You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/inlineskiplist.h

550 lines
18 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional
// grant of patent rights can be found in the PATENTS file in the same
// directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found
// in the LICENSE file. See the AUTHORS file for names of contributors.
//
// InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
// the memory layout by requiring that the key storage be allocated through
// the skip list instance. For the common case of SkipList<const char*,
// Cmp> this saves 1 pointer per skip list node and gives better cache
// locality, at the expense of wasted padding from using AllocateAligned
// instead of Allocate for the keys. The unused padding will be from
// 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
// bytes, so despite the padding the space used is always less than
// SkipList<const char*, ..>.
//
// Thread safety -------------
//
// Writes require external synchronization, most likely a mutex. Reads
// require a guarantee that the InlineSkipList will not be destroyed while
// the read is in progress. Apart from that, reads progress without any
// internal locking or synchronization.
//
// Invariants:
//
// (1) Allocated nodes are never deleted until the InlineSkipList is
// destroyed. This is trivially guaranteed by the code since we never
// delete any skip list nodes.
//
// (2) The contents of a Node except for the next/prev pointers are
// immutable after the Node has been linked into the InlineSkipList.
// Only Insert() modifies the list, and it is careful to initialize a
// node and use release-stores to publish the nodes in one or more lists.
//
// ... prev vs. next pointer ordering ...
//
#pragma once
#include <assert.h>
#include <stdlib.h>
#include <atomic>
#include "port/port.h"
#include "util/allocator.h"
#include "util/random.h"
namespace rocksdb {
template <class Comparator>
class InlineSkipList {
private:
struct Node;
public:
// Create a new InlineSkipList object that will use "cmp" for comparing
// keys, and will allocate memory using "*allocator". Objects allocated
// in the allocator must remain allocated for the lifetime of the
// skiplist object.
explicit InlineSkipList(Comparator cmp, Allocator* allocator,
int32_t max_height = 12,
int32_t branching_factor = 4);
// Allocates a key and a skip-list node, returning a pointer to the
// key portion of the node.
char* AllocateKey(size_t key_size);
// Inserts a key allocated by AllocateKey, after the actual key value
// has been filled in.
//
// REQUIRES: nothing that compares equal to key is currently in the list.
void Insert(const char* key);
// Returns true iff an entry that compares equal to key is in the list.
bool Contains(const char* key) const;
// Return estimated number of entries smaller than `key`.
uint64_t EstimateCount(const char* key) const;
// Iteration over the contents of a skip list
class Iterator {
public:
// Initialize an iterator over the specified list.
// The returned iterator is not valid.
explicit Iterator(const InlineSkipList* list);
// Change the underlying skiplist used for this iterator
// This enables us not changing the iterator without deallocating
// an old one and then allocating a new one
void SetList(const InlineSkipList* list);
// Returns true iff the iterator is positioned at a valid node.
bool Valid() const;
// Returns the key at the current position.
// REQUIRES: Valid()
const char* key() const;
// Advances to the next position.
// REQUIRES: Valid()
void Next();
// Advances to the previous position.
// REQUIRES: Valid()
void Prev();
// Advance to the first entry with a key >= target
void Seek(const char* target);
// Position at the first entry in list.
// Final state of iterator is Valid() iff list is not empty.
void SeekToFirst();
// Position at the last entry in list.
// Final state of iterator is Valid() iff list is not empty.
void SeekToLast();
private:
const InlineSkipList* list_;
Node* node_;
// Intentionally copyable
};
private:
const uint16_t kMaxHeight_;
const uint16_t kBranching_;
const uint32_t kScaledInverseBranching_;
// Immutable after construction
Comparator const compare_;
Allocator* const allocator_; // Allocator used for allocations of nodes
Node* const head_;
// Modified only by Insert(). Read racily by readers, but stale
// values are ok.
std::atomic<int> max_height_; // Height of the entire list
// Used for optimizing sequential insert patterns. Tricky. prev_[i] for
// i up to max_height_ is the predecessor of prev_[0] and prev_height_
// is the height of prev_[0]. prev_[0] can only be equal to head before
// insertion, in which case max_height_ and prev_height_ are 1.
Node** prev_;
int32_t prev_height_;
inline int GetMaxHeight() const {
return max_height_.load(std::memory_order_relaxed);
}
int RandomHeight();
Node* AllocateNode(size_t key_size, int height);
bool Equal(const char* a, const char* b) const {
return (compare_(a, b) == 0);
}
// Return true if key is greater than the data stored in "n". Null n
// is considered infinite.
bool KeyIsAfterNode(const char* key, Node* n) const;
// Returns the earliest node with a key >= key.
// Return nullptr if there is no such node.
Node* FindGreaterOrEqual(const char* key) const;
// Return the latest node with a key < key.
// Return head_ if there is no such node.
// Fills prev[level] with pointer to previous node at "level" for every
// level in [0..max_height_-1], if prev is non-null.
Node* FindLessThan(const char* key, Node** prev = nullptr) const;
// Return the last node in the list.
// Return head_ if list is empty.
