,0,2", FilesPerLevel());
// Move time forward by 12 hours, and make sure that compaction still doesn't
// trigger as ttl is set to 24 hours.
env_->MockSleepForSeconds(12 * 60 * 60);
ASSERT_OK(Put("a", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("1,2,0,2", FilesPerLevel());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->compaction_reason() == CompactionReason::kTtl);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Dynamically change ttl to 10 hours.
// This should trigger a ttl compaction, as 12 hours have already passed.
ASSERT_OK(dbfull()->SetOptions({{"ttl", "36000"}}));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// All non-L0 files are deleted, as they contained only deleted data.
ASSERT_EQ("1", FilesPerLevel());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, LevelTtlCascadingCompactions) {
env_->SetMockSleep();
const int kValueSize = 100;
for (bool if_restart : {false, true}) {
for (bool if_open_all_files : {false, true}) {
Options options = CurrentOptions();
options.compression = kNoCompression;
options.ttl = 24 * 60 * 60; // 24 hours
if (if_open_all_files) {
options.max_open_files = -1;
} else {
options.max_open_files = 20;
}
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = 2;
});
// In the case where all files are opened and doing DB restart
// forcing the oldest ancester time in manifest file to be 0 to
// simulate the case of reading from an old version.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"VersionEdit::EncodeTo:VarintOldestAncesterTime", [&](void* arg) {
if (if_restart && if_open_all_files) {
std::string* encoded_fieled = static_cast<std::string*>(arg);
*encoded_fieled = "";
PutVarint64(encoded_fieled, 0);
}
});
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
int ttl_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
auto compaction_reason = compaction->compaction_reason();
if (compaction_reason == CompactionReason::kTtl) {
ttl_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Add two L6 files with key ranges: [1 .. 100], [101 .. 200].
Random rnd(301);
for (int i = 1; i <= 100; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
// Get the first file's creation time. This will be the oldest file in the
// DB. Compactions inolving this file's descendents should keep getting
// this time.
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
uint64_t oldest_time = level_to_files[0][0].oldest_ancester_time;
// Add 1 hour and do another flush.
env_->MockSleepForSeconds(1 * 60 * 60);
for (int i = 101; i <= 200; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
MoveFilesToLevel(6);
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel());
env_->MockSleepForSeconds(1 * 60 * 60);
// Add two L4 files with key ranges: [1 .. 50], [51 .. 150].
for (int i = 1; i <= 50; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
env_->MockSleepForSeconds(1 * 60 * 60);
for (int i = 51; i <= 150; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
MoveFilesToLevel(4);
ASSERT_EQ("0,0,0,0,2,0,2", FilesPerLevel());
env_->MockSleepForSeconds(1 * 60 * 60);
// Add one L1 file with key range: [26, 75].
for (int i = 26; i <= 75; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(1);
ASSERT_EQ("0,1,0,0,2,0,2", FilesPerLevel());
// LSM tree:
// L1: [26 .. 75]
// L4: [1 .. 50][51 ..... 150]
// L6: [1 ........ 100][101 .... 200]
//
// On TTL expiry, TTL compaction should be initiated on L1 file, and the
// compactions should keep going on until the key range hits bottom level.
// In other words: the compaction on this data range "cascasdes" until
// reaching the bottom level.
//
// Order of events on TTL expiry:
// 1. L1 file falls to L3 via 2 trivial moves which are initiated by the
// ttl
// compaction.
// 2. A TTL compaction happens between L3 and L4 files. Output file in L4.
// 3. The new output file from L4 falls to L5 via 1 trival move initiated
// by the ttl compaction.
// 4. A TTL compaction happens between L5 and L6 files. Ouptut in L6.
// Add 25 hours and do a write
env_->MockSleepForSeconds(25 * 60 * 60);
ASSERT_OK(Put(Key(1), "1"));
if (if_restart) {
Reopen(options);
} else {
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("1,0,0,0,0,0,1", FilesPerLevel());
ASSERT_EQ(5, ttl_compactions);
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
ASSERT_EQ(oldest_time, level_to_files[6][0].oldest_ancester_time);
env_->MockSleepForSeconds(25 * 60 * 60);
ASSERT_OK(Put(Key(2), "1"));
if (if_restart) {
Reopen(options);
} else {
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("1,0,0,0,0,0,1", FilesPerLevel());
ASSERT_GE(ttl_compactions, 6);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
}
TEST_F(DBCompactionTest, LevelPeriodicCompaction) {
env_->SetMockSleep();
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 100;
for (bool if_restart : {false, true}) {
for (bool if_open_all_files : {false, true}) {
Options options = CurrentOptions();
options.periodic_compaction_seconds = 48 * 60 * 60; // 2 days
if (if_open_all_files) {
options.max_open_files = -1; // needed for ttl compaction
} else {
options.max_open_files = 20;
}
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = 0;
});
// In the case where all files are opened and doing DB restart
// forcing the file creation time in manifest file to be 0 to
// simulate the case of reading from an old version.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"VersionEdit::EncodeTo:VarintFileCreationTime", [&](void* arg) {
if (if_restart && if_open_all_files) {
std::string* encoded_fieled = static_cast<std::string*>(arg);
*encoded_fieled = "";
PutVarint64(encoded_fieled, 0);
}
});
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
int periodic_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
auto compaction_reason = compaction->compaction_reason();
if (compaction_reason == CompactionReason::kPeriodicCompaction) {
periodic_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2", FilesPerLevel());
ASSERT_EQ(0, periodic_compactions);
// Add 50 hours and do a write
env_->MockSleepForSeconds(50 * 60 * 60);
ASSERT_OK(Put("a", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Assert that the files stay in the same level
ASSERT_EQ("3", FilesPerLevel());
// The two old files go through the periodic compaction process
ASSERT_EQ(2, periodic_compactions);
MoveFilesToLevel(1);
ASSERT_EQ("0,3", FilesPerLevel());
// Add another 50 hours and do another write
env_->MockSleepForSeconds(50 * 60 * 60);
ASSERT_OK(Put("b", "2"));
if (if_restart) {
Reopen(options);
} else {
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("1,3", FilesPerLevel());
// The three old files now go through the periodic compaction process. 2
// + 3.
ASSERT_EQ(5, periodic_compactions);
// Add another 50 hours and do another write
env_->MockSleepForSeconds(50 * 60 * 60);
ASSERT_OK(Put("c", "3"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2,3", FilesPerLevel());
// The four old files now go through the periodic compaction process. 5
// + 4.
ASSERT_EQ(9, periodic_compactions);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
}
TEST_F(DBCompactionTest, LevelPeriodicCompactionWithOldDB) {
// This test makes sure that periodic compactions are working with a DB
// where file_creation_time of some files is 0.
// After compactions the new files are created with a valid file_creation_time
const int kNumKeysPerFile = 32;
const int kNumFiles = 4;
const int kValueSize = 100;
Options options = CurrentOptions();
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
int periodic_compactions = 0;
bool set_file_creation_time_to_zero = true;
bool set_creation_time_to_zero = true;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
auto compaction_reason = compaction->compaction_reason();
if (compaction_reason == CompactionReason::kPeriodicCompaction) {
periodic_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PropertyBlockBuilder::AddTableProperty:Start", [&](void* arg) {
TableProperties* props = reinterpret_cast<TableProperties*>(arg);
if (set_file_creation_time_to_zero) {
props->file_creation_time = 0;
}
if (set_creation_time_to_zero) {
props->creation_time = 0;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < kNumFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
// Move the first two files to L2.
if (i == 1) {
MoveFilesToLevel(2);
set_creation_time_to_zero = false;
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2,0,2", FilesPerLevel());
ASSERT_EQ(0, periodic_compactions);
Close();
set_file_creation_time_to_zero = false;
// Forward the clock by 2 days.
env_->MockSleepForSeconds(2 * 24 * 60 * 60);
options.periodic_compaction_seconds = 1 * 24 * 60 * 60; // 1 day
Reopen(options);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2,0,2", FilesPerLevel());
// Make sure that all files go through periodic compaction.
ASSERT_EQ(kNumFiles, periodic_compactions);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, LevelPeriodicAndTtlCompaction) {
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 100;
Options options = CurrentOptions();
options.ttl = 10 * 60 * 60; // 10 hours
options.periodic_compaction_seconds = 48 * 60 * 60; // 2 days
options.max_open_files = -1; // needed for both periodic and ttl compactions
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
int periodic_compactions = 0;
int ttl_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
auto compaction_reason = compaction->compaction_reason();
if (compaction_reason == CompactionReason::kPeriodicCompaction) {
periodic_compactions++;
} else if (compaction_reason == CompactionReason::kTtl) {
ttl_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(3);
ASSERT_EQ("0,0,0,2", FilesPerLevel());
ASSERT_EQ(0, periodic_compactions);
ASSERT_EQ(0, ttl_compactions);
// Add some time greater than periodic_compaction_time.
env_->MockSleepForSeconds(50 * 60 * 60);
ASSERT_OK(Put("a", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Files in the bottom level go through periodic compactions.
ASSERT_EQ("1,0,0,2", FilesPerLevel());
ASSERT_EQ(2, periodic_compactions);
ASSERT_EQ(0, ttl_compactions);
// Add a little more time than ttl
env_->MockSleepForSeconds(11 * 60 * 60);
ASSERT_OK(Put("b", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Notice that the previous file in level 1 falls down to the bottom level
// due to ttl compactions, one level at a time.
// And bottom level files don't get picked up for ttl compactions.
ASSERT_EQ("1,0,0,3", FilesPerLevel());
ASSERT_EQ(2, periodic_compactions);
ASSERT_EQ(3, ttl_compactions);
// Add some time greater than periodic_compaction_time.
env_->MockSleepForSeconds(50 * 60 * 60);
ASSERT_OK(Put("c", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Previous L0 file falls one level at a time to bottom level due to ttl.
// And all 4 bottom files go through periodic compactions.
ASSERT_EQ("1,0,0,4", FilesPerLevel());
ASSERT_EQ(6, periodic_compactions);
ASSERT_EQ(6, ttl_compactions);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, LevelTtlBooster) {
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 3;
const int kValueSize = 1000;
Options options = CurrentOptions();
options.ttl = 10 * 60 * 60; // 10 hours
options.periodic_compaction_seconds = 480 * 60 * 60; // very long
options.level0_file_num_compaction_trigger = 2;
options.max_bytes_for_level_base = 5 * uint64_t{kNumKeysPerFile * kValueSize};
options.max_open_files = -1; // needed for both periodic and ttl compactions
options.compaction_pri = CompactionPri::kMinOverlappingRatio;
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(2);
ASSERT_EQ("0,0,3", FilesPerLevel());
// Create some files for L1
for (int i = 0; i < 2; i++) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(Put(Key(2 * j + i), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ("0,1,3", FilesPerLevel());
// Make the new L0 files qualify TTL boosting and generate one more to trigger
// L1 -> L2 compaction. Old files will be picked even if their priority is
// lower without boosting.
env_->MockSleepForSeconds(8 * 60 * 60);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(Put(Key(kNumKeysPerFile * 2 + 2 * j + i),
rnd.RandomString(kValueSize * 2)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ("0,1,2", FilesPerLevel());
ASSERT_GT(SizeAtLevel(1), kNumKeysPerFile * 4 * kValueSize);
}
TEST_F(DBCompactionTest, LevelPeriodicCompactionWithCompactionFilters) {
class TestCompactionFilter : public CompactionFilter {
const char* Name() const override { return "TestCompactionFilter"; }
};
class TestCompactionFilterFactory : public CompactionFilterFactory {
const char* Name() const override { return "TestCompactionFilterFactory"; }
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& /*context*/) override {
return std::unique_ptr<CompactionFilter>(new TestCompactionFilter());
}
};
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 100;
Random rnd(301);
Options options = CurrentOptions();
TestCompactionFilter test_compaction_filter;
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
enum CompactionFilterType {
kUseCompactionFilter,
kUseCompactionFilterFactory
};
for (CompactionFilterType comp_filter_type :
{kUseCompactionFilter, kUseCompactionFilterFactory}) {
// Assert that periodic compactions are not enabled.
