You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_test2.cc

5150 lines
178 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <atomic>
#include <cstdlib>
#include <functional>
#include "db/db_test_util.h"
#include "db/read_callback.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/persistent_cache.h"
#include "rocksdb/wal_filter.h"
#include "test_util/fault_injection_test_env.h"
namespace ROCKSDB_NAMESPACE {
class DBTest2 : public DBTestBase {
public:
DBTest2() : DBTestBase("/db_test2") {}
};
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, OpenForReadOnly) {
DB* db_ptr = nullptr;
std::string dbname = test::PerThreadDBPath("db_readonly");
Options options = CurrentOptions();
options.create_if_missing = true;
// OpenForReadOnly should fail but will create <dbname> in the file system
ASSERT_NOK(DB::OpenForReadOnly(options, dbname, &db_ptr));
// Since <dbname> is created, we should be able to delete the dir
// We first get the list files under <dbname>
// There should not be any subdirectories -- this is not checked here
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname, &files));
for (auto& f : files) {
if (f != "." && f != "..") {
ASSERT_OK(env_->DeleteFile(dbname + "/" + f));
}
}
// <dbname> should be empty now and we should be able to delete it
ASSERT_OK(env_->DeleteDir(dbname));
options.create_if_missing = false;
// OpenForReadOnly should fail since <dbname> was successfully deleted
ASSERT_NOK(DB::OpenForReadOnly(options, dbname, &db_ptr));
// With create_if_missing false, there should not be a dir in the file system
ASSERT_NOK(env_->FileExists(dbname));
}
TEST_F(DBTest2, OpenForReadOnlyWithColumnFamilies) {
DB* db_ptr = nullptr;
std::string dbname = test::PerThreadDBPath("db_readonly");
Options options = CurrentOptions();
options.create_if_missing = true;
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
column_families.push_back(ColumnFamilyDescriptor("goku", cf_options));
std::vector<ColumnFamilyHandle*> handles;
// OpenForReadOnly should fail but will create <dbname> in the file system
ASSERT_NOK(
DB::OpenForReadOnly(options, dbname, column_families, &handles, &db_ptr));
// Since <dbname> is created, we should be able to delete the dir
// We first get the list files under <dbname>
// There should not be any subdirectories -- this is not checked here
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname, &files));
for (auto& f : files) {
if (f != "." && f != "..") {
ASSERT_OK(env_->DeleteFile(dbname + "/" + f));
}
}
// <dbname> should be empty now and we should be able to delete it
ASSERT_OK(env_->DeleteDir(dbname));
options.create_if_missing = false;
// OpenForReadOnly should fail since <dbname> was successfully deleted
ASSERT_NOK(
DB::OpenForReadOnly(options, dbname, column_families, &handles, &db_ptr));
// With create_if_missing false, there should not be a dir in the file system
ASSERT_NOK(env_->FileExists(dbname));
}
class TestReadOnlyWithCompressedCache
: public DBTestBase,
public testing::WithParamInterface<std::tuple<int, bool>> {
public:
TestReadOnlyWithCompressedCache()
: DBTestBase("/test_readonly_with_compressed_cache") {
max_open_files_ = std::get<0>(GetParam());
use_mmap_ = std::get<1>(GetParam());
}
int max_open_files_;
bool use_mmap_;
};
TEST_P(TestReadOnlyWithCompressedCache, ReadOnlyWithCompressedCache) {
if (use_mmap_ && !IsMemoryMappedAccessSupported()) {
return;
}
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Put("foo2", "barbarbarbarbarbarbarbar"));
ASSERT_OK(Flush());
DB* db_ptr = nullptr;
Options options = CurrentOptions();
options.allow_mmap_reads = use_mmap_;
options.max_open_files = max_open_files_;
options.compression = kSnappyCompression;
BlockBasedTableOptions table_options;
table_options.block_cache_compressed = NewLRUCache(8 * 1024 * 1024);
table_options.no_block_cache = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
ASSERT_OK(DB::OpenForReadOnly(options, dbname_, &db_ptr));
std::string v;
ASSERT_OK(db_ptr->Get(ReadOptions(), "foo", &v));
ASSERT_EQ("bar", v);
ASSERT_EQ(0, options.statistics->getTickerCount(BLOCK_CACHE_COMPRESSED_HIT));
ASSERT_OK(db_ptr->Get(ReadOptions(), "foo", &v));
ASSERT_EQ("bar", v);
if (Snappy_Supported()) {
if (use_mmap_) {
ASSERT_EQ(0,
options.statistics->getTickerCount(BLOCK_CACHE_COMPRESSED_HIT));
} else {
ASSERT_EQ(1,
options.statistics->getTickerCount(BLOCK_CACHE_COMPRESSED_HIT));
}
}
delete db_ptr;
}
INSTANTIATE_TEST_CASE_P(TestReadOnlyWithCompressedCache,
TestReadOnlyWithCompressedCache,
::testing::Combine(::testing::Values(-1, 100),
::testing::Bool()));
class PartitionedIndexTestListener : public EventListener {
public:
void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override {
ASSERT_GT(info.table_properties.index_partitions, 1);
ASSERT_EQ(info.table_properties.index_key_is_user_key, 0);
}
};
TEST_F(DBTest2, PartitionedIndexUserToInternalKey) {
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
PartitionedIndexTestListener* listener = new PartitionedIndexTestListener();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.listeners.emplace_back(listener);
std::vector<const Snapshot*> snapshots;
Reopen(options);
Random rnd(301);
for (int i = 0; i < 3000; i++) {
int j = i % 30;
std::string value = RandomString(&rnd, 10500);
ASSERT_OK(Put("keykey_" + std::to_string(j), value));
snapshots.push_back(db_->GetSnapshot());
}
Flush();
for (auto s : snapshots) {
db_->ReleaseSnapshot(s);
}
}
#endif // ROCKSDB_LITE
class PrefixFullBloomWithReverseComparator
: public DBTestBase,