Node* FindLast() const;
// No copying allowed
InlineSkipList(const InlineSkipList&);
InlineSkipList& operator=(const InlineSkipList&);
};
// Implementation details follow
// The Node data type is more of a pointer into custom-managed memory than
// a traditional C++ struct. The key is stored in the bytes immediately
// after the struct, and the next_ pointers for nodes with height > 1 are
// stored immediately _before_ the struct. This avoids the need to include
// any pointer or sizing data, which reduces per-node memory overheads.
template <class Comparator>
struct InlineSkipList<Comparator>::Node {
// Stores the height of the node in the memory location normally used for
// next_[0]. This is used for passing data from AllocateKey to Insert.
void StashHeight(const int height) {
assert(sizeof(int) <= sizeof(next_[0]));
memcpy(&next_[0], &height, sizeof(int));
}
// Retrieves the value passed to StashHeight. Undefined after a call
// to SetNext or NoBarrier_SetNext.
int UnstashHeight() const {
int rv;
memcpy(&rv, &next_[0], sizeof(int));
return rv;
}
const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
// Accessors/mutators for links. Wrapped in methods so we can add
// the appropriate barriers as necessary, and perform the necessary
// addressing trickery for storing links below the Node in memory.
Node* Next(int n) {
assert(n >= 0);
// Use an 'acquire load' so that we observe a fully initialized
// version of the returned Node.
return (next_[-n].load(std::memory_order_acquire));
}
void SetNext(int n, Node* x) {
assert(n >= 0);
// Use a 'release store' so that anybody who reads through this
// pointer observes a fully initialized version of the inserted node.
next_[-n].store(x, std::memory_order_release);
}
// No-barrier variants that can be safely used in a few locations.
Node* NoBarrier_Next(int n) {
assert(n >= 0);
return next_[-n].load(std::memory_order_relaxed);
}
void NoBarrier_SetNext(int n, Node* x) {
assert(n >= 0);
next_[-n].store(x, std::memory_order_relaxed);
}
private:
// next_[0] is the lowest level link (level 0). Higher levels are
// stored _earlier_, so level 1 is at next_[-1].
std::atomic<Node*> next_[1];
};
template <class Comparator>
inline InlineSkipList<Comparator>::Iterator::Iterator(
const InlineSkipList* list) {
SetList(list);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SetList(
const InlineSkipList* list) {
list_ = list;
node_ = nullptr;
}
template <class Comparator>
inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
return node_ != nullptr;
}
template <class Comparator>
inline const char* InlineSkipList<Comparator>::Iterator::key() const {
assert(Valid());
return node_->Key();
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Next() {
assert(Valid());
node_ = node_->Next(0);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Prev() {
// Instead of using explicit "prev" links, we just search for the
// last node that falls before key.
assert(Valid());
node_ = list_->FindLessThan(node_->Key());
if (node_ == list_->head_) {
node_ = nullptr;
}
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
node_ = list_->FindGreaterOrEqual(target);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
node_ = list_->head_->Next(0);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
node_ = list_->FindLast();
if (node_ == list_->head_) {
node_ = nullptr;
}
}
template <class Comparator>
int InlineSkipList<Comparator>::RandomHeight() {
auto rnd = Random::GetTLSInstance();
// Increase height with probability 1 in kBranching
int height = 1;
while (height < kMaxHeight_ && rnd->Next() < kScaledInverseBranching_) {
height++;
}
assert(height > 0);
assert(height <= kMaxHeight_);
return height;
}
template <class Comparator>
bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
Node* n) const {
// nullptr n is considered infinite
return (n != nullptr) && (compare_(n->Key(), key) < 0);
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
// Note: It looks like we could reduce duplication by implementing
// this function as FindLessThan(key)->Next(0), but we wouldn't be able
// to exit early on equality and the result wouldn't even be correct.
// A concurrent insert might occur after FindLessThan(key) but before
// we get a chance to call Next(0).