ASSERT_EQ(port::kMaxUint64 - 1, options.periodic_compaction_seconds);
if (comp_filter_type == kUseCompactionFilter) {
options.compaction_filter = &test_compaction_filter;
options.compaction_filter_factory.reset();
} else if (comp_filter_type == kUseCompactionFilterFactory) {
options.compaction_filter = nullptr;
options.compaction_filter_factory.reset(
new TestCompactionFilterFactory());
}
DestroyAndReopen(options);
// periodic_compaction_seconds should be set to the sanitized value when
// a compaction filter or a compaction filter factory is used.
ASSERT_EQ(30 * 24 * 60 * 60,
dbfull()->GetOptions().periodic_compaction_seconds);
int periodic_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
auto compaction_reason = compaction->compaction_reason();
if (compaction_reason == CompactionReason::kPeriodicCompaction) {
periodic_compactions++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("2", FilesPerLevel());
ASSERT_EQ(0, periodic_compactions);
// Add 31 days and do a write
env_->MockSleepForSeconds(31 * 24 * 60 * 60);
ASSERT_OK(Put("a", "1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Assert that the files stay in the same level
ASSERT_EQ("3", FilesPerLevel());
// The two old files go through the periodic compaction process
ASSERT_EQ(2, periodic_compactions);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBCompactionTest, CompactRangeDelayedByL0FileCount) {
// Verify that, when `CompactRangeOptions::allow_write_stall == false`, manual
// compaction only triggers flush after it's sure stall won't be triggered for
// L0 file count going too high.
const int kNumL0FilesTrigger = 4;
const int kNumL0FilesLimit = 8;
// i == 0: verifies normal case where stall is avoided by delay
// i == 1: verifies no delay in edge case where stall trigger is same as
// compaction trigger, so stall can't be avoided
for (int i = 0; i < 2; ++i) {
Options options = CurrentOptions();
options.level0_slowdown_writes_trigger = kNumL0FilesLimit;
if (i == 0) {
options.level0_file_num_compaction_trigger = kNumL0FilesTrigger;
} else {
options.level0_file_num_compaction_trigger = kNumL0FilesLimit;
}
Reopen(options);
if (i == 0) {
// ensure the auto compaction doesn't finish until manual compaction has
// had a chance to be delayed.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait",
"CompactionJob::Run():End"}});
} else {
// ensure the auto-compaction doesn't finish until manual compaction has
// continued without delay.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:StallWaitDone",
"CompactionJob::Run():End"}});
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int j = 0; j < kNumL0FilesLimit - 1; ++j) {
for (int k = 0; k < 2; ++k) {
ASSERT_OK(Put(Key(k), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
auto manual_compaction_thread = port::Thread([this]() {
CompactRangeOptions cro;
cro.allow_write_stall = false;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
});
manual_compaction_thread.join();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(1), 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBCompactionTest, CompactRangeDelayedByImmMemTableCount) {
// Verify that, when `CompactRangeOptions::allow_write_stall == false`, manual
// compaction only triggers flush after it's sure stall won't be triggered for
// immutable memtable count going too high.
const int kNumImmMemTableLimit = 8;
// i == 0: verifies normal case where stall is avoided by delay
// i == 1: verifies no delay in edge case where stall trigger is same as flush
// trigger, so stall can't be avoided
for (int i = 0; i < 2; ++i) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
// the delay limit is one less than the stop limit. This test focuses on
// avoiding delay limit, but this option sets stop limit, so add one.
options.max_write_buffer_number = kNumImmMemTableLimit + 1;
if (i == 1) {
options.min_write_buffer_number_to_merge = kNumImmMemTableLimit;
}
Reopen(options);
if (i == 0) {
// ensure the flush doesn't finish until manual compaction has had a
// chance to be delayed.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait",
"FlushJob::WriteLevel0Table"}});
} else {
// ensure the flush doesn't finish until manual compaction has continued
// without delay.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:StallWaitDone",
"FlushJob::WriteLevel0Table"}});
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int j = 0; j < kNumImmMemTableLimit - 1; ++j) {
ASSERT_OK(Put(Key(0), rnd.RandomString(1024)));
FlushOptions flush_opts;
flush_opts.wait = false;
flush_opts.allow_write_stall = true;
ASSERT_OK(dbfull()->Flush(flush_opts));
}
auto manual_compaction_thread = port::Thread([this]() {
CompactRangeOptions cro;
cro.allow_write_stall = false;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
});
manual_compaction_thread.join();
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_GT(NumTableFilesAtLevel(1), 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBCompactionTest, CompactRangeShutdownWhileDelayed) {
// Verify that, when `CompactRangeOptions::allow_write_stall == false`, delay
// does not hang if CF is dropped or DB is closed
const int kNumL0FilesTrigger = 4;
const int kNumL0FilesLimit = 8;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0FilesTrigger;
options.level0_slowdown_writes_trigger = kNumL0FilesLimit;
// i == 0: DB::DropColumnFamily() on CompactRange's target CF unblocks it
// i == 1: DB::CancelAllBackgroundWork() unblocks CompactRange. This is to
// simulate what happens during Close as we can't call Close (it
// blocks on the auto-compaction, making a cycle).
for (int i = 0; i < 2; ++i) {
CreateAndReopenWithCF({"one"}, options);
// The calls to close CF/DB wait until the manual compaction stalls.
// The auto-compaction waits until the manual compaction finishes to ensure
// the signal comes from closing CF/DB, not from compaction making progress.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait",
"DBCompactionTest::CompactRangeShutdownWhileDelayed:PreShutdown"},
{"DBCompactionTest::CompactRangeShutdownWhileDelayed:PostManual",
"CompactionJob::Run():End"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int j = 0; j < kNumL0FilesLimit - 1; ++j) {
for (int k = 0; k < 2; ++k) {
ASSERT_OK(Put(1, Key(k), rnd.RandomString(1024)));
}
ASSERT_OK(Flush(1));
}
auto manual_compaction_thread = port::Thread([this, i]() {
CompactRangeOptions cro;
cro.allow_write_stall = false;
if (i == 0) {
ASSERT_TRUE(db_->CompactRange(cro, handles_[1], nullptr, nullptr)
.IsColumnFamilyDropped());
} else {
ASSERT_TRUE(db_->CompactRange(cro, handles_[1], nullptr, nullptr)
.IsShutdownInProgress());
}
});
TEST_SYNC_POINT(
"DBCompactionTest::CompactRangeShutdownWhileDelayed:PreShutdown");
if (i == 0) {
ASSERT_OK(db_->DropColumnFamily(handles_[1]));
} else {
dbfull()->CancelAllBackgroundWork(false /* wait */);
}
manual_compaction_thread.join();
TEST_SYNC_POINT(
"DBCompactionTest::CompactRangeShutdownWhileDelayed:PostManual");
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBCompactionTest, CompactRangeSkipFlushAfterDelay) {
// Verify that, when `CompactRangeOptions::allow_write_stall == false`,
// CompactRange skips its flush if the delay is long enough that the memtables
// existing at the beginning of the call have already been flushed.
const int kNumL0FilesTrigger = 4;
const int kNumL0FilesLimit = 8;
Options options = CurrentOptions();
options.level0_slowdown_writes_trigger = kNumL0FilesLimit;
options.level0_file_num_compaction_trigger = kNumL0FilesTrigger;
Reopen(options);
Random rnd(301);
// The manual flush includes the memtable that was active when CompactRange
// began. So it unblocks CompactRange and precludes its flush. Throughout the
// test, stall conditions are upheld via high L0 file count.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::WaitUntilFlushWouldNotStallWrites:StallWait",
"DBCompactionTest::CompactRangeSkipFlushAfterDelay:PreFlush"},
{"DBCompactionTest::CompactRangeSkipFlushAfterDelay:PostFlush",
"DBImpl::FlushMemTable:StallWaitDone"},
{"DBImpl::FlushMemTable:StallWaitDone", "CompactionJob::Run():End"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
//used for the delayable flushes
FlushOptions flush_opts;
flush_opts.allow_write_stall = true;
for (int i = 0; i < kNumL0FilesLimit - 1; ++i) {
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(dbfull()->Flush(flush_opts));
}
auto manual_compaction_thread = port::Thread([this]() {
CompactRangeOptions cro;
cro.allow_write_stall = false;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
});
TEST_SYNC_POINT("DBCompactionTest::CompactRangeSkipFlushAfterDelay:PreFlush");
ASSERT_OK(Put(ToString(0), rnd.RandomString(1024)));
ASSERT_OK(dbfull()->Flush(flush_opts));
ASSERT_OK(Put(ToString(0), rnd.RandomString(1024)));
TEST_SYNC_POINT("DBCompactionTest::CompactRangeSkipFlushAfterDelay:PostFlush");
manual_compaction_thread.join();
// If CompactRange's flush was skipped, the final Put above will still be
// in the active memtable.
std::string num_keys_in_memtable;
ASSERT_TRUE(db_->GetProperty(DB::Properties::kNumEntriesActiveMemTable,
&num_keys_in_memtable));
ASSERT_EQ(ToString(1), num_keys_in_memtable);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBCompactionTest, CompactRangeFlushOverlappingMemtable) {
// Verify memtable only gets flushed if it contains data overlapping the range
// provided to `CompactRange`. Tests all kinds of overlap/non-overlap.
const int kNumEndpointKeys = 5;
std::string keys[kNumEndpointKeys] = {"a", "b", "c", "d", "e"};
Options options = CurrentOptions();
options.disable_auto_compactions = true;
Reopen(options);
// One extra iteration for nullptr, which means left side of interval is
// unbounded.
for (int i = 0; i <= kNumEndpointKeys; ++i) {
Slice begin;
Slice* begin_ptr;
if (i == 0) {
begin_ptr = nullptr;
} else {
begin = keys[i - 1];
begin_ptr = &begin;
}
// Start at `i` so right endpoint comes after left endpoint. One extra
// iteration for nullptr, which means right side of interval is unbounded.
for (int j = std::max(0, i - 1); j <= kNumEndpointKeys; ++j) {
Slice end;
Slice* end_ptr;
if (j == kNumEndpointKeys) {
end_ptr = nullptr;
} else {
end = keys[j];
end_ptr = &end;
}
ASSERT_OK(Put("b", "val"));
ASSERT_OK(Put("d", "val"));
CompactRangeOptions compact_range_opts;
ASSERT_OK(db_->CompactRange(compact_range_opts, begin_ptr, end_ptr));
uint64_t get_prop_tmp, num_memtable_entries = 0;
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumEntriesImmMemTables,
&get_prop_tmp));
num_memtable_entries += get_prop_tmp;
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumEntriesActiveMemTable,
&get_prop_tmp));
num_memtable_entries += get_prop_tmp;
if (begin_ptr == nullptr || end_ptr == nullptr ||
(i <= 4 && j >= 1 && (begin != "c" || end != "c"))) {
// In this case `CompactRange`'s range overlapped in some way with the
// memtable's range, so flush should've happened. Then "b" and "d" won't
// be in the memtable.