public ::testing::WithParamInterface<bool> {
public:
PrefixFullBloomWithReverseComparator()
: DBTestBase("/prefix_bloom_reverse") {}
void SetUp() override { if_cache_filter_ = GetParam(); }
bool if_cache_filter_;
};
TEST_P(PrefixFullBloomWithReverseComparator,
PrefixFullBloomWithReverseComparator) {
Options options = last_options_;
options.comparator = ReverseBytewiseComparator();
options.prefix_extractor.reset(NewCappedPrefixTransform(3));
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions bbto;
if (if_cache_filter_) {
bbto.no_block_cache = false;
bbto.cache_index_and_filter_blocks = true;
bbto.block_cache = NewLRUCache(1);
}
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
ASSERT_OK(dbfull()->Put(WriteOptions(), "bar123", "foo"));
ASSERT_OK(dbfull()->Put(WriteOptions(), "bar234", "foo2"));
ASSERT_OK(dbfull()->Put(WriteOptions(), "foo123", "foo3"));
dbfull()->Flush(FlushOptions());
if (bbto.block_cache) {
bbto.block_cache->EraseUnRefEntries();
}
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
iter->Seek("bar345");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar234", iter->key().ToString());
ASSERT_EQ("foo2", iter->value().ToString());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar123", iter->key().ToString());
ASSERT_EQ("foo", iter->value().ToString());
iter->Seek("foo234");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo123", iter->key().ToString());
ASSERT_EQ("foo3", iter->value().ToString());
iter->Seek("bar");
ASSERT_OK(iter->status());
ASSERT_TRUE(!iter->Valid());
}
INSTANTIATE_TEST_CASE_P(PrefixFullBloomWithReverseComparator,
PrefixFullBloomWithReverseComparator, testing::Bool());
TEST_F(DBTest2, IteratorPropertyVersionNumber) {
Put("", "");
Iterator* iter1 = db_->NewIterator(ReadOptions());
std::string prop_value;
ASSERT_OK(
iter1->GetProperty("rocksdb.iterator.super-version-number", &prop_value));
uint64_t version_number1 =
static_cast<uint64_t>(std::atoi(prop_value.c_str()));
Put("", "");
Flush();
Iterator* iter2 = db_->NewIterator(ReadOptions());
ASSERT_OK(
iter2->GetProperty("rocksdb.iterator.super-version-number", &prop_value));
uint64_t version_number2 =
static_cast<uint64_t>(std::atoi(prop_value.c_str()));
ASSERT_GT(version_number2, version_number1);
Put("", "");
Iterator* iter3 = db_->NewIterator(ReadOptions());
ASSERT_OK(
iter3->GetProperty("rocksdb.iterator.super-version-number", &prop_value));
uint64_t version_number3 =
static_cast<uint64_t>(std::atoi(prop_value.c_str()));
ASSERT_EQ(version_number2, version_number3);
iter1->SeekToFirst();
ASSERT_OK(
iter1->GetProperty("rocksdb.iterator.super-version-number", &prop_value));
uint64_t version_number1_new =
static_cast<uint64_t>(std::atoi(prop_value.c_str()));
ASSERT_EQ(version_number1, version_number1_new);
delete iter1;
delete iter2;
delete iter3;
}
TEST_F(DBTest2, CacheIndexAndFilterWithDBRestart) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "a", "begin");
Put(1, "z", "end");
ASSERT_OK(Flush(1));
TryReopenWithColumnFamilies({"default", "pikachu"}, options);
std::string value;
value = Get(1, "a");
}
TEST_F(DBTest2, MaxSuccessiveMergesChangeWithDBRecovery) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.max_successive_merges = 3;
options.merge_operator = MergeOperators::CreatePutOperator();
options.disable_auto_compactions = true;
DestroyAndReopen(options);
Put("poi", "Finch");
db_->Merge(WriteOptions(), "poi", "Reese");
db_->Merge(WriteOptions(), "poi", "Shaw");
db_->Merge(WriteOptions(), "poi", "Root");
options.max_successive_merges = 2;
Reopen(options);
}
#ifndef ROCKSDB_LITE
class DBTestSharedWriteBufferAcrossCFs
: public DBTestBase,
public testing::WithParamInterface<std::tuple<bool, bool>> {
public:
DBTestSharedWriteBufferAcrossCFs()
: DBTestBase("/db_test_shared_write_buffer") {}
void SetUp() override {
use_old_interface_ = std::get<0>(GetParam());
cost_cache_ = std::get<1>(GetParam());
}
bool use_old_interface_;
bool cost_cache_;
};
TEST_P(DBTestSharedWriteBufferAcrossCFs, SharedWriteBufferAcrossCFs) {
Options options = CurrentOptions();
options.arena_block_size = 4096;
// Avoid undeterministic value by malloc_usable_size();
// Force arena block size to 1
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Arena::Arena:0", [&](void* arg) {
size_t* block_size = static_cast<size_t*>(arg);
*block_size = 1;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Arena::AllocateNewBlock:0", [&](void* arg) {
std::pair<size_t*, size_t*>* pair =
static_cast<std::pair<size_t*, size_t*>*>(arg);
*std::get<0>(*pair) = *std::get<1>(*pair);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// The total soft write buffer size is about 105000
std::shared_ptr<Cache> cache = NewLRUCache(4 * 1024 * 1024, 2);
ASSERT_LT(cache->GetUsage(), 256 * 1024);
if (use_old_interface_) {
options.db_write_buffer_size = 120000; // this is the real limit
} else if (!cost_cache_) {
options.write_buffer_manager.reset(new WriteBufferManager(114285));
} else {
options.write_buffer_manager.reset(new WriteBufferManager(114285, cache));
}
options.write_buffer_size = 500000; // this is never hit
CreateAndReopenWithCF({"pikachu", "dobrynia", "nikitich"}, options);
WriteOptions wo;
wo.disableWAL = true;
std::function<void()> wait_flush = [&]() {
dbfull()->TEST_WaitForFlushMemTable(handles_[0]);
dbfull()->TEST_WaitForFlushMemTable(handles_[1]);
dbfull()->TEST_WaitForFlushMemTable(handles_[2]);
dbfull()->TEST_WaitForFlushMemTable(handles_[3]);
};
// Create some data and flush "default" and "nikitich" so that they
// are newer CFs created.