Node* x = head_;
int level = GetMaxHeight() - 1;
Node* last_bigger = nullptr;
while (true) {
Node* next = x->Next(level);
// Make sure the lists are sorted
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
// Make sure we haven't overshot during our search
assert(x == head_ || KeyIsAfterNode(key, x));
int cmp = (next == nullptr || next == last_bigger)
? 1
: compare_(next->Key(), key);
if (cmp == 0 || (cmp > 0 && level == 0)) {
return next;
} else if (cmp < 0) {
// Keep searching in this list
x = next;
} else {
// Switch to next list, reuse compare_() result
last_bigger = next;
level--;
}
}
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
Node* x = head_;
int level = GetMaxHeight() - 1;
// KeyIsAfter(key, last_not_after) is definitely false
Node* last_not_after = nullptr;
while (true) {
Node* next = x->Next(level);
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
assert(x == head_ || KeyIsAfterNode(key, x));
if (next != last_not_after && KeyIsAfterNode(key, next)) {
// Keep searching in this list
x = next;
} else {
if (prev != nullptr) {
prev[level] = x;
}
if (level == 0) {
return x;
} else {
// Switch to next list, reuse KeyIUsAfterNode() result
last_not_after = next;
level--;
}
}
}
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLast() const {
Node* x = head_;
int level = GetMaxHeight() - 1;
while (true) {
Node* next = x->Next(level);
if (next == nullptr) {
if (level == 0) {
return x;
} else {
// Switch to next list
level--;
}
} else {
x = next;
}
}
}
template <class Comparator>
uint64_t InlineSkipList<Comparator>::EstimateCount(const char* key) const {
uint64_t count = 0;
Node* x = head_;
int level = GetMaxHeight() - 1;
while (true) {
assert(x == head_ || compare_(x->Key(), key) < 0);
Node* next = x->Next(level);
if (next == nullptr || compare_(next->Key(), key) >= 0) {
if (level == 0) {
return count;
} else {
// Switch to next list
count *= kBranching_;
level--;
}
} else {
x = next;
count++;
}
}
}
template <class Comparator>
InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
Allocator* allocator,
int32_t max_height,
int32_t branching_factor)
: kMaxHeight_(max_height),
kBranching_(branching_factor),
kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
compare_(cmp),
allocator_(allocator),
head_(AllocateNode(0, max_height)),
max_height_(1),
prev_height_(1) {
assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
assert(branching_factor > 0 &&
kBranching_ == static_cast<uint32_t>(branching_factor));
assert(kScaledInverseBranching_ > 0);
// Allocate the prev_ Node* array, directly from the passed-in allocator.
// prev_ does not need to be freed, as its life cycle is tied up with
// the allocator as a whole.
prev_ = reinterpret_cast<Node**>(
allocator_->AllocateAligned(sizeof(Node*) * kMaxHeight_));
for (int i = 0; i < kMaxHeight_; i++) {
head_->SetNext(i, nullptr);
prev_[i] = head_;
}
}
template <class Comparator>
char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
// prefix is space for the height - 1 pointers that we store before
// the Node instance (next_[-(height - 1) .. -1]). Node starts at
// raw + prefix, and holds the bottom-mode (level 0) skip list pointer
// next_[0]. key_size is the bytes for the key, which comes just after
// the Node.
char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
Node* x = reinterpret_cast<Node*>(raw + prefix);
// Once we've linked the node into the skip list we don't actually need
// to know its height, because we can implicitly use the fact that we
// traversed into a node at level h to known that h is a valid level
// for that node. We need to convey the height to the Insert step,
// however, so that it can perform the proper links. Since we're not
// using the pointers at the moment, StashHeight temporarily borrow
// storage from next_[0] for that purpose.
x->StashHeight(height);
return x;
}
template <class Comparator>
void InlineSkipList<Comparator>::Insert(const char* key) {
// fast path for sequential insertion
if (!KeyIsAfterNode(key, prev_[0]->NoBarrier_Next(0)) &&
(prev_[0] == head_ || KeyIsAfterNode(key, prev_[0]))) {
assert(prev_[0] != head_ || (prev_height_ == 1 && GetMaxHeight() == 1));
// Outside of this method prev_[1..max_height_] is the predecessor
// of prev_[0], and prev_height_ refers to prev_[0]. Inside Insert
// prev_[0..max_height - 1] is the predecessor of key. Switch from
// the external state to the internal
for (int i = 1; i < prev_height_; i++) {
prev_[i] = prev_[0];
}
} else {
// TODO(opt): we could use a NoBarrier predecessor search as an
// optimization for architectures where memory_order_acquire needs
// a synchronization instruction. Doesn't matter on x86
FindLessThan(key, prev_);
}
// Our data structure does not allow duplicate insertion
assert(prev_[0]->Next(0) == nullptr || !Equal(key, prev_[0]->Next(0)->Key()));
// Find the Node that we placed before the key in AllocateKey
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
int height = x->UnstashHeight();
assert(height >= 1 && height <= kMaxHeight_);
if (height > GetMaxHeight()) {
for (int i = GetMaxHeight(); i < height; i++) {
prev_[i] = head_;
}
// It is ok to mutate max_height_ without any synchronization
// with concurrent readers. A concurrent reader that observes
// the new value of max_height_ will see either the old value of
// new level pointers from head_ (nullptr), or a new value set in
// the loop below. In the former case the reader will
// immediately drop to the next level since nullptr sorts after all
// keys. In the latter case the reader will use the new node.
max_height_.store(height, std::memory_order_relaxed);
}
for (int i = 0; i < height; i++) {
// NoBarrier_SetNext() suffices since we will add a barrier when
// we publish a pointer to "x" in prev[i].
x->NoBarrier_SetNext(i, prev_[i]->NoBarrier_Next(i));
prev_[i]->SetNext(i, x);
}
prev_[0] = x;
prev_height_ = height;
}
template <class Comparator>
bool InlineSkipList<Comparator>::Contains(const char* key) const {
Node* x = FindGreaterOrEqual(key);
if (x != nullptr && Equal(key, x->Key())) {
return true;
} else {
return false;
}
}
} // namespace rocksdb