ASSERT_EQ(0, num_memtable_entries);
} else {
ASSERT_EQ(2, num_memtable_entries);
// flush anyways to prepare for next iteration
ASSERT_OK(db_->Flush(FlushOptions()));
}
}
}
}
TEST_F(DBCompactionTest, CompactionStatsTest) {
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
CompactionStatsCollector* collector = new CompactionStatsCollector();
options.listeners.emplace_back(collector);
DestroyAndReopen(options);
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 5000; j++) {
ASSERT_OK(Put(std::to_string(j), std::string(1, 'A')));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ColumnFamilyHandleImpl* cfh =
static_cast<ColumnFamilyHandleImpl*>(dbfull()->DefaultColumnFamily());
ColumnFamilyData* cfd = cfh->cfd();
VerifyCompactionStats(*cfd, *collector);
}
TEST_F(DBCompactionTest, SubcompactionEvent) {
class SubCompactionEventListener : public EventListener {
public:
void OnCompactionBegin(DB* /*db*/, const CompactionJobInfo& ci) override {
InstrumentedMutexLock l(&mutex_);
ASSERT_EQ(running_compactions_.find(ci.job_id),
running_compactions_.end());
running_compactions_.emplace(ci.job_id, std::unordered_set<int>());
}
void OnCompactionCompleted(DB* /*db*/,
const CompactionJobInfo& ci) override {
InstrumentedMutexLock l(&mutex_);
auto it = running_compactions_.find(ci.job_id);
ASSERT_NE(it, running_compactions_.end());
ASSERT_EQ(it->second.size(), 0);
running_compactions_.erase(it);
}
void OnSubcompactionBegin(const SubcompactionJobInfo& si) override {
InstrumentedMutexLock l(&mutex_);
auto it = running_compactions_.find(si.job_id);
ASSERT_NE(it, running_compactions_.end());
auto r = it->second.insert(si.subcompaction_job_id);
ASSERT_TRUE(r.second); // each subcompaction_job_id should be different
total_subcompaction_cnt_++;
}
void OnSubcompactionCompleted(const SubcompactionJobInfo& si) override {
InstrumentedMutexLock l(&mutex_);
auto it = running_compactions_.find(si.job_id);
ASSERT_NE(it, running_compactions_.end());
auto r = it->second.erase(si.subcompaction_job_id);
ASSERT_EQ(r, 1);
}
size_t GetRunningCompactionCount() {
InstrumentedMutexLock l(&mutex_);
return running_compactions_.size();
}
size_t GetTotalSubcompactionCount() {
InstrumentedMutexLock l(&mutex_);
return total_subcompaction_cnt_;
}
private:
InstrumentedMutex mutex_;
std::unordered_map<int, std::unordered_set<int>> running_compactions_;
size_t total_subcompaction_cnt_ = 0;
};
Options options = CurrentOptions();
options.target_file_size_base = 1024;
options.level0_file_num_compaction_trigger = 10;
auto* listener = new SubCompactionEventListener();
options.listeners.emplace_back(listener);
DestroyAndReopen(options);
// generate 4 files @ L2
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 10; j++) {
int key_id = i * 10 + j;
ASSERT_OK(Put(Key(key_id), "value" + ToString(key_id)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(2);
// generate 2 files @ L1 which overlaps with L2 files
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 10; j++) {
int key_id = i * 20 + j * 2;
ASSERT_OK(Put(Key(key_id), "value" + ToString(key_id)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(1);
ASSERT_EQ(FilesPerLevel(), "0,2,4");
CompactRangeOptions comp_opts;
comp_opts.max_subcompactions = 4;
Status s = dbfull()->CompactRange(comp_opts, nullptr, nullptr);
ASSERT_OK(s);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// make sure there's no running compaction
ASSERT_EQ(listener->GetRunningCompactionCount(), 0);
// and sub compaction is triggered
ASSERT_GT(listener->GetTotalSubcompactionCount(), 0);
}
TEST_F(DBCompactionTest, CompactFilesOutputRangeConflict) {
// LSM setup:
// L1: [ba bz]
// L2: [a b] [c d]
// L3: [a b] [c d]
//
// Thread 1: Thread 2:
// Begin compacting all L2->L3
// Compact [ba bz] L1->L3
// End compacting all L2->L3
//
// The compaction operation in thread 2 should be disallowed because the range
// overlaps with the compaction in thread 1, which also covers that range in
// L3.
Options options = CurrentOptions();
FlushedFileCollector* collector = new FlushedFileCollector();
options.listeners.emplace_back(collector);
Reopen(options);
for (int level = 3; level >= 2; --level) {
ASSERT_OK(Put("a", "val"));
ASSERT_OK(Put("b", "val"));
ASSERT_OK(Flush());
ASSERT_OK(Put("c", "val"));
ASSERT_OK(Put("d", "val"));
ASSERT_OK(Flush());
MoveFilesToLevel(level);
}
ASSERT_OK(Put("ba", "val"));
ASSERT_OK(Put("bz", "val"));
ASSERT_OK(Flush());
MoveFilesToLevel(1);
SyncPoint::GetInstance()->LoadDependency({
{"CompactFilesImpl:0",
"DBCompactionTest::CompactFilesOutputRangeConflict:Thread2Begin"},
{"DBCompactionTest::CompactFilesOutputRangeConflict:Thread2End",
"CompactFilesImpl:1"},
});
SyncPoint::GetInstance()->EnableProcessing();
auto bg_thread = port::Thread([&]() {
// Thread 1
std::vector<std::string> filenames = collector->GetFlushedFiles();
filenames.pop_back();
ASSERT_OK(db_->CompactFiles(CompactionOptions(), filenames,
3 /* output_level */));
});
// Thread 2
TEST_SYNC_POINT(
"DBCompactionTest::CompactFilesOutputRangeConflict:Thread2Begin");
std::string filename = collector->GetFlushedFiles().back();
ASSERT_FALSE(
db_->CompactFiles(CompactionOptions(), {filename}, 3 /* output_level */)
.ok());
TEST_SYNC_POINT(
"DBCompactionTest::CompactFilesOutputRangeConflict:Thread2End");
bg_thread.join();
}
TEST_F(DBCompactionTest, CompactionHasEmptyOutput) {
Options options = CurrentOptions();
SstStatsCollector* collector = new SstStatsCollector();
options.level0_file_num_compaction_trigger = 2;
options.listeners.emplace_back(collector);
Reopen(options);
// Make sure the L0 files overlap to prevent trivial move.
ASSERT_OK(Put("a", "val"));
ASSERT_OK(Put("b", "val"));
ASSERT_OK(Flush());
ASSERT_OK(Delete("a"));
ASSERT_OK(Delete("b"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
// Expect one file creation to start for each flush, and zero for compaction
// since no keys are written.
ASSERT_EQ(2, collector->num_ssts_creation_started());
}
TEST_F(DBCompactionTest, CompactionLimiter) {
const int kNumKeysPerFile = 10;
const int kMaxBackgroundThreads = 64;
struct CompactionLimiter {
std::string name;
int limit_tasks;
int max_tasks;
int tasks;
std::shared_ptr<ConcurrentTaskLimiter> limiter;
};
std::vector<CompactionLimiter> limiter_settings;
limiter_settings.push_back({"limiter_1", 1, 0, 0, nullptr});
limiter_settings.push_back({"limiter_2", 2, 0, 0, nullptr});
limiter_settings.push_back({"limiter_3", 3, 0, 0, nullptr});
for (auto& ls : limiter_settings) {
ls.limiter.reset(NewConcurrentTaskLimiter(ls.name, ls.limit_tasks));
}
std::shared_ptr<ConcurrentTaskLimiter> unique_limiter(
NewConcurrentTaskLimiter("unique_limiter", -1));
const char* cf_names[] = {"default", "0", "1", "2", "3", "4", "5",
"6", "7", "8", "9", "a", "b", "c", "d", "e", "f" };
const unsigned int cf_count = sizeof cf_names / sizeof cf_names[0];
std::unordered_map<std::string, CompactionLimiter*> cf_to_limiter;
Options options = CurrentOptions();
options.write_buffer_size = 110 * 1024; // 110KB
options.arena_block_size = 4096;
options.num_levels = 3;
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 64;
options.level0_stop_writes_trigger = 64;
options.max_background_jobs = kMaxBackgroundThreads; // Enough threads
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
options.max_write_buffer_number = 10; // Enough memtables
DestroyAndReopen(options);
std::vector<Options> option_vector;
option_vector.reserve(cf_count);
for (unsigned int cf = 0; cf < cf_count; cf++) {
ColumnFamilyOptions cf_opt(options);
if (cf == 0) {
// "Default" CF does't use compaction limiter
cf_opt.compaction_thread_limiter = nullptr;
} else if (cf == 1) {
// "1" CF uses bypass compaction limiter
unique_limiter->SetMaxOutstandingTask(-1);
cf_opt.compaction_thread_limiter = unique_limiter;
} else {
// Assign limiter by mod
auto& ls = limiter_settings[cf % 3];
cf_opt.compaction_thread_limiter = ls.limiter;
cf_to_limiter[cf_names[cf]] = &ls;
}
option_vector.emplace_back(DBOptions(options), cf_opt);
}
for (unsigned int cf = 1; cf < cf_count; cf++) {
CreateColumnFamilies({cf_names[cf]}, option_vector[cf]);
}
ReopenWithColumnFamilies(std::vector<std::string>(cf_names,
cf_names + cf_count),
option_vector);
port::Mutex mutex;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:BeforeCompaction", [&](void* arg) {
const auto& cf_name = static_cast<ColumnFamilyData*>(arg)->GetName();
auto iter = cf_to_limiter.find(cf_name);
if (iter != cf_to_limiter.end()) {
MutexLock l(&mutex);
ASSERT_GE(iter->second->limit_tasks, ++iter->second->tasks);
iter->second->max_tasks =
std::max(iter->second->max_tasks, iter->second->limit_tasks);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:AfterCompaction", [&](void* arg) {
const auto& cf_name = static_cast<ColumnFamilyData*>(arg)->GetName();
auto iter = cf_to_limiter.find(cf_name);
if (iter != cf_to_limiter.end()) {
MutexLock l(&mutex);
ASSERT_GE(--iter->second->tasks, 0);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Block all compact threads in thread pool.
const size_t kTotalFlushTasks = kMaxBackgroundThreads / 4;
const size_t kTotalCompactTasks = kMaxBackgroundThreads - kTotalFlushTasks;
env_->SetBackgroundThreads((int)kTotalFlushTasks, Env::HIGH);
env_->SetBackgroundThreads((int)kTotalCompactTasks, Env::LOW);
test::SleepingBackgroundTask sleeping_compact_tasks[kTotalCompactTasks];
// Block all compaction threads in thread pool.
for (size_t i = 0; i < kTotalCompactTasks; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_compact_tasks[i], Env::LOW);
sleeping_compact_tasks[i].WaitUntilSleeping();
}
int keyIndex = 0;
for (int n = 0; n < options.level0_file_num_compaction_trigger; n++) {
for (unsigned int cf = 0; cf < cf_count; cf++) {
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(cf, Key(keyIndex++), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(cf, "", ""));
}
for (unsigned int cf = 0; cf < cf_count; cf++) {
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[cf]));
}
}
// Enough L0 files to trigger compaction
for (unsigned int cf = 0; cf < cf_count; cf++) {
ASSERT_EQ(NumTableFilesAtLevel(0, cf),
options.level0_file_num_compaction_trigger);
}
// Create more files for one column family, which triggers speed up
// condition, all compactions will be scheduled.