ASSERT_OK(Put(3, Key(1), DummyString(1), wo));
Flush(3);
ASSERT_OK(Put(3, Key(1), DummyString(1), wo));
ASSERT_OK(Put(0, Key(1), DummyString(1), wo));
Flush(0);
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(1));
ASSERT_OK(Put(3, Key(1), DummyString(30000), wo));
if (cost_cache_) {
ASSERT_GE(cache->GetUsage(), 256 * 1024);
ASSERT_LE(cache->GetUsage(), 2 * 256 * 1024);
}
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(60000), wo));
if (cost_cache_) {
ASSERT_GE(cache->GetUsage(), 256 * 1024);
ASSERT_LE(cache->GetUsage(), 2 * 256 * 1024);
}
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
// No flush should trigger
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(1));
}
// Trigger a flush. Flushing "nikitich".
ASSERT_OK(Put(3, Key(2), DummyString(30000), wo));
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(1), wo));
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(2));
}
// Without hitting the threshold, no flush should trigger.
ASSERT_OK(Put(2, Key(1), DummyString(30000), wo));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(2));
}
// Hit the write buffer limit again. "default"
// will have been flushed.
ASSERT_OK(Put(2, Key(2), DummyString(10000), wo));
wait_flush();
ASSERT_OK(Put(3, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(1), wo));
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(2));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(2));
}
// Trigger another flush. This time "dobrynia". "pikachu" should not
// be flushed, althrough it was never flushed.
ASSERT_OK(Put(1, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(80000), wo));
wait_flush();
ASSERT_OK(Put(1, Key(1), DummyString(1), wo));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(2));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "pikachu"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "dobrynia"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "nikitich"),
static_cast<uint64_t>(2));
}
if (cost_cache_) {
ASSERT_GE(cache->GetUsage(), 256 * 1024);
Close();
options.write_buffer_manager.reset();
last_options_.write_buffer_manager.reset();
ASSERT_LT(cache->GetUsage(), 256 * 1024);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
INSTANTIATE_TEST_CASE_P(DBTestSharedWriteBufferAcrossCFs,
DBTestSharedWriteBufferAcrossCFs,
::testing::Values(std::make_tuple(true, false),
std::make_tuple(false, false),
std::make_tuple(false, true)));
TEST_F(DBTest2, SharedWriteBufferLimitAcrossDB) {
std::string dbname2 = test::PerThreadDBPath("db_shared_wb_db2");
Options options = CurrentOptions();
options.arena_block_size = 4096;
// Avoid undeterministic value by malloc_usable_size();
// Force arena block size to 1
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Arena::Arena:0", [&](void* arg) {
size_t* block_size = static_cast<size_t*>(arg);
*block_size = 1;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Arena::AllocateNewBlock:0", [&](void* arg) {
std::pair<size_t*, size_t*>* pair =
static_cast<std::pair<size_t*, size_t*>*>(arg);
*std::get<0>(*pair) = *std::get<1>(*pair);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
options.write_buffer_size = 500000; // this is never hit
// Use a write buffer total size so that the soft limit is about
// 105000.
options.write_buffer_manager.reset(new WriteBufferManager(120000));
CreateAndReopenWithCF({"cf1", "cf2"}, options);
ASSERT_OK(DestroyDB(dbname2, options));
DB* db2 = nullptr;
ASSERT_OK(DB::Open(options, dbname2, &db2));
WriteOptions wo;
wo.disableWAL = true;
std::function<void()> wait_flush = [&]() {
dbfull()->TEST_WaitForFlushMemTable(handles_[0]);
dbfull()->TEST_WaitForFlushMemTable(handles_[1]);
dbfull()->TEST_WaitForFlushMemTable(handles_[2]);
static_cast<DBImpl*>(db2)->TEST_WaitForFlushMemTable();
};
// Trigger a flush on cf2
ASSERT_OK(Put(2, Key(1), DummyString(70000), wo));
wait_flush();
ASSERT_OK(Put(0, Key(1), DummyString(20000), wo));
wait_flush();
// Insert to DB2
ASSERT_OK(db2->Put(wo, Key(2), DummyString(20000)));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
wait_flush();
static_cast<DBImpl*>(db2)->TEST_WaitForFlushMemTable();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default") +
GetNumberOfSstFilesForColumnFamily(db_, "cf1") +
GetNumberOfSstFilesForColumnFamily(db_, "cf2"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db2, "default"),
static_cast<uint64_t>(0));
}
// Triggering to flush another CF in DB1
ASSERT_OK(db2->Put(wo, Key(2), DummyString(70000)));
wait_flush();
ASSERT_OK(Put(2, Key(1), DummyString(1), wo));
wait_flush();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "cf1"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "cf2"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db2, "default"),
static_cast<uint64_t>(0));
}
// Triggering flush in DB2.
ASSERT_OK(db2->Put(wo, Key(3), DummyString(40000)));
wait_flush();
ASSERT_OK(db2->Put(wo, Key(1), DummyString(1)));
wait_flush();
static_cast<DBImpl*>(db2)->TEST_WaitForFlushMemTable();
{
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "default"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "cf1"),
static_cast<uint64_t>(0));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db_, "cf2"),
static_cast<uint64_t>(1));
ASSERT_EQ(GetNumberOfSstFilesForColumnFamily(db2, "default"),
static_cast<uint64_t>(1));
}
delete db2;
ASSERT_OK(DestroyDB(dbname2, options));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, TestWriteBufferNoLimitWithCache) {
Options options = CurrentOptions();
options.arena_block_size = 4096;
std::shared_ptr<Cache> cache =
NewLRUCache(LRUCacheOptions(10000000, 1, false, 0.0));
options.write_buffer_size = 50000; // this is never hit
// Use a write buffer total size so that the soft limit is about
// 105000.
options.write_buffer_manager.reset(new WriteBufferManager(0, cache));
Reopen(options);
ASSERT_OK(Put("foo", "bar"));
// One dummy entry is 256KB.
ASSERT_GT(cache->GetUsage(), 128000);
}
namespace {
void ValidateKeyExistence(DB* db, const std::vector<Slice>& keys_must_exist,
const std::vector<Slice>& keys_must_not_exist) {
// Ensure that expected keys exist
std::vector<std::string> values;
if (keys_must_exist.size() > 0) {
std::vector<Status> status_list =
db->MultiGet(ReadOptions(), keys_must_exist, &values);
for (size_t i = 0; i < keys_must_exist.size(); i++) {
ASSERT_OK(status_list[i]);
}
}
// Ensure that given keys don't exist
if (keys_must_not_exist.size() > 0) {
std::vector<Status> status_list =
db->MultiGet(ReadOptions(), keys_must_not_exist, &values);
for (size_t i = 0; i < keys_must_not_exist.size(); i++) {
ASSERT_TRUE(status_list[i].IsNotFound());
}
}
}
} // namespace
TEST_F(DBTest2, WalFilterTest) {
class TestWalFilter : public WalFilter {
private:
// Processing option that is requested to be applied at the given index
WalFilter::WalProcessingOption wal_processing_option_;
// Index at which to apply wal_processing_option_
// At other indexes default wal_processing_option::kContinueProcessing is
// returned.
size_t apply_option_at_record_index_;
// Current record index, incremented with each record encountered.
size_t current_record_index_;
public:
TestWalFilter(WalFilter::WalProcessingOption wal_processing_option,
size_t apply_option_for_record_index)
: wal_processing_option_(wal_processing_option),
apply_option_at_record_index_(apply_option_for_record_index),
current_record_index_(0) {}
WalProcessingOption LogRecord(const WriteBatch& /*batch*/,
WriteBatch* /*new_batch*/,
bool* /*batch_changed*/) const override {
WalFilter::WalProcessingOption option_to_return;
if (current_record_index_ == apply_option_at_record_index_) {
option_to_return = wal_processing_option_;
}
else {
option_to_return = WalProcessingOption::kContinueProcessing;
}
// Filter is passed as a const object for RocksDB to not modify the
// object, however we modify it for our own purpose here and hence
// cast the constness away.
(const_cast<TestWalFilter*>(this)->current_record_index_)++;
return option_to_return;
}
const char* Name() const override { return "TestWalFilter"; }
};
// Create 3 batches with two keys each
std::vector<std::vector<std::string>> batch_keys(3);
batch_keys[0].push_back("key1");
batch_keys[0].push_back("key2");
batch_keys[1].push_back("key3");
batch_keys[1].push_back("key4");
batch_keys[2].push_back("key5");
batch_keys[2].push_back("key6");
// Test with all WAL processing options
for (int option = 0;
option < static_cast<int>(
WalFilter::WalProcessingOption::kWalProcessingOptionMax);
option++) {
Options options = OptionsForLogIterTest();
DestroyAndReopen(options);
CreateAndReopenWithCF({ "pikachu" }, options);
// Write given keys in given batches
for (size_t i = 0; i < batch_keys.size(); i++) {
WriteBatch batch;
for (size_t j = 0; j < batch_keys[i].size(); j++) {
batch.Put(handles_[0], batch_keys[i][j], DummyString(1024));
}
dbfull()->Write(WriteOptions(), &batch);
}
WalFilter::WalProcessingOption wal_processing_option =
static_cast<WalFilter::WalProcessingOption>(option);
// Create a test filter that would apply wal_processing_option at the first
// record
size_t apply_option_for_record_index = 1;
TestWalFilter test_wal_filter(wal_processing_option,
apply_option_for_record_index);
// Reopen database with option to use WAL filter
options = OptionsForLogIterTest();
options.wal_filter = &test_wal_filter;
Status status =
TryReopenWithColumnFamilies({ "default", "pikachu" }, options);
if (wal_processing_option ==
WalFilter::WalProcessingOption::kCorruptedRecord) {
assert(!status.ok());
// In case of corruption we can turn off paranoid_checks to reopen
// databse
options.paranoid_checks = false;
ReopenWithColumnFamilies({ "default", "pikachu" }, options);
}
else {
assert(status.ok());
}
// Compute which keys we expect to be found
// and which we expect not to be found after recovery.
std::vector<Slice> keys_must_exist;
std::vector<Slice> keys_must_not_exist;
switch (wal_processing_option) {
case WalFilter::WalProcessingOption::kCorruptedRecord:
case WalFilter::WalProcessingOption::kContinueProcessing: {
fprintf(stderr, "Testing with complete WAL processing\n");
// we expect all records to be processed
for (size_t i = 0; i < batch_keys.size(); i++) {
for (size_t j = 0; j < batch_keys[i].size(); j++) {
keys_must_exist.push_back(Slice(batch_keys[i][j]));
}
}
break;
}
case WalFilter::WalProcessingOption::kIgnoreCurrentRecord: {
fprintf(stderr,
"Testing with ignoring record %" ROCKSDB_PRIszt " only\n",
apply_option_for_record_index);
// We expect the record with apply_option_for_record_index to be not
// found.
for (size_t i = 0; i < batch_keys.size(); i++) {
for (size_t j = 0; j < batch_keys[i].size(); j++) {
if (i == apply_option_for_record_index) {
keys_must_not_exist.push_back(Slice(batch_keys[i][j]));
}
else {
keys_must_exist.push_back(Slice(batch_keys[i][j]));
}
}
}
break;
}
case WalFilter::WalProcessingOption::kStopReplay: {
fprintf(stderr,
"Testing with stopping replay from record %" ROCKSDB_PRIszt
"\n",
apply_option_for_record_index);
// We expect records beyond apply_option_for_record_index to be not
// found.