for (int num = 0; num < options.level0_file_num_compaction_trigger; num++) {
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(0, Key(i), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(0, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[0]));
ASSERT_EQ(options.level0_file_num_compaction_trigger + num + 1,
NumTableFilesAtLevel(0, 0));
}
// All CFs are pending compaction
ASSERT_EQ(cf_count, env_->GetThreadPoolQueueLen(Env::LOW));
// Unblock all compaction threads
for (size_t i = 0; i < kTotalCompactTasks; i++) {
sleeping_compact_tasks[i].WakeUp();
sleeping_compact_tasks[i].WaitUntilDone();
}
for (unsigned int cf = 0; cf < cf_count; cf++) {
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[cf]));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Max outstanding compact tasks reached limit
for (auto& ls : limiter_settings) {
ASSERT_EQ(ls.limit_tasks, ls.max_tasks);
ASSERT_EQ(0, ls.limiter->GetOutstandingTask());
}
// test manual compaction under a fully throttled limiter
int cf_test = 1;
unique_limiter->SetMaxOutstandingTask(0);
// flush one more file to cf 1
for (int i = 0; i < kNumKeysPerFile; i++) {
ASSERT_OK(Put(cf_test, Key(keyIndex++), ""));
}
// put extra key to trigger flush
ASSERT_OK(Put(cf_test, "", ""));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[cf_test]));
ASSERT_EQ(1, NumTableFilesAtLevel(0, cf_test));
Compact(cf_test, Key(0), Key(keyIndex));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
INSTANTIATE_TEST_CASE_P(DBCompactionTestWithParam, DBCompactionTestWithParam,
::testing::Values(std::make_tuple(1, true),
std::make_tuple(1, false),
std::make_tuple(4, true),
std::make_tuple(4, false)));
TEST_P(DBCompactionDirectIOTest, DirectIO) {
Options options = CurrentOptions();
Destroy(options);
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.use_direct_io_for_flush_and_compaction = GetParam();
options.env = MockEnv::Create(Env::Default());
Reopen(options);
bool readahead = false;
SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::OpenCompactionOutputFile", [&](void* arg) {
bool* use_direct_writes = static_cast<bool*>(arg);
ASSERT_EQ(*use_direct_writes,
options.use_direct_io_for_flush_and_compaction);
});
if (options.use_direct_io_for_flush_and_compaction) {
SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions:direct_io", [&](void* /*arg*/) {
readahead = true;
});
}
SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu"}, options);
MakeTables(3, "p", "q", 1);
ASSERT_EQ("1,1,1", FilesPerLevel(1));
Compact(1, "p", "q");
ASSERT_EQ(readahead, options.use_direct_reads);
ASSERT_EQ("0,0,1", FilesPerLevel(1));
Destroy(options);
delete options.env;
}
INSTANTIATE_TEST_CASE_P(DBCompactionDirectIOTest, DBCompactionDirectIOTest,
testing::Bool());
class CompactionPriTest : public DBTestBase,
public testing::WithParamInterface<uint32_t> {
public:
CompactionPriTest()
: DBTestBase("compaction_pri_test", /*env_do_fsync=*/true) {
compaction_pri_ = GetParam();
}
// Required if inheriting from testing::WithParamInterface<>
static void SetUpTestCase() {}
static void TearDownTestCase() {}
uint32_t compaction_pri_;
};
TEST_P(CompactionPriTest, Test) {
Options options = CurrentOptions();
options.write_buffer_size = 16 * 1024;
options.compaction_pri = static_cast<CompactionPri>(compaction_pri_);
options.hard_pending_compaction_bytes_limit = 256 * 1024;
options.max_bytes_for_level_base = 64 * 1024;
options.max_bytes_for_level_multiplier = 4;
options.compression = kNoCompression;
DestroyAndReopen(options);
Random rnd(301);
const int kNKeys = 5000;
int keys[kNKeys];
for (int i = 0; i < kNKeys; i++) {
keys[i] = i;
}
RandomShuffle(std::begin(keys), std::end(keys), rnd.Next());
for (int i = 0; i < kNKeys; i++) {
ASSERT_OK(Put(Key(keys[i]), rnd.RandomString(102)));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
for (int i = 0; i < kNKeys; i++) {
ASSERT_NE("NOT_FOUND", Get(Key(i)));
}
}
INSTANTIATE_TEST_CASE_P(
CompactionPriTest, CompactionPriTest,
::testing::Values(CompactionPri::kByCompensatedSize,
CompactionPri::kOldestLargestSeqFirst,
CompactionPri::kOldestSmallestSeqFirst,
CompactionPri::kMinOverlappingRatio));
class NoopMergeOperator : public MergeOperator {
public:
NoopMergeOperator() {}
bool FullMergeV2(const MergeOperationInput& /*merge_in*/,
MergeOperationOutput* merge_out) const override {
std::string val("bar");
merge_out->new_value = val;
return true;
}
const char* Name() const override { return "Noop"; }
};
TEST_F(DBCompactionTest, PartialManualCompaction) {
Options opts = CurrentOptions();
opts.num_levels = 3;
opts.level0_file_num_compaction_trigger = 10;
opts.compression = kNoCompression;
opts.merge_operator.reset(new NoopMergeOperator());
opts.target_file_size_base = 10240;
DestroyAndReopen(opts);
Random rnd(301);
for (auto i = 0; i < 8; ++i) {
for (auto j = 0; j < 10; ++j) {
ASSERT_OK(Merge("foo", rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(2);
std::string prop;
EXPECT_TRUE(dbfull()->GetProperty(DB::Properties::kLiveSstFilesSize, &prop));
uint64_t max_compaction_bytes = atoi(prop.c_str()) / 2;
ASSERT_OK(dbfull()->SetOptions(
{{"max_compaction_bytes", std::to_string(max_compaction_bytes)}}));
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
TEST_F(DBCompactionTest, ManualCompactionFailsInReadOnlyMode) {
// Regression test for bug where manual compaction hangs forever when the DB
// is in read-only mode. Verify it now at least returns, despite failing.
const int kNumL0Files = 4;
std::unique_ptr<FaultInjectionTestEnv> mock_env(
new FaultInjectionTestEnv(env_));
Options opts = CurrentOptions();
opts.disable_auto_compactions = true;
opts.env = mock_env.get();
DestroyAndReopen(opts);
Random rnd(301);
for (int i = 0; i < kNumL0Files; ++i) {
// Make sure files are overlapping in key-range to prevent trivial move.
ASSERT_OK(Put("key1", rnd.RandomString(1024)));
ASSERT_OK(Put("key2", rnd.RandomString(1024)));
ASSERT_OK(Flush());
}
ASSERT_EQ(kNumL0Files, NumTableFilesAtLevel(0));
// Enter read-only mode by failing a write.
mock_env->SetFilesystemActive(false);
// Make sure this is outside `CompactRange`'s range so that it doesn't fail
// early trying to flush memtable.
ASSERT_NOK(Put("key3", rnd.RandomString(1024)));
// In the bug scenario, the first manual compaction would fail and forget to
// unregister itself, causing the second one to hang forever due to conflict
// with a non-running compaction.
CompactRangeOptions cro;
cro.exclusive_manual_compaction = false;
Slice begin_key("key1");
Slice end_key("key2");
ASSERT_NOK(dbfull()->CompactRange(cro, &begin_key, &end_key));
ASSERT_NOK(dbfull()->CompactRange(cro, &begin_key, &end_key));
// Close before mock_env destruct.
Close();
}
// ManualCompactionBottomLevelOptimization tests the bottom level manual
// compaction optimization to skip recompacting files created by Ln-1 to Ln
// compaction
TEST_F(DBCompactionTest, ManualCompactionBottomLevelOptimized) {
Options opts = CurrentOptions();
opts.num_levels = 3;
opts.level0_file_num_compaction_trigger = 5;
opts.compression = kNoCompression;
opts.merge_operator.reset(new NoopMergeOperator());
opts.target_file_size_base = 1024;
opts.max_bytes_for_level_multiplier = 2;
opts.disable_auto_compactions = true;
DestroyAndReopen(opts);
ColumnFamilyHandleImpl* cfh =
static_cast<ColumnFamilyHandleImpl*>(dbfull()->DefaultColumnFamily());
ColumnFamilyData* cfd = cfh->cfd();
InternalStats* internal_stats_ptr = cfd->internal_stats();
ASSERT_NE(internal_stats_ptr, nullptr);
Random rnd(301);
for (auto i = 0; i < 8; ++i) {
for (auto j = 0; j < 10; ++j) {
ASSERT_OK(
Put("foo" + std::to_string(i * 10 + j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(2);
for (auto i = 0; i < 8; ++i) {
for (auto j = 0; j < 10; ++j) {
ASSERT_OK(
Put("bar" + std::to_string(i * 10 + j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
const std::vector<InternalStats::CompactionStats>& comp_stats =
internal_stats_ptr->TEST_GetCompactionStats();
int num = comp_stats[2].num_input_files_in_output_level;
ASSERT_EQ(num, 0);
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
const std::vector<InternalStats::CompactionStats>& comp_stats2 =
internal_stats_ptr->TEST_GetCompactionStats();
num = comp_stats2[2].num_input_files_in_output_level;
ASSERT_EQ(num, 0);
}
TEST_F(DBCompactionTest, ManualCompactionMax) {
uint64_t l1_avg_size = 0, l2_avg_size = 0;
auto generate_sst_func = [&]() {
Random rnd(301);
for (auto i = 0; i < 100; i++) {
for (auto j = 0; j < 10; j++) {
ASSERT_OK(Put(Key(i * 10 + j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(2);
for (auto i = 0; i < 10; i++) {
for (auto j = 0; j < 10; j++) {
ASSERT_OK(Put(Key(i * 100 + j * 10), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
MoveFilesToLevel(1);
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
uint64_t total = 0;
for (const auto& file : level_to_files[1]) {
total += file.compensated_file_size;
}
l1_avg_size = total / level_to_files[1].size();
total = 0;
for (const auto& file : level_to_files[2]) {
total += file.compensated_file_size;
}
l2_avg_size = total / level_to_files[2].size();
};
std::atomic_int num_compactions(0);
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BGWorkCompaction", [&](void* /*arg*/) { ++num_compactions; });
SyncPoint::GetInstance()->EnableProcessing();
Options opts = CurrentOptions();
opts.disable_auto_compactions = true;
// with default setting (1.6G by default), it should cover all files in 1
// compaction
DestroyAndReopen(opts);
generate_sst_func();
num_compactions.store(0);
CompactRangeOptions cro;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_TRUE(num_compactions.load() == 1);
// split the compaction to 5
int num_split = 5;
DestroyAndReopen(opts);
generate_sst_func();
uint64_t total_size = (l1_avg_size * 10) + (l2_avg_size * 100);
opts.max_compaction_bytes = total_size / num_split;
opts.target_file_size_base = total_size / num_split;
Reopen(opts);
num_compactions.store(0);
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_TRUE(num_compactions.load() == num_split);
// very small max_compaction_bytes, it should still move forward
opts.max_compaction_bytes = l1_avg_size / 2;
opts.target_file_size_base = l1_avg_size / 2;
DestroyAndReopen(opts);
generate_sst_func();
num_compactions.store(0);
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_TRUE(num_compactions.load() > 10);
// dynamically set the option
num_split = 2;
opts.max_compaction_bytes = 0;
DestroyAndReopen(opts);
generate_sst_func();
total_size = (l1_avg_size * 10) + (l2_avg_size * 100);
Status s = db_->SetOptions(
{{"max_compaction_bytes", std::to_string(total_size / num_split)},
{"target_file_size_base", std::to_string(total_size / num_split)}});
ASSERT_OK(s);
num_compactions.store(0);
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_TRUE(num_compactions.load() == num_split);
}
TEST_F(DBCompactionTest, CompactionDuringShutdown) {
Options opts = CurrentOptions();
opts.level0_file_num_compaction_trigger = 2;
opts.disable_auto_compactions = true;
DestroyAndReopen(opts);
ColumnFamilyHandleImpl* cfh =
static_cast<ColumnFamilyHandleImpl*>(dbfull()->DefaultColumnFamily());
ColumnFamilyData* cfd = cfh->cfd();
InternalStats* internal_stats_ptr = cfd->internal_stats();
ASSERT_NE(internal_stats_ptr, nullptr);
Random rnd(301);
for (auto i = 0; i < 2; ++i) {
for (auto j = 0; j < 10; ++j) {
ASSERT_OK(
Put("foo" + std::to_string(i * 10 + j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCompaction:NonTrivial:BeforeRun",
[&](void* /*arg*/) { dbfull()->shutting_down_.store(true); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Status s = dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_TRUE(s.ok() || s.IsShutdownInProgress());
ASSERT_OK(dbfull()->error_handler_.GetBGError());
}
// FixFileIngestionCompactionDeadlock tests and verifies that compaction and
// file ingestion do not cause deadlock in the event of write stall triggered
// by number of L0 files reaching level0_stop_writes_trigger.
TEST_P(DBCompactionTestWithParam, FixFileIngestionCompactionDeadlock) {
const int kNumKeysPerFile = 100;
// Generate SST files.
Options options = CurrentOptions();
// Generate an external SST file containing a single key, i.e. 99
std::string sst_files_dir = dbname_ + "/sst_files/";
ASSERT_OK(DestroyDir(env_, sst_files_dir));
ASSERT_OK(env_->CreateDir(sst_files_dir));
SstFileWriter sst_writer(EnvOptions(), options);
const std::string sst_file_path = sst_files_dir + "test.sst";
ASSERT_OK(sst_writer.Open(sst_file_path));
ASSERT_OK(sst_writer.Put(Key(kNumKeysPerFile - 1), "value"));
ASSERT_OK(sst_writer.Finish());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::IngestExternalFile:AfterIncIngestFileCounter",
"BackgroundCallCompaction:0"},
});
SyncPoint::GetInstance()->EnableProcessing();
options.write_buffer_size = 110 << 10; // 110KB
options.level0_file_num_compaction_trigger =
options.level0_stop_writes_trigger;
options.max_subcompactions = max_subcompactions_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
Random rnd(301);
// Generate level0_stop_writes_trigger L0 files to trigger write stop
for (int i = 0; i != options.level0_file_num_compaction_trigger; ++i) {
for (int j = 0; j != kNumKeysPerFile; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(990)));
}
if (0 == i) {
// When we reach here, the memtables have kNumKeysPerFile keys. Note that
// flush is not yet triggered. We need to write an extra key so that the
// write path will call PreprocessWrite and flush the previous key-value
// pairs to e flushed. After that, there will be the newest key in the
// memtable, and a bunch of L0 files. Since there is already one key in
// the memtable, then for i = 1, 2, ..., we do not have to write this
// extra key to trigger flush.