for (size_t i = 0; i < batch_keys.size(); i++) {
for (size_t j = 0; j < batch_keys[i].size(); j++) {
if (i >= apply_option_for_record_index) {
keys_must_not_exist.push_back(Slice(batch_keys[i][j]));
}
else {
keys_must_exist.push_back(Slice(batch_keys[i][j]));
}
}
}
break;
}
default:
assert(false); // unhandled case
}
bool checked_after_reopen = false;
while (true) {
// Ensure that expected keys exists
// and not expected keys don't exist after recovery
ValidateKeyExistence(db_, keys_must_exist, keys_must_not_exist);
if (checked_after_reopen) {
break;
}
// reopen database again to make sure previous log(s) are not used
//(even if they were skipped)
// reopn database with option to use WAL filter
options = OptionsForLogIterTest();
ReopenWithColumnFamilies({ "default", "pikachu" }, options);
checked_after_reopen = true;
}
}
}
TEST_F(DBTest2, WalFilterTestWithChangeBatch) {
class ChangeBatchHandler : public WriteBatch::Handler {
private:
// Batch to insert keys in
WriteBatch* new_write_batch_;
// Number of keys to add in the new batch
size_t num_keys_to_add_in_new_batch_;
// Number of keys added to new batch
size_t num_keys_added_;
public:
ChangeBatchHandler(WriteBatch* new_write_batch,
size_t num_keys_to_add_in_new_batch)
: new_write_batch_(new_write_batch),
num_keys_to_add_in_new_batch_(num_keys_to_add_in_new_batch),
num_keys_added_(0) {}
void Put(const Slice& key, const Slice& value) override {
if (num_keys_added_ < num_keys_to_add_in_new_batch_) {
new_write_batch_->Put(key, value);
++num_keys_added_;
}
}
};
class TestWalFilterWithChangeBatch : public WalFilter {
private:
// Index at which to start changing records
size_t change_records_from_index_;
// Number of keys to add in the new batch
size_t num_keys_to_add_in_new_batch_;
// Current record index, incremented with each record encountered.
size_t current_record_index_;
public:
TestWalFilterWithChangeBatch(size_t change_records_from_index,
size_t num_keys_to_add_in_new_batch)
: change_records_from_index_(change_records_from_index),
num_keys_to_add_in_new_batch_(num_keys_to_add_in_new_batch),
current_record_index_(0) {}
WalProcessingOption LogRecord(const WriteBatch& batch,
WriteBatch* new_batch,
bool* batch_changed) const override {
if (current_record_index_ >= change_records_from_index_) {
ChangeBatchHandler handler(new_batch, num_keys_to_add_in_new_batch_);
batch.Iterate(&handler);
*batch_changed = true;
}
// Filter is passed as a const object for RocksDB to not modify the
// object, however we modify it for our own purpose here and hence
// cast the constness away.
(const_cast<TestWalFilterWithChangeBatch*>(this)
->current_record_index_)++;
return WalProcessingOption::kContinueProcessing;
}
const char* Name() const override { return "TestWalFilterWithChangeBatch"; }
};
std::vector<std::vector<std::string>> batch_keys(3);
batch_keys[0].push_back("key1");
batch_keys[0].push_back("key2");
batch_keys[1].push_back("key3");
batch_keys[1].push_back("key4");
batch_keys[2].push_back("key5");
batch_keys[2].push_back("key6");
Options options = OptionsForLogIterTest();
DestroyAndReopen(options);
CreateAndReopenWithCF({ "pikachu" }, options);
// Write given keys in given batches
for (size_t i = 0; i < batch_keys.size(); i++) {
WriteBatch batch;
for (size_t j = 0; j < batch_keys[i].size(); j++) {
batch.Put(handles_[0], batch_keys[i][j], DummyString(1024));
}
dbfull()->Write(WriteOptions(), &batch);
}
// Create a test filter that would apply wal_processing_option at the first
// record
size_t change_records_from_index = 1;
size_t num_keys_to_add_in_new_batch = 1;
TestWalFilterWithChangeBatch test_wal_filter_with_change_batch(
change_records_from_index, num_keys_to_add_in_new_batch);
// Reopen database with option to use WAL filter
options = OptionsForLogIterTest();
options.wal_filter = &test_wal_filter_with_change_batch;
ReopenWithColumnFamilies({ "default", "pikachu" }, options);
// Ensure that all keys exist before change_records_from_index_
// And after that index only single key exists
// as our filter adds only single key for each batch
std::vector<Slice> keys_must_exist;
std::vector<Slice> keys_must_not_exist;
for (size_t i = 0; i < batch_keys.size(); i++) {
for (size_t j = 0; j < batch_keys[i].size(); j++) {
if (i >= change_records_from_index && j >= num_keys_to_add_in_new_batch) {
keys_must_not_exist.push_back(Slice(batch_keys[i][j]));
}
else {
keys_must_exist.push_back(Slice(batch_keys[i][j]));
}
}
}
bool checked_after_reopen = false;
while (true) {
// Ensure that expected keys exists
// and not expected keys don't exist after recovery
ValidateKeyExistence(db_, keys_must_exist, keys_must_not_exist);
if (checked_after_reopen) {
break;
}
// reopen database again to make sure previous log(s) are not used
//(even if they were skipped)
// reopn database with option to use WAL filter
options = OptionsForLogIterTest();
ReopenWithColumnFamilies({ "default", "pikachu" }, options);
checked_after_reopen = true;
}
}
TEST_F(DBTest2, WalFilterTestWithChangeBatchExtraKeys) {
class TestWalFilterWithChangeBatchAddExtraKeys : public WalFilter {
public:
WalProcessingOption LogRecord(const WriteBatch& batch, WriteBatch* new_batch,
bool* batch_changed) const override {
*new_batch = batch;
new_batch->Put("key_extra", "value_extra");
*batch_changed = true;
return WalProcessingOption::kContinueProcessing;
}
const char* Name() const override {
return "WalFilterTestWithChangeBatchExtraKeys";
}
};
std::vector<std::vector<std::string>> batch_keys(3);
batch_keys[0].push_back("key1");
batch_keys[0].push_back("key2");
batch_keys[1].push_back("key3");
batch_keys[1].push_back("key4");
batch_keys[2].push_back("key5");
batch_keys[2].push_back("key6");
Options options = OptionsForLogIterTest();
DestroyAndReopen(options);
CreateAndReopenWithCF({ "pikachu" }, options);
// Write given keys in given batches
for (size_t i = 0; i < batch_keys.size(); i++) {
WriteBatch batch;
for (size_t j = 0; j < batch_keys[i].size(); j++) {
batch.Put(handles_[0], batch_keys[i][j], DummyString(1024));
}
dbfull()->Write(WriteOptions(), &batch);
}
// Create a test filter that would add extra keys
TestWalFilterWithChangeBatchAddExtraKeys test_wal_filter_extra_keys;
// Reopen database with option to use WAL filter
options = OptionsForLogIterTest();
options.wal_filter = &test_wal_filter_extra_keys;
Status status = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(status.IsNotSupported());
// Reopen without filter, now reopen should succeed - previous
// attempt to open must not have altered the db.