ASSERT_OK(Put("", ""));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(NumTableFilesAtLevel(0 /*level*/, 0 /*cf*/), i + 1);
}
// When we reach this point, there will be level0_stop_writes_trigger L0
// files and one extra key (99) in memory, which overlaps with the external
// SST file. Write stall triggers, and can be cleared only after compaction
// reduces the number of L0 files.
// Compaction will also be triggered since we have reached the threshold for
// auto compaction. Note that compaction may begin after the following file
// ingestion thread and waits for ingestion to finish.
// Thread to ingest file with overlapping key range with the current
// memtable. Consequently ingestion will trigger a flush. The flush MUST
// proceed without waiting for the write stall condition to clear, otherwise
// deadlock can happen.
port::Thread ingestion_thr([&]() {
IngestExternalFileOptions ifo;
Status s = db_->IngestExternalFile({sst_file_path}, ifo);
ASSERT_OK(s);
});
// More write to trigger write stop
ingestion_thr.join();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
Close();
}
TEST_F(DBCompactionTest, ConsistencyFailTest) {
Options options = CurrentOptions();
options.force_consistency_checks = true;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistency0", [&](void* arg) {
auto p =
reinterpret_cast<std::pair<FileMetaData**, FileMetaData**>*>(arg);
// just swap the two FileMetaData so that we hit error
// in CheckConsistency funcion
FileMetaData* temp = *(p->first);
*(p->first) = *(p->second);
*(p->second) = temp;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int k = 0; k < 2; ++k) {
ASSERT_OK(Put("foo", "bar"));
Status s = Flush();
if (k < 1) {
ASSERT_OK(s);
} else {
ASSERT_TRUE(s.IsCorruption());
}
}
ASSERT_NOK(Put("foo", "bar"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(DBCompactionTest, ConsistencyFailTest2) {
Options options = CurrentOptions();
options.force_consistency_checks = true;
options.target_file_size_base = 1000;
options.level0_file_num_compaction_trigger = 2;
BlockBasedTableOptions bbto;
bbto.block_size = 400; // small block size
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistency1", [&](void* arg) {
auto p =
reinterpret_cast<std::pair<FileMetaData**, FileMetaData**>*>(arg);
// just swap the two FileMetaData so that we hit error
// in CheckConsistency funcion
FileMetaData* temp = *(p->first);
*(p->first) = *(p->second);
*(p->second) = temp;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
std::string value = rnd.RandomString(1000);
ASSERT_OK(Put("foo1", value));
ASSERT_OK(Put("z", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo2", value));
ASSERT_OK(Put("z", ""));
Status s = Flush();
ASSERT_TRUE(s.ok() || s.IsCorruption());
// This probably returns non-OK, but we rely on the next Put()
// to determine the DB is frozen.
ASSERT_NOK(dbfull()->TEST_WaitForCompact());
ASSERT_NOK(Put("foo", "bar"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
void IngestOneKeyValue(DBImpl* db, const std::string& key,
const std::string& value, const Options& options) {
ExternalSstFileInfo info;
std::string f = test::PerThreadDBPath("sst_file" + key);
EnvOptions env;
ROCKSDB_NAMESPACE::SstFileWriter writer(env, options);
auto s = writer.Open(f);
ASSERT_OK(s);
// ASSERT_OK(writer.Put(Key(), ""));
ASSERT_OK(writer.Put(key, value));
ASSERT_OK(writer.Finish(&info));
IngestExternalFileOptions ingest_opt;
ASSERT_OK(db->IngestExternalFile({info.file_path}, ingest_opt));
}
TEST_P(DBCompactionTestWithParam,
FlushAfterIntraL0CompactionCheckConsistencyFail) {
Options options = CurrentOptions();
options.force_consistency_checks = true;
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = 5;
options.max_background_compactions = 2;
options.max_subcompactions = max_subcompactions_;
DestroyAndReopen(options);
const size_t kValueSize = 1 << 20;
Random rnd(301);
std::atomic<int> pick_intra_l0_count(0);
std::string value(rnd.RandomString(kValueSize));
// The L0->L1 must be picked before we begin ingesting files to trigger
// intra-L0 compaction, and must not finish until after an intra-L0
// compaction has been picked.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"LevelCompactionPicker::PickCompaction:Return",
"DBCompactionTestWithParam::"
"FlushAfterIntraL0CompactionCheckConsistencyFail:L0ToL1Ready"},
{"LevelCompactionPicker::PickCompactionBySize:0",
"CompactionJob::Run():Start"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FindIntraL0Compaction",
[&](void* /*arg*/) { pick_intra_l0_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// prevents trivial move
for (int i = 0; i < 10; ++i) {
ASSERT_OK(Put(Key(i), "")); // prevents trivial move
}
ASSERT_OK(Flush());
Compact("", Key(99));
ASSERT_EQ(0, NumTableFilesAtLevel(0));
// Flush 5 L0 sst.
for (int i = 0; i < 5; ++i) {
ASSERT_OK(Put(Key(i + 1), value));
ASSERT_OK(Flush());
}
ASSERT_EQ(5, NumTableFilesAtLevel(0));
// Put one key, to make smallest log sequence number in this memtable is less
// than sst which would be ingested in next step.
ASSERT_OK(Put(Key(0), "a"));
ASSERT_EQ(5, NumTableFilesAtLevel(0));
TEST_SYNC_POINT(
"DBCompactionTestWithParam::"
"FlushAfterIntraL0CompactionCheckConsistencyFail:L0ToL1Ready");
// Ingest 5 L0 sst. And this files would trigger PickIntraL0Compaction.
for (int i = 5; i < 10; i++) {
ASSERT_EQ(i, NumTableFilesAtLevel(0));
IngestOneKeyValue(dbfull(), Key(i), value, options);
}
// Put one key, to make biggest log sequence number in this memtable is bigger
// than sst which would be ingested in next step.
ASSERT_OK(Put(Key(2), "b"));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
ASSERT_GT(level_to_files[0].size(), 0);
ASSERT_GT(pick_intra_l0_count.load(), 0);
ASSERT_OK(Flush());
}
TEST_P(DBCompactionTestWithParam,
IntraL0CompactionAfterFlushCheckConsistencyFail) {
Options options = CurrentOptions();
options.force_consistency_checks = true;
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = 5;
options.max_background_compactions = 2;
options.max_subcompactions = max_subcompactions_;
options.write_buffer_size = 2 << 20;
options.max_write_buffer_number = 6;
DestroyAndReopen(options);
const size_t kValueSize = 1 << 20;
Random rnd(301);
std::string value(rnd.RandomString(kValueSize));
std::string value2(rnd.RandomString(kValueSize));
std::string bigvalue = value + value;
// prevents trivial move
for (int i = 0; i < 10; ++i) {
ASSERT_OK(Put(Key(i), "")); // prevents trivial move
}
ASSERT_OK(Flush());
Compact("", Key(99));
ASSERT_EQ(0, NumTableFilesAtLevel(0));
std::atomic<int> pick_intra_l0_count(0);
// The L0->L1 must be picked before we begin ingesting files to trigger
// intra-L0 compaction, and must not finish until after an intra-L0
// compaction has been picked.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"LevelCompactionPicker::PickCompaction:Return",
"DBCompactionTestWithParam::"
"IntraL0CompactionAfterFlushCheckConsistencyFail:L0ToL1Ready"},
{"LevelCompactionPicker::PickCompactionBySize:0",
"CompactionJob::Run():Start"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FindIntraL0Compaction",
[&](void* /*arg*/) { pick_intra_l0_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Make 6 L0 sst.
for (int i = 0; i < 6; ++i) {
if (i % 2 == 0) {
IngestOneKeyValue(dbfull(), Key(i), value, options);
} else {
ASSERT_OK(Put(Key(i), value));
ASSERT_OK(Flush());
}
}
ASSERT_EQ(6, NumTableFilesAtLevel(0));
// Stop run flush job
env_->SetBackgroundThreads(1, Env::HIGH);
test::SleepingBackgroundTask sleeping_tasks;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_tasks,
Env::Priority::HIGH);
sleeping_tasks.WaitUntilSleeping();
// Put many keys to make memtable request to flush
for (int i = 0; i < 6; ++i) {
ASSERT_OK(Put(Key(i), bigvalue));
}
ASSERT_EQ(6, NumTableFilesAtLevel(0));
TEST_SYNC_POINT(
"DBCompactionTestWithParam::"
"IntraL0CompactionAfterFlushCheckConsistencyFail:L0ToL1Ready");
// ingest file to trigger IntraL0Compaction
for (int i = 6; i < 10; ++i) {
ASSERT_EQ(i, NumTableFilesAtLevel(0));
IngestOneKeyValue(dbfull(), Key(i), value2, options);
}
// Wake up flush job
sleeping_tasks.WakeUp();
sleeping_tasks.WaitUntilDone();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
uint64_t error_count = 0;
db_->GetIntProperty("rocksdb.background-errors", &error_count);
ASSERT_EQ(error_count, 0);
ASSERT_GT(pick_intra_l0_count.load(), 0);
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(bigvalue, Get(Key(i)));
}
for (int i = 6; i < 10; ++i) {
ASSERT_EQ(value2, Get(Key(i)));
}
}
TEST_P(DBCompactionTestWithBottommostParam, SequenceKeysManualCompaction) {
constexpr int kSstNum = 10;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
DestroyAndReopen(options);
// Generate some sst files on level 0 with sequence keys (no overlap)
for (int i = 0; i < kSstNum; i++) {
for (int j = 1; j < UCHAR_MAX; j++) {
auto key = std::string(kSstNum, '\0');
key[kSstNum - i] += static_cast<char>(j);
ASSERT_OK(Put(key, std::string(i % 1000, 'A')));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(ToString(kSstNum), FilesPerLevel(0));
auto cro = CompactRangeOptions();
cro.bottommost_level_compaction = bottommost_level_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
if (bottommost_level_compaction_ == BottommostLevelCompaction::kForce ||
bottommost_level_compaction_ ==
BottommostLevelCompaction::kForceOptimized) {
// Real compaction to compact all sst files from level 0 to 1 file on level
// 1
ASSERT_EQ("0,1", FilesPerLevel(0));
} else {
// Just trivial move from level 0 -> 1
ASSERT_EQ("0," + ToString(kSstNum), FilesPerLevel(0));
}
}
INSTANTIATE_TEST_CASE_P(
DBCompactionTestWithBottommostParam, DBCompactionTestWithBottommostParam,
::testing::Values(BottommostLevelCompaction::kSkip,
BottommostLevelCompaction::kIfHaveCompactionFilter,
BottommostLevelCompaction::kForce,
BottommostLevelCompaction::kForceOptimized));
TEST_F(DBCompactionTest, UpdateLevelSubCompactionTest) {
Options options = CurrentOptions();
options.max_subcompactions = 10;
options.target_file_size_base = 1 << 10; // 1KB
DestroyAndReopen(options);
bool has_compaction = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->max_subcompactions() == 10);
has_compaction = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_TRUE(dbfull()->GetDBOptions().max_subcompactions == 10);
// Trigger compaction
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 5000; j++) {
ASSERT_OK(Put(std::to_string(j), std::string(1, 'A')));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_TRUE(has_compaction);
has_compaction = false;
ASSERT_OK(dbfull()->SetDBOptions({{"max_subcompactions", "2"}}));
ASSERT_TRUE(dbfull()->GetDBOptions().max_subcompactions == 2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->max_subcompactions() == 2);
has_compaction = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Trigger compaction
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 5000; j++) {
ASSERT_OK(Put(std::to_string(j), std::string(1, 'A')));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_TRUE(has_compaction);
}
TEST_F(DBCompactionTest, UpdateUniversalSubCompactionTest) {
Options options = CurrentOptions();
options.max_subcompactions = 10;
options.compaction_style = kCompactionStyleUniversal;
options.target_file_size_base = 1 << 10; // 1KB
DestroyAndReopen(options);
bool has_compaction = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionBuilder::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->max_subcompactions() == 10);
has_compaction = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Trigger compaction
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 5000; j++) {
ASSERT_OK(Put(std::to_string(j), std::string(1, 'A')));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_TRUE(has_compaction);
has_compaction = false;
ASSERT_OK(dbfull()->SetDBOptions({{"max_subcompactions", "2"}}));
ASSERT_TRUE(dbfull()->GetDBOptions().max_subcompactions == 2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UniversalCompactionBuilder::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
ASSERT_TRUE(compaction->max_subcompactions() == 2);
has_compaction = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Trigger compaction
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 5000; j++) {
ASSERT_OK(Put(std::to_string(j), std::string(1, 'A')));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_TRUE(has_compaction);
}
TEST_P(ChangeLevelConflictsWithAuto, TestConflict) {
// A `CompactRange()` may race with an automatic compaction, we'll need
// to make sure it doesn't corrupte the data.
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
Reopen(options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v1"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,0,1", FilesPerLevel(0));
// Run a qury to refitting to level 1 while another thread writing to
// the same level.
SyncPoint::GetInstance()->LoadDependency({
// The first two dependencies ensure the foreground creates an L0 file
// between the background compaction's L0->L1 and its L1->L2.
{
"DBImpl::CompactRange:BeforeRefit:1",
"AutoCompactionFinished1",
},
{
"AutoCompactionFinished2",
"DBImpl::CompactRange:BeforeRefit:2",
},
});
SyncPoint::GetInstance()->EnableProcessing();
std::thread auto_comp([&] {
TEST_SYNC_POINT("AutoCompactionFinished1");
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v2"));
ASSERT_OK(Flush());
ASSERT_OK(Put("bar", "v3"));
ASSERT_OK(Put("foo", "v3"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
TEST_SYNC_POINT("AutoCompactionFinished2");
});
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = GetParam() ? 1 : 0;
// This should return non-OK, but it's more important for the test to
// make sure that the DB is not corrupted.
ASSERT_NOK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
auto_comp.join();
// Refitting didn't happen.
SyncPoint::GetInstance()->DisableProcessing();
// Write something to DB just make sure that consistency check didn't
// fail and make the DB readable.
}
INSTANTIATE_TEST_CASE_P(ChangeLevelConflictsWithAuto,
ChangeLevelConflictsWithAuto, testing::Bool());
TEST_F(DBCompactionTest, ChangeLevelCompactRangeConflictsWithManual) {
// A `CompactRange()` with `change_level == true` needs to execute its final
// step, `ReFitLevel()`, in isolation. Previously there was a bug where
// refitting could target the same level as an ongoing manual compaction,
// leading to overlapping files in that level.
//
// This test ensures that case is not possible by verifying any manual
// compaction issued during the `ReFitLevel()` phase fails with
// `Status::Incomplete`.
Options options = CurrentOptions();
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
Reopen(options);
// Setup an LSM with three levels populated.
Random rnd(301);
int key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,0,2", FilesPerLevel(0));
GenerateNewFile(&rnd, &key_idx);
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1,1,2", FilesPerLevel(0));
// The background thread will refit L2->L1 while the
// foreground thread will try to simultaneously compact L0->L1.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
// The first two dependencies ensure the foreground creates an L0 file
// between the background compaction's L0->L1 and its L1->L2.
{
"DBImpl::RunManualCompaction()::1",
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:"
"PutFG",
},
{
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:"
"FlushedFG",
"DBImpl::RunManualCompaction()::2",
},
// The next two dependencies ensure the foreground invokes
// `CompactRange()` while the background is refitting. The
// foreground's `CompactRange()` is guaranteed to attempt an L0->L1
// as we set it up with an empty memtable and a new L0 file.
{
"DBImpl::CompactRange:PreRefitLevel",
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:"
"CompactFG",
},
{
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:"
"CompactedFG",
"DBImpl::CompactRange:PostRefitLevel",
},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread refit_level_thread([&] {
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
});
TEST_SYNC_POINT(
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:PutFG");
// Make sure we have something new to compact in the foreground.
// Note key 1 is carefully chosen as it ensures the file we create here
// overlaps with one of the files being refitted L2->L1 in the background.
// If we chose key 0, the file created here would not overlap.
ASSERT_OK(Put(Key(1), "val"));
ASSERT_OK(Flush());
TEST_SYNC_POINT(
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:FlushedFG");
TEST_SYNC_POINT(
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:CompactFG");
ASSERT_TRUE(dbfull()
->CompactRange(CompactRangeOptions(), nullptr, nullptr)
.IsIncomplete());
TEST_SYNC_POINT(
"DBCompactionTest::ChangeLevelCompactRangeConflictsWithManual:"
"CompactedFG");
refit_level_thread.join();
}
TEST_F(DBCompactionTest, ChangeLevelErrorPathTest) {
// This test is added to ensure that RefitLevel() error paths are clearing
// internal flags and to test that subsequent valid RefitLevel() calls
// succeeds
Options options = CurrentOptions();
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
Reopen(options);
ASSERT_EQ("", FilesPerLevel(0));
// Setup an LSM with three levels populated.
Random rnd(301);
int key_idx = 0;
GenerateNewFile(&rnd, &key_idx);
ASSERT_EQ("1", FilesPerLevel(0));
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,0,2", FilesPerLevel(0));
auto start_idx = key_idx;
GenerateNewFile(&rnd, &key_idx);
GenerateNewFile(&rnd, &key_idx);
auto end_idx = key_idx - 1;
ASSERT_EQ("1,1,2", FilesPerLevel(0));
// Next two CompactRange() calls are used to test exercise error paths within
// RefitLevel() before triggering a valid RefitLevel() call
// Trigger a refit to L1 first
{
std::string begin_string = Key(start_idx);
std::string end_string = Key(end_idx);
Slice begin(begin_string);
Slice end(end_string);
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(dbfull()->CompactRange(cro, &begin, &end));
}
ASSERT_EQ("0,3,2", FilesPerLevel(0));
// Try a refit from L2->L1 - this should fail and exercise error paths in
// RefitLevel()
{
// Select key range that matches the bottom most level (L2)
std::string begin_string = Key(0);
std::string end_string = Key(start_idx - 1);
Slice begin(begin_string);
Slice end(end_string);
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_NOK(dbfull()->CompactRange(cro, &begin, &end));
}
ASSERT_EQ("0,3,2", FilesPerLevel(0));
// Try a valid Refit request to ensure, the path is still working
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,5", FilesPerLevel(0));
}
TEST_F(DBCompactionTest, CompactionWithBlob) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char second_key[] = "second_key";
constexpr char first_value[] = "first_value";
constexpr char second_value[] = "second_value";
constexpr char third_value[] = "third_value";
ASSERT_OK(Put(first_key, first_value));
ASSERT_OK(Put(second_key, first_value));
ASSERT_OK(Flush());
ASSERT_OK(Put(first_key, second_value));
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
ASSERT_OK(Put(first_key, third_value));
ASSERT_OK(Put(second_key, third_value));
ASSERT_OK(Flush());
options.enable_blob_files = true;
Reopen(options);
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), begin, end));
ASSERT_EQ(Get(first_key), third_value);
ASSERT_EQ(Get(second_key), third_value);
VersionSet* const versions = dbfull()->GetVersionSet();
assert(versions);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
const auto& l1_files = storage_info->LevelFiles(1);
ASSERT_EQ(l1_files.size(), 1);
const FileMetaData* const table_file = l1_files[0];
ASSERT_NE(table_file, nullptr);
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_EQ(blob_files.size(), 1);
const auto& blob_file = blob_files.front();
ASSERT_NE(blob_file, nullptr);
ASSERT_EQ(table_file->smallest.user_key(), first_key);
ASSERT_EQ(table_file->largest.user_key(), second_key);
ASSERT_EQ(table_file->oldest_blob_file_number,
blob_file->GetBlobFileNumber());
ASSERT_EQ(blob_file->GetTotalBlobCount(), 2);
const InternalStats* const internal_stats = cfd->internal_stats();
ASSERT_NE(internal_stats, nullptr);
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_GE(compaction_stats.size(), 2);
ASSERT_EQ(compaction_stats[1].bytes_read_blob, 0);
ASSERT_EQ(compaction_stats[1].bytes_written, table_file->fd.GetFileSize());
ASSERT_EQ(compaction_stats[1].bytes_written_blob,
blob_file->GetTotalBlobBytes());
ASSERT_EQ(compaction_stats[1].num_output_files, 1);
ASSERT_EQ(compaction_stats[1].num_output_files_blob, 1);
}
class DBCompactionTestBlobError
: public DBCompactionTest,
public testing::WithParamInterface<std::string> {
public:
DBCompactionTestBlobError() : sync_point_(GetParam()) {}
std::string sync_point_;
};
INSTANTIATE_TEST_CASE_P(DBCompactionTestBlobError, DBCompactionTestBlobError,
::testing::ValuesIn(std::vector<std::string>{
"BlobFileBuilder::WriteBlobToFile:AddRecord",
"BlobFileBuilder::WriteBlobToFile:AppendFooter"}));
TEST_P(DBCompactionTestBlobError, CompactionError) {
Options options;
options.disable_auto_compactions = true;
options.env = env_;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char second_key[] = "second_key";
constexpr char first_value[] = "first_value";
constexpr char second_value[] = "second_value";
constexpr char third_value[] = "third_value";
ASSERT_OK(Put(first_key, first_value));
ASSERT_OK(Put(second_key, first_value));
ASSERT_OK(Flush());
ASSERT_OK(Put(first_key, second_value));
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
ASSERT_OK(Put(first_key, third_value));
ASSERT_OK(Put(second_key, third_value));
ASSERT_OK(Flush());
options.enable_blob_files = true;
Reopen(options);
SyncPoint::GetInstance()->SetCallBack(sync_point_, [this](void* arg) {
Status* const s = static_cast<Status*>(arg);
assert(s);
(*s) = Status::IOError(sync_point_);
});
SyncPoint::GetInstance()->EnableProcessing();
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_TRUE(db_->CompactRange(CompactRangeOptions(), begin, end).IsIOError());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
VersionSet* const versions = dbfull()->GetVersionSet();
assert(versions);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
ASSERT_NE(cfd, nullptr);
Version* const current = cfd->current();
ASSERT_NE(current, nullptr);
const VersionStorageInfo* const storage_info = current->storage_info();
ASSERT_NE(storage_info, nullptr);
const auto& l1_files = storage_info->LevelFiles(1);
ASSERT_TRUE(l1_files.empty());
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_TRUE(blob_files.empty());
const InternalStats* const internal_stats = cfd->internal_stats();
ASSERT_NE(internal_stats, nullptr);
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_GE(compaction_stats.size(), 2);
if (sync_point_ == "BlobFileBuilder::WriteBlobToFile:AddRecord") {
ASSERT_EQ(compaction_stats[1].bytes_read_blob, 0);
ASSERT_EQ(compaction_stats[1].bytes_written, 0);
ASSERT_EQ(compaction_stats[1].bytes_written_blob, 0);
ASSERT_EQ(compaction_stats[1].num_output_files, 0);
ASSERT_EQ(compaction_stats[1].num_output_files_blob, 0);
} else {
// SST file writing succeeded; blob file writing failed (during Finish)
ASSERT_EQ(compaction_stats[1].bytes_read_blob, 0);
ASSERT_GT(compaction_stats[1].bytes_written, 0);
ASSERT_EQ(compaction_stats[1].bytes_written_blob, 0);
ASSERT_EQ(compaction_stats[1].num_output_files, 1);
ASSERT_EQ(compaction_stats[1].num_output_files_blob, 0);
}
}
class DBCompactionTestBlobGC
: public DBCompactionTest,
public testing::WithParamInterface<std::tuple<double, bool>> {
public:
DBCompactionTestBlobGC()
: blob_gc_age_cutoff_(std::get<0>(GetParam())),
updated_enable_blob_files_(std::get<1>(GetParam())) {}
double blob_gc_age_cutoff_;
bool updated_enable_blob_files_;
};
INSTANTIATE_TEST_CASE_P(DBCompactionTestBlobGC, DBCompactionTestBlobGC,
::testing::Combine(::testing::Values(0.0, 0.5, 1.0),
::testing::Bool()));
TEST_P(DBCompactionTestBlobGC, CompactionWithBlobGC) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
options.enable_blob_files = true;
options.blob_file_size = 32; // one blob per file
options.enable_blob_garbage_collection = true;
options.blob_garbage_collection_age_cutoff = blob_gc_age_cutoff_;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char first_value[] = "first_value";
constexpr char second_key[] = "second_key";
constexpr char second_value[] = "second_value";
ASSERT_OK(Put(first_key, first_value));
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
constexpr char third_key[] = "third_key";
constexpr char third_value[] = "third_value";
constexpr char fourth_key[] = "fourth_key";
constexpr char fourth_value[] = "fourth_value";
ASSERT_OK(Put(third_key, third_value));
ASSERT_OK(Put(fourth_key, fourth_value));
ASSERT_OK(Flush());
const std::vector<uint64_t> original_blob_files = GetBlobFileNumbers();
ASSERT_EQ(original_blob_files.size(), 4);
const size_t cutoff_index = static_cast<size_t>(
options.blob_garbage_collection_age_cutoff * original_blob_files.size());
// Note: turning off enable_blob_files before the compaction results in
// garbage collected values getting inlined.