options = OptionsForLogIterTest();
ReopenWithColumnFamilies({ "default", "pikachu" }, options);
std::vector<Slice> keys_must_exist;
std::vector<Slice> keys_must_not_exist; // empty vector
for (size_t i = 0; i < batch_keys.size(); i++) {
for (size_t j = 0; j < batch_keys[i].size(); j++) {
keys_must_exist.push_back(Slice(batch_keys[i][j]));
}
}
ValidateKeyExistence(db_, keys_must_exist, keys_must_not_exist);
}
TEST_F(DBTest2, WalFilterTestWithColumnFamilies) {
class TestWalFilterWithColumnFamilies : public WalFilter {
private:
// column_family_id -> log_number map (provided to WALFilter)
std::map<uint32_t, uint64_t> cf_log_number_map_;
// column_family_name -> column_family_id map (provided to WALFilter)
std::map<std::string, uint32_t> cf_name_id_map_;
// column_family_name -> keys_found_in_wal map
// We store keys that are applicable to the column_family
// during recovery (i.e. aren't already flushed to SST file(s))
// for verification against the keys we expect.
std::map<uint32_t, std::vector<std::string>> cf_wal_keys_;
public:
void ColumnFamilyLogNumberMap(
const std::map<uint32_t, uint64_t>& cf_lognumber_map,
const std::map<std::string, uint32_t>& cf_name_id_map) override {
cf_log_number_map_ = cf_lognumber_map;
cf_name_id_map_ = cf_name_id_map;
}
WalProcessingOption LogRecordFound(unsigned long long log_number,
const std::string& /*log_file_name*/,
const WriteBatch& batch,
WriteBatch* /*new_batch*/,
bool* /*batch_changed*/) override {
class LogRecordBatchHandler : public WriteBatch::Handler {
private:
const std::map<uint32_t, uint64_t> & cf_log_number_map_;
std::map<uint32_t, std::vector<std::string>> & cf_wal_keys_;
unsigned long long log_number_;
public:
LogRecordBatchHandler(unsigned long long current_log_number,
const std::map<uint32_t, uint64_t> & cf_log_number_map,
std::map<uint32_t, std::vector<std::string>> & cf_wal_keys) :
cf_log_number_map_(cf_log_number_map),
cf_wal_keys_(cf_wal_keys),
log_number_(current_log_number){}
Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& /*value*/) override {
auto it = cf_log_number_map_.find(column_family_id);
assert(it != cf_log_number_map_.end());
unsigned long long log_number_for_cf = it->second;
// If the current record is applicable for column_family_id
// (i.e. isn't flushed to SST file(s) for column_family_id)
// add it to the cf_wal_keys_ map for verification.
if (log_number_ >= log_number_for_cf) {
cf_wal_keys_[column_family_id].push_back(std::string(key.data(),
key.size()));
}
return Status::OK();
}
} handler(log_number, cf_log_number_map_, cf_wal_keys_);
batch.Iterate(&handler);
return WalProcessingOption::kContinueProcessing;
}
const char* Name() const override {
return "WalFilterTestWithColumnFamilies";
}
const std::map<uint32_t, std::vector<std::string>>& GetColumnFamilyKeys() {
return cf_wal_keys_;
}
const std::map<std::string, uint32_t> & GetColumnFamilyNameIdMap() {
return cf_name_id_map_;
}
};
std::vector<std::vector<std::string>> batch_keys_pre_flush(3);
batch_keys_pre_flush[0].push_back("key1");
batch_keys_pre_flush[0].push_back("key2");
batch_keys_pre_flush[1].push_back("key3");
batch_keys_pre_flush[1].push_back("key4");
batch_keys_pre_flush[2].push_back("key5");
batch_keys_pre_flush[2].push_back("key6");
Options options = OptionsForLogIterTest();
DestroyAndReopen(options);
CreateAndReopenWithCF({ "pikachu" }, options);
// Write given keys in given batches
for (size_t i = 0; i < batch_keys_pre_flush.size(); i++) {
WriteBatch batch;
for (size_t j = 0; j < batch_keys_pre_flush[i].size(); j++) {
batch.Put(handles_[0], batch_keys_pre_flush[i][j], DummyString(1024));
batch.Put(handles_[1], batch_keys_pre_flush[i][j], DummyString(1024));
}
dbfull()->Write(WriteOptions(), &batch);
}
//Flush default column-family
db_->Flush(FlushOptions(), handles_[0]);
// Do some more writes
std::vector<std::vector<std::string>> batch_keys_post_flush(3);
batch_keys_post_flush[0].push_back("key7");
batch_keys_post_flush[0].push_back("key8");
batch_keys_post_flush[1].push_back("key9");
batch_keys_post_flush[1].push_back("key10");
batch_keys_post_flush[2].push_back("key11");
batch_keys_post_flush[2].push_back("key12");
// Write given keys in given batches
for (size_t i = 0; i < batch_keys_post_flush.size(); i++) {
WriteBatch batch;
for (size_t j = 0; j < batch_keys_post_flush[i].size(); j++) {
batch.Put(handles_[0], batch_keys_post_flush[i][j], DummyString(1024));
batch.Put(handles_[1], batch_keys_post_flush[i][j], DummyString(1024));
}
dbfull()->Write(WriteOptions(), &batch);
}
// On Recovery we should only find the second batch applicable to default CF
// But both batches applicable to pikachu CF
// Create a test filter that would add extra keys
TestWalFilterWithColumnFamilies test_wal_filter_column_families;
// Reopen database with option to use WAL filter
options = OptionsForLogIterTest();
options.wal_filter = &test_wal_filter_column_families;
Status status =
TryReopenWithColumnFamilies({ "default", "pikachu" }, options);
ASSERT_TRUE(status.ok());
// verify that handles_[0] only has post_flush keys
// while handles_[1] has pre and post flush keys
auto cf_wal_keys = test_wal_filter_column_families.GetColumnFamilyKeys();
auto name_id_map = test_wal_filter_column_families.GetColumnFamilyNameIdMap();
size_t index = 0;
auto keys_cf = cf_wal_keys[name_id_map[kDefaultColumnFamilyName]];
//default column-family, only post_flush keys are expected
for (size_t i = 0; i < batch_keys_post_flush.size(); i++) {
for (size_t j = 0; j < batch_keys_post_flush[i].size(); j++) {
Slice key_from_the_log(keys_cf[index++]);
Slice batch_key(batch_keys_post_flush[i][j]);
ASSERT_TRUE(key_from_the_log.compare(batch_key) == 0);
}
}
ASSERT_TRUE(index == keys_cf.size());
index = 0;
keys_cf = cf_wal_keys[name_id_map["pikachu"]];
//pikachu column-family, all keys are expected
for (size_t i = 0; i < batch_keys_pre_flush.size(); i++) {
for (size_t j = 0; j < batch_keys_pre_flush[i].size(); j++) {
Slice key_from_the_log(keys_cf[index++]);
Slice batch_key(batch_keys_pre_flush[i][j]);
ASSERT_TRUE(key_from_the_log.compare(batch_key) == 0);
}
}
for (size_t i = 0; i < batch_keys_post_flush.size(); i++) {
for (size_t j = 0; j < batch_keys_post_flush[i].size(); j++) {
Slice key_from_the_log(keys_cf[index++]);
Slice batch_key(batch_keys_post_flush[i][j]);
ASSERT_TRUE(key_from_the_log.compare(batch_key) == 0);
}
}
ASSERT_TRUE(index == keys_cf.size());
}
TEST_F(DBTest2, PresetCompressionDict) {
// Verifies that compression ratio improves when dictionary is enabled, and
// improves even further when the dictionary is trained by ZSTD.
const size_t kBlockSizeBytes = 4 << 10;
const size_t kL0FileBytes = 128 << 10;
const size_t kApproxPerBlockOverheadBytes = 50;
const int kNumL0Files = 5;
Options options;
// Make sure to use any custom env that the test is configured with.
options.env = CurrentOptions().env;
options.allow_concurrent_memtable_write = false;
options.arena_block_size = kBlockSizeBytes;
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.memtable_factory.reset(
new SpecialSkipListFactory(kL0FileBytes / kBlockSizeBytes));
options.num_levels = 2;
options.target_file_size_base = kL0FileBytes;
options.target_file_size_multiplier = 2;
options.write_buffer_size = kL0FileBytes;
BlockBasedTableOptions table_options;
table_options.block_size = kBlockSizeBytes;
std::vector<CompressionType> compression_types;
if (Zlib_Supported()) {
compression_types.push_back(kZlibCompression);
}
#if LZ4_VERSION_NUMBER >= 10400 // r124+
compression_types.push_back(kLZ4Compression);
compression_types.push_back(kLZ4HCCompression);
#endif // LZ4_VERSION_NUMBER >= 10400
if (ZSTD_Supported()) {
compression_types.push_back(kZSTD);
}
enum DictionaryTypes : int {
kWithoutDict,
kWithDict,
kWithZSTDTrainedDict,
kDictEnd,
};
for (auto compression_type : compression_types) {
options.compression = compression_type;
size_t bytes_without_dict = 0;
size_t bytes_with_dict = 0;
size_t bytes_with_zstd_trained_dict = 0;
for (int i = kWithoutDict; i < kDictEnd; i++) {
// First iteration: compress without preset dictionary
// Second iteration: compress with preset dictionary
// Third iteration (zstd only): compress with zstd-trained dictionary
//
// To make sure the compression dictionary has the intended effect, we
// verify the compressed size is smaller in successive iterations. Also in
// the non-first iterations, verify the data we get out is the same data
// we put in.
switch (i) {
case kWithoutDict:
options.compression_opts.max_dict_bytes = 0;
options.compression_opts.zstd_max_train_bytes = 0;
break;
case kWithDict:
options.compression_opts.max_dict_bytes = kBlockSizeBytes;
options.compression_opts.zstd_max_train_bytes = 0;
break;
case kWithZSTDTrainedDict:
if (compression_type != kZSTD) {
continue;
}
options.compression_opts.max_dict_bytes = kBlockSizeBytes;
options.compression_opts.zstd_max_train_bytes = kL0FileBytes;
break;
default:
assert(false);
}
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
std::string seq_datas[10];
for (int j = 0; j < 10; ++j) {
seq_datas[j] =
RandomString(&rnd, kBlockSizeBytes - kApproxPerBlockOverheadBytes);
}
ASSERT_EQ(0, NumTableFilesAtLevel(0, 1));
for (int j = 0; j < kNumL0Files; ++j) {
for (size_t k = 0; k < kL0FileBytes / kBlockSizeBytes + 1; ++k) {
auto key_num = j * (kL0FileBytes / kBlockSizeBytes) + k;
ASSERT_OK(Put(1, Key(static_cast<int>(key_num)),
seq_datas[(key_num / 10) % 10]));
}
dbfull()->TEST_WaitForFlushMemTable(handles_[1]);
ASSERT_EQ(j + 1, NumTableFilesAtLevel(0, 1));
}
dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1],
true /* disallow_trivial_move */);
ASSERT_EQ(0, NumTableFilesAtLevel(0, 1));
ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
// Get the live sst files size
size_t total_sst_bytes = TotalSize(1);
if (i == kWithoutDict) {
bytes_without_dict = total_sst_bytes;
} else if (i == kWithDict) {
bytes_with_dict = total_sst_bytes;
} else if (i == kWithZSTDTrainedDict) {
bytes_with_zstd_trained_dict = total_sst_bytes;
}
for (size_t j = 0; j < kNumL0Files * (kL0FileBytes / kBlockSizeBytes);
j++) {
ASSERT_EQ(seq_datas[(j / 10) % 10], Get(1, Key(static_cast<int>(j))));
}
if (i == kWithDict) {
ASSERT_GT(bytes_without_dict, bytes_with_dict);
} else if (i == kWithZSTDTrainedDict) {
// In zstd compression, it is sometimes possible that using a trained
// dictionary does not get as good a compression ratio as without
// training.