size_t expected_number_of_files = original_blob_files.size();
if (!updated_enable_blob_files_) {
ASSERT_OK(db_->SetOptions({{"enable_blob_files", "false"}}));
expected_number_of_files -= cutoff_index;
}
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), begin, end));
ASSERT_EQ(Get(first_key), first_value);
ASSERT_EQ(Get(second_key), second_value);
ASSERT_EQ(Get(third_key), third_value);
ASSERT_EQ(Get(fourth_key), fourth_value);
const std::vector<uint64_t> new_blob_files = GetBlobFileNumbers();
ASSERT_EQ(new_blob_files.size(), expected_number_of_files);
// Original blob files below the cutoff should be gone, original blob files at
// or above the cutoff should be still there
for (size_t i = cutoff_index; i < original_blob_files.size(); ++i) {
ASSERT_EQ(new_blob_files[i - cutoff_index], original_blob_files[i]);
}
VersionSet* const versions = dbfull()->GetVersionSet();
assert(versions);
assert(versions->GetColumnFamilySet());
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
assert(cfd);
const InternalStats* const internal_stats = cfd->internal_stats();
assert(internal_stats);
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_GE(compaction_stats.size(), 2);
if (blob_gc_age_cutoff_ > 0.0) {
ASSERT_GT(compaction_stats[1].bytes_read_blob, 0);
if (updated_enable_blob_files_) {
// GC relocated some blobs to new blob files
ASSERT_GT(compaction_stats[1].bytes_written_blob, 0);
ASSERT_EQ(compaction_stats[1].bytes_read_blob,
compaction_stats[1].bytes_written_blob);
} else {
// GC moved some blobs back to the LSM, no new blob files
ASSERT_EQ(compaction_stats[1].bytes_written_blob, 0);
}
} else {
ASSERT_EQ(compaction_stats[1].bytes_read_blob, 0);
ASSERT_EQ(compaction_stats[1].bytes_written_blob, 0);
}
}
TEST_F(DBCompactionTest, CompactionWithBlobGCError_CorruptIndex) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
options.enable_blob_files = true;
options.enable_blob_garbage_collection = true;
options.blob_garbage_collection_age_cutoff = 1.0;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char first_value[] = "first_value";
ASSERT_OK(Put(first_key, first_value));
constexpr char second_key[] = "second_key";
constexpr char second_value[] = "second_value";
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
constexpr char third_key[] = "third_key";
constexpr char third_value[] = "third_value";
ASSERT_OK(Put(third_key, third_value));
constexpr char fourth_key[] = "fourth_key";
constexpr char corrupt_blob_index[] = "foobar";
WriteBatch batch;
ASSERT_OK(WriteBatchInternal::PutBlobIndex(&batch, 0, fourth_key,
corrupt_blob_index));
ASSERT_OK(db_->Write(WriteOptions(), &batch));
ASSERT_OK(Flush());
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_TRUE(
db_->CompactRange(CompactRangeOptions(), begin, end).IsCorruption());
}
TEST_F(DBCompactionTest, CompactionWithBlobGCError_InlinedTTLIndex) {
constexpr uint64_t min_blob_size = 10;
Options options;
options.env = env_;
options.disable_auto_compactions = true;
options.enable_blob_files = true;
options.min_blob_size = min_blob_size;
options.enable_blob_garbage_collection = true;
options.blob_garbage_collection_age_cutoff = 1.0;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char first_value[] = "first_value";
ASSERT_OK(Put(first_key, first_value));
constexpr char second_key[] = "second_key";
constexpr char second_value[] = "second_value";
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
constexpr char third_key[] = "third_key";
constexpr char third_value[] = "third_value";
ASSERT_OK(Put(third_key, third_value));
constexpr char fourth_key[] = "fourth_key";
constexpr char blob[] = "short";
static_assert(sizeof(short) - 1 < min_blob_size,
"Blob too long to be inlined");
// Fake an inlined TTL blob index.
std::string blob_index;
constexpr uint64_t expiration = 1234567890;
BlobIndex::EncodeInlinedTTL(&blob_index, expiration, blob);
WriteBatch batch;
ASSERT_OK(
WriteBatchInternal::PutBlobIndex(&batch, 0, fourth_key, blob_index));
ASSERT_OK(db_->Write(WriteOptions(), &batch));
ASSERT_OK(Flush());
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_TRUE(
db_->CompactRange(CompactRangeOptions(), begin, end).IsCorruption());
}
TEST_F(DBCompactionTest, CompactionWithBlobGCError_IndexWithInvalidFileNumber) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
options.enable_blob_files = true;
options.enable_blob_garbage_collection = true;
options.blob_garbage_collection_age_cutoff = 1.0;
Reopen(options);
constexpr char first_key[] = "first_key";
constexpr char first_value[] = "first_value";
ASSERT_OK(Put(first_key, first_value));
constexpr char second_key[] = "second_key";
constexpr char second_value[] = "second_value";
ASSERT_OK(Put(second_key, second_value));
ASSERT_OK(Flush());
constexpr char third_key[] = "third_key";
constexpr char third_value[] = "third_value";
ASSERT_OK(Put(third_key, third_value));
constexpr char fourth_key[] = "fourth_key";
// Fake a blob index referencing a non-existent blob file.
std::string blob_index;
constexpr uint64_t blob_file_number = 1000;
constexpr uint64_t offset = 1234;
constexpr uint64_t size = 5678;
BlobIndex::EncodeBlob(&blob_index, blob_file_number, offset, size,
kNoCompression);
WriteBatch batch;
ASSERT_OK(
WriteBatchInternal::PutBlobIndex(&batch, 0, fourth_key, blob_index));
ASSERT_OK(db_->Write(WriteOptions(), &batch));
ASSERT_OK(Flush());
constexpr Slice* begin = nullptr;
constexpr Slice* end = nullptr;
ASSERT_TRUE(
db_->CompactRange(CompactRangeOptions(), begin, end).IsCorruption());
}
TEST_F(DBCompactionTest, CompactionWithChecksumHandoff1) {
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
return;
}
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
options.env = fault_fs_env.get();
options.create_if_missing = true;
options.checksum_handoff_file_types.Add(FileType::kTableFile);
Status s;
Reopen(options);
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
Destroy(options);
Reopen(options);
// The hash does not match, compaction write fails
// fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
// Since the file system returns IOStatus::Corruption, it is an
// unrecoverable error.
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void*) {
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s.severity(),
ROCKSDB_NAMESPACE::Status::Severity::kUnrecoverableError);
SyncPoint::GetInstance()->DisableProcessing();
Destroy(options);
Reopen(options);
// The file system does not support checksum handoff. The check
// will be ignored.
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kNoChecksum);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
// Each write will be similated as corrupted.
// Since the file system returns IOStatus::Corruption, it is an
// unrecoverable error.
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0",
[&](void*) { fault_fs->IngestDataCorruptionBeforeWrite(); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s.severity(),
ROCKSDB_NAMESPACE::Status::Severity::kUnrecoverableError);
SyncPoint::GetInstance()->DisableProcessing();
Destroy(options);
}
TEST_F(DBCompactionTest, CompactionWithChecksumHandoff2) {
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
return;
}
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
options.env = fault_fs_env.get();
options.create_if_missing = true;
Status s;
Reopen(options);
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
Destroy(options);
Reopen(options);
// options is not set, the checksum handoff will not be triggered
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void*) {
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
SyncPoint::GetInstance()->DisableProcessing();
Destroy(options);
Reopen(options);
// The file system does not support checksum handoff. The check
// will be ignored.
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kNoChecksum);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
// options is not set, the checksum handoff will not be triggered
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0",
[&](void*) { fault_fs->IngestDataCorruptionBeforeWrite(); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
Destroy(options);
}
TEST_F(DBCompactionTest, CompactionWithChecksumHandoffManifest1) {
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
return;
}
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
options.env = fault_fs_env.get();
options.create_if_missing = true;
options.checksum_handoff_file_types.Add(FileType::kDescriptorFile);
Status s;
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
Reopen(options);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
Destroy(options);
Reopen(options);
// The hash does not match, compaction write fails
// fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
// Since the file system returns IOStatus::Corruption, it is mapped to
// kFatalError error.
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void*) {
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kxxHash);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s.severity(), ROCKSDB_NAMESPACE::Status::Severity::kFatalError);
SyncPoint::GetInstance()->DisableProcessing();
Destroy(options);
}
TEST_F(DBCompactionTest, CompactionWithChecksumHandoffManifest2) {
if (mem_env_ || encrypted_env_) {
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
return;
}
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 3;
options.env = fault_fs_env.get();
options.create_if_missing = true;
options.checksum_handoff_file_types.Add(FileType::kDescriptorFile);
Status s;
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kNoChecksum);
Reopen(options);
// The file system does not support checksum handoff. The check
// will be ignored.
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s, Status::OK());
// Each write will be similated as corrupted.
// Since the file system returns IOStatus::Corruption, it is mapped to
// kFatalError error.
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
ASSERT_OK(Put(Key(0), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
s = Flush();
ASSERT_EQ(s, Status::OK());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:FlushMemTableFinished",
"BackgroundCallCompaction:0"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0",
[&](void*) { fault_fs->IngestDataCorruptionBeforeWrite(); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(Key(1), "value3"));
s = Flush();
ASSERT_EQ(s, Status::OK());
s = dbfull()->TEST_WaitForCompact();
ASSERT_EQ(s.severity(), ROCKSDB_NAMESPACE::Status::Severity::kFatalError);
SyncPoint::GetInstance()->DisableProcessing();
Destroy(options);
}
TEST_F(DBCompactionTest, FIFOWarm) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleFIFO;
options.num_levels = 1;
options.max_open_files = -1;
options.level0_file_num_compaction_trigger = 2;
options.create_if_missing = true;
CompactionOptionsFIFO fifo_options;
fifo_options.age_for_warm = 1000;
fifo_options.max_table_files_size = 100000000;
options.compaction_options_fifo = fifo_options;
env_->SetMockSleep();
Reopen(options);
int total_warm = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"NewWritableFile::FileOptions.temperature", [&](void* arg) {
Temperature temperature = *(static_cast<Temperature*>(arg));
if (temperature == Temperature::kWarm) {
total_warm++;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// The file system does not support checksum handoff. The check
// will be ignored.