// But using a dictionary (with or without training) should always get
// better compression ratio than not using one.
ASSERT_TRUE(bytes_with_dict > bytes_with_zstd_trained_dict ||
bytes_without_dict > bytes_with_zstd_trained_dict);
}
DestroyAndReopen(options);
}
}
}
TEST_F(DBTest2, PresetCompressionDictLocality) {
if (!ZSTD_Supported()) {
return;
}
// Verifies that compression dictionary is generated from local data. The
// verification simply checks all output SSTs have different compression
// dictionaries. We do not verify effectiveness as that'd likely be flaky in
// the future.
const int kNumEntriesPerFile = 1 << 10; // 1KB
const int kNumBytesPerEntry = 1 << 10; // 1KB
const int kNumFiles = 4;
Options options = CurrentOptions();
options.compression = kZSTD;
options.compression_opts.max_dict_bytes = 1 << 14; // 16KB
options.compression_opts.zstd_max_train_bytes = 1 << 18; // 256KB
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.target_file_size_base = kNumEntriesPerFile * kNumBytesPerEntry;
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
Reopen(options);
Random rnd(301);
for (int i = 0; i < kNumFiles; ++i) {
for (int j = 0; j < kNumEntriesPerFile; ++j) {
ASSERT_OK(Put(Key(i * kNumEntriesPerFile + j),
RandomString(&rnd, kNumBytesPerEntry)));
}
ASSERT_OK(Flush());
MoveFilesToLevel(1);
ASSERT_EQ(NumTableFilesAtLevel(1), i + 1);
}
// Store all the dictionaries generated during a full compaction.
std::vector<std::string> compression_dicts;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTableBuilder::WriteCompressionDictBlock:RawDict",
[&](void* arg) {
compression_dicts.emplace_back(static_cast<Slice*>(arg)->ToString());
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
CompactRangeOptions compact_range_opts;
compact_range_opts.bottommost_level_compaction =
BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(compact_range_opts, nullptr, nullptr));
// Dictionary compression should not be so good as to compress four totally
// random files into one. If it does then there's probably something wrong
// with the test.
ASSERT_GT(NumTableFilesAtLevel(1), 1);
// Furthermore, there should be one compression dictionary generated per file.
// And they should all be different from each other.
ASSERT_EQ(NumTableFilesAtLevel(1),
static_cast<int>(compression_dicts.size()));
for (size_t i = 1; i < compression_dicts.size(); ++i) {
std::string& a = compression_dicts[i - 1];
std::string& b = compression_dicts[i];
size_t alen = a.size();
size_t blen = b.size();
ASSERT_TRUE(alen != blen || memcmp(a.data(), b.data(), alen) != 0);
}
}
class CompactionCompressionListener : public EventListener {
public:
explicit CompactionCompressionListener(Options* db_options)
: db_options_(db_options) {}
void OnCompactionCompleted(DB* db, const CompactionJobInfo& ci) override {
// Figure out last level with files
int bottommost_level = 0;
for (int level = 0; level < db->NumberLevels(); level++) {
std::string files_at_level;
ASSERT_TRUE(
db->GetProperty("rocksdb.num-files-at-level" + NumberToString(level),
&files_at_level));
if (files_at_level != "0") {
bottommost_level = level;
}
}
if (db_options_->bottommost_compression != kDisableCompressionOption &&
ci.output_level == bottommost_level) {
ASSERT_EQ(ci.compression, db_options_->bottommost_compression);
} else if (db_options_->compression_per_level.size() != 0) {
ASSERT_EQ(ci.compression,
db_options_->compression_per_level[ci.output_level]);
} else {
ASSERT_EQ(ci.compression, db_options_->compression);
}
max_level_checked = std::max(max_level_checked, ci.output_level);
}
int max_level_checked = 0;
const Options* db_options_;
};
enum CompressionFailureType {
kTestCompressionFail,
kTestDecompressionFail,
kTestDecompressionCorruption
};
class CompressionFailuresTest
: public DBTest2,
public testing::WithParamInterface<std::tuple<
CompressionFailureType, CompressionType, uint32_t, uint32_t>> {
public:
CompressionFailuresTest() {
std::tie(compression_failure_type_, compression_type_,
compression_max_dict_bytes_, compression_parallel_threads_) =
GetParam();
}
CompressionFailureType compression_failure_type_ = kTestCompressionFail;
CompressionType compression_type_ = kNoCompression;
uint32_t compression_max_dict_bytes_ = 0;
uint32_t compression_parallel_threads_ = 0;
};
INSTANTIATE_TEST_CASE_P(
DBTest2, CompressionFailuresTest,
::testing::Combine(::testing::Values(kTestCompressionFail,
kTestDecompressionFail,
kTestDecompressionCorruption),
::testing::ValuesIn(GetSupportedCompressions()),
::testing::Values(0, 10), ::testing::Values(1, 4)));
TEST_P(CompressionFailuresTest, CompressionFailures) {
if (compression_type_ == kNoCompression) {
return;
}
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.max_bytes_for_level_base = 1024;
options.max_bytes_for_level_multiplier = 2;
options.num_levels = 7;
options.max_background_compactions = 1;
options.target_file_size_base = 512;
BlockBasedTableOptions table_options;
table_options.block_size = 512;
table_options.verify_compression = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.compression = compression_type_;
options.compression_opts.parallel_threads = compression_parallel_threads_;
options.compression_opts.max_dict_bytes = compression_max_dict_bytes_;
options.bottommost_compression_opts.parallel_threads =
compression_parallel_threads_;
options.bottommost