ASSERT_OK(Put(Key(0), "value1"));
env_->MockSleepForSeconds(800);
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(0), "value1"));
env_->MockSleepForSeconds(800);
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(0), "value1"));
env_->MockSleepForSeconds(800);
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_OK(Put(Key(0), "value1"));
env_->MockSleepForSeconds(800);
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ColumnFamilyMetaData metadata;
db_->GetColumnFamilyMetaData(&metadata);
ASSERT_EQ(4, metadata.file_count);
ASSERT_EQ(Temperature::kUnknown, metadata.levels[0].files[0].temperature);
ASSERT_EQ(Temperature::kUnknown, metadata.levels[0].files[1].temperature);
ASSERT_EQ(Temperature::kWarm, metadata.levels[0].files[2].temperature);
ASSERT_EQ(Temperature::kWarm, metadata.levels[0].files[3].temperature);
ASSERT_EQ(2, total_warm);
Destroy(options);
}
TEST_F(DBCompactionTest, DisableMultiManualCompaction) {
const int kNumL0Files = 10;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
// Generate 2 levels of file to make sure the manual compaction is not skipped
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(Key(i), "value"));
if (i % 2) {
ASSERT_OK(Flush());
}
}
MoveFilesToLevel(2);
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(Key(i), "value"));
if (i % 2) {
ASSERT_OK(Flush());
}
}
MoveFilesToLevel(1);
// Block compaction queue
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
port::Thread compact_thread1([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = false;
std::string begin_str = Key(0);
std::string end_str = Key(3);
Slice b = begin_str;
Slice e = end_str;
auto s = db_->CompactRange(cro, &b, &e);
ASSERT_TRUE(s.IsIncomplete());
});
port::Thread compact_thread2([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = false;
std::string begin_str = Key(4);
std::string end_str = Key(7);
Slice b = begin_str;
Slice e = end_str;
auto s = db_->CompactRange(cro, &b, &e);
ASSERT_TRUE(s.IsIncomplete());
});
// Disable manual compaction should cancel both manual compactions and both
// compaction should return incomplete.
db_->DisableManualCompaction();
compact_thread1.join();
compact_thread2.join();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
ASSERT_OK(dbfull()->TEST_WaitForCompact(true));
}
TEST_F(DBCompactionTest, DisableJustStartedManualCompaction) {
const int kNumL0Files = 4;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
// generate files, but avoid trigger auto compaction
for (int i = 0; i < kNumL0Files / 2; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
// make sure the manual compaction background is started but not yet set the
// status to in_progress, then cancel the manual compaction, which should not
// result in segfault
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkCompaction",
"DBCompactionTest::DisableJustStartedManualCompaction:"
"PreDisableManualCompaction"},
{"DBImpl::RunManualCompaction:Unscheduled",
"BackgroundCallCompaction:0"}});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread compact_thread([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
auto s = db_->CompactRange(cro, nullptr, nullptr);
ASSERT_TRUE(s.IsIncomplete());
});
TEST_SYNC_POINT(
"DBCompactionTest::DisableJustStartedManualCompaction:"
"PreDisableManualCompaction");
db_->DisableManualCompaction();
compact_thread.join();
}
TEST_F(DBCompactionTest, DisableInProgressManualCompaction) {
const int kNumL0Files = 4;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCompaction:InProgress",
"DBCompactionTest::DisableInProgressManualCompaction:"
"PreDisableManualCompaction"},
{"DBImpl::RunManualCompaction:Unscheduled",
"CompactionJob::Run():Start"}});
SyncPoint::GetInstance()->EnableProcessing();
// generate files, but avoid trigger auto compaction
for (int i = 0; i < kNumL0Files / 2; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
port::Thread compact_thread([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
auto s = db_->CompactRange(cro, nullptr, nullptr);
ASSERT_TRUE(s.IsIncomplete());
});
TEST_SYNC_POINT(
"DBCompactionTest::DisableInProgressManualCompaction:"
"PreDisableManualCompaction");
db_->DisableManualCompaction();
compact_thread.join();
}
TEST_F(DBCompactionTest, DisableManualCompactionThreadQueueFull) {
const int kNumL0Files = 4;
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::RunManualCompaction:Scheduled",
"DBCompactionTest::DisableManualCompactionThreadQueueFull:"
"PreDisableManualCompaction"}});
SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
// Block compaction queue
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
// generate files, but avoid trigger auto compaction
for (int i = 0; i < kNumL0Files / 2; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
port::Thread compact_thread([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
auto s = db_->CompactRange(cro, nullptr, nullptr);
ASSERT_TRUE(s.IsIncomplete());
});
TEST_SYNC_POINT(
"DBCompactionTest::DisableManualCompactionThreadQueueFull:"
"PreDisableManualCompaction");
// Generate more files to trigger auto compaction which is scheduled after
// manual compaction. Has to generate 4 more files because existing files are
// pending compaction
for (int i = 0; i < kNumL0Files; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
ASSERT_EQ(ToString(kNumL0Files + (kNumL0Files / 2)), FilesPerLevel(0));
db_->DisableManualCompaction();
// CompactRange should return before the compaction has the chance to run
compact_thread.join();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
ASSERT_OK(dbfull()->TEST_WaitForCompact(true));
ASSERT_EQ("0,1", FilesPerLevel(0));
}
TEST_F(DBCompactionTest, DisableManualCompactionThreadQueueFullDBClose) {
const int kNumL0Files = 4;
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::RunManualCompaction:Scheduled",
"DBCompactionTest::DisableManualCompactionThreadQueueFullDBClose:"
"PreDisableManualCompaction"}});
SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
// Block compaction queue
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
// generate files, but avoid trigger auto compaction
for (int i = 0; i < kNumL0Files / 2; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
port::Thread compact_thread([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
auto s = db_->CompactRange(cro, nullptr, nullptr);
ASSERT_TRUE(s.IsIncomplete());
});
TEST_SYNC_POINT(
"DBCompactionTest::DisableManualCompactionThreadQueueFullDBClose:"
"PreDisableManualCompaction");
// Generate more files to trigger auto compaction which is scheduled after
// manual compaction. Has to generate 4 more files because existing files are
// pending compaction
for (int i = 0; i < kNumL0Files; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
ASSERT_EQ(ToString(kNumL0Files + (kNumL0Files / 2)), FilesPerLevel(0));
db_->DisableManualCompaction();
// CompactRange should return before the compaction has the chance to run
compact_thread.join();
// Try close DB while manual compaction is canceled but still in the queue.
// And an auto-triggered compaction is also in the queue.
auto s = db_->Close();
ASSERT_OK(s);
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBCompactionTest, DBCloseWithManualCompaction) {
const int kNumL0Files = 4;
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::RunManualCompaction:Scheduled",
"DBCompactionTest::DisableManualCompactionThreadQueueFullDBClose:"
"PreDisableManualCompaction"}});
SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
// Block compaction queue
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
// generate files, but avoid trigger auto compaction
for (int i = 0; i < kNumL0Files / 2; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
port::Thread compact_thread([&]() {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
auto s = db_->CompactRange(cro, nullptr, nullptr);
ASSERT_TRUE(s.IsIncomplete());
});
TEST_SYNC_POINT(
"DBCompactionTest::DisableManualCompactionThreadQueueFullDBClose:"
"PreDisableManualCompaction");
// Generate more files to trigger auto compaction which is scheduled after
// manual compaction. Has to generate 4 more files because existing files are
// pending compaction
for (int i = 0; i < kNumL0Files; i++) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
ASSERT_EQ(ToString(kNumL0Files + (kNumL0Files / 2)), FilesPerLevel(0));
// Close DB with manual compaction and auto triggered compaction in the queue.
auto s = db_->Close();
ASSERT_OK(s);
// manual compaction thread should return with Incomplete().
compact_thread.join();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBCompactionTest,
DisableManualCompactionDoesNotWaitForDrainingAutomaticCompaction) {
// When `CompactRangeOptions::exclusive_manual_compaction == true`, we wait
// for automatic compactions to drain before starting the manual compaction.
// This test verifies `DisableManualCompaction()` can cancel such a compaction
// without waiting for the drain to complete.
const int kNumL0Files = 4;
// Enforces manual compaction enters wait loop due to pending automatic
// compaction.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkCompaction", "DBImpl::RunManualCompaction:NotScheduled"},
{"DBImpl::RunManualCompaction:WaitScheduled",
"BackgroundCallCompaction:0"}});
// The automatic compaction will cancel the waiting manual compaction.
// Completing this implies the cancellation did not wait on automatic
// compactions to finish.
bool callback_completed = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void* /*arg*/) {
db_->DisableManualCompaction();
callback_completed = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
Reopen(options);
for (int i = 0; i < kNumL0Files; ++i) {
ASSERT_OK(Put(Key(1), "value1"));
ASSERT_OK(Put(Key(2), "value2"));
ASSERT_OK(Flush());
}
CompactRangeOptions cro;
cro.exclusive_manual_compaction = true;
ASSERT_TRUE(db_->CompactRange(cro, nullptr, nullptr).IsIncomplete());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_TRUE(callback_completed);
}
TEST_F(DBCompactionTest, ChangeLevelConflictsWithManual) {
Options options = CurrentOptions();
options.num_levels = 3;
Reopen(options);
// Setup an LSM with L2 populated.
Random rnd(301);
ASSERT_OK(Put(Key(0), rnd.RandomString(990)));
ASSERT_OK(Put(Key(1), rnd.RandomString(990)));
{
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
}
ASSERT_EQ("0,0,1", FilesPerLevel(0));
// The background thread will refit L2->L1 while the foreground thread will
// attempt to run a compaction on new data. The following dependencies
// ensure the background manual compaction's refitting phase disables manual
// compaction immediately before the foreground manual compaction can register
// itself. Manual compaction is kept disabled until the foreground manual
// checks for the failure once.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
// Only do Put()s for foreground CompactRange() once the background
// CompactRange() has reached the refitting phase.
{
"DBImpl::CompactRange:BeforeRefit:1",
"DBCompactionTest::ChangeLevelConflictsWithManual:"
"PreForegroundCompactRange",
},
// Right before we register the manual compaction, proceed with
// the refitting phase so manual compactions are disabled. Stay in
// the refitting phase with manual compactions disabled until it is
// noticed.
{
"DBImpl::RunManualCompaction:0",
"DBImpl::CompactRange:BeforeRefit:2",
},
{
"DBImpl::CompactRange:PreRefitLevel",
"DBImpl::RunManualCompaction:1",
},
{
"DBImpl::RunManualCompaction:PausedAtStart",
"DBImpl::CompactRange:PostRefitLevel",
},
// If compaction somehow were scheduled, let's let it run after reenabling
// manual compactions. This dependency is not expected to be hit but is
// here for speculatively coercing future bugs.
{
"DBImpl::CompactRange:PostRefitLevel:ManualCompactionEnabled",
"BackgroundCallCompaction:0",
},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread refit_level_thread([&] {
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
});
TEST_SYNC_POINT(
"DBCompactionTest::ChangeLevelConflictsWithManual:"
"PreForegroundCompactRange");
ASSERT_OK(Put(Key(0), rnd.RandomString(990)));
ASSERT_OK(Put(Key(1), rnd.RandomString(990)));
ASSERT_TRUE(dbfull()
->CompactRange(CompactRangeOptions(), nullptr, nullptr)
.IsIncomplete());
refit_level_thread.join();
}
TEST_F(DBCompactionTest, BottomPriCompactionCountsTowardConcurrencyLimit) {
// Flushes several files to trigger compaction while lock is released during
// a bottom-pri compaction. Verifies it does not get scheduled to thread pool
// because per-DB limit for compaction parallelism is one (default).
const int kNumL0Files = 4;
const int kNumLevels = 3;
env_->SetBackgroundThreads(1, Env::Priority::BOTTOM);
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = kNumL0Files;
options.num_levels = kNumLevels;
DestroyAndReopen(options);
// Setup last level to be non-empty since it's a bit unclear whether
// compaction to an empty level would be considered "bottommost".
ASSERT_OK(Put(Key(0), "val"));
ASSERT_OK(Flush());
MoveFilesToLevel(kNumLevels - 1);
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkBottomCompaction",
"DBCompactionTest::BottomPriCompactionCountsTowardConcurrencyLimit:"
"PreTriggerCompaction"},
{"DBCompactionTest::BottomPriCompactionCountsTowardConcurrencyLimit:"
"PostTriggerCompaction",
"BackgroundCallCompaction:0"}});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread compact_range_thread([&] {
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
cro.exclusive_manual_compaction = false;
ASSERT_OK(dbfull()->CompactRange(cro, nullptr, nullptr));
});
// Sleep in the low-pri thread so any newly scheduled compaction will be
// queued. Otherwise it might finish before we check its existence.
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
TEST_SYNC_POINT(
"DBCompactionTest::BottomPriCompactionCountsTowardConcurrencyLimit:"
"PreTriggerCompaction");
for (int i = 0; i < kNumL0Files; ++i) {
ASSERT_OK(Put(Key(0), "val"));
ASSERT_OK(Flush());
}
ASSERT_EQ(0u, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
TEST_SYNC_POINT(
"DBCompactionTest::BottomPriCompactionCountsTowardConcurrencyLimit:"
"PostTriggerCompaction");
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
compact_range_thread.join();
}
#endif // !defined(ROCKSDB_LITE)
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
#if !defined(ROCKSDB_LITE)
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
#else
(void) argc;
(void) argv;
return 0;
#endif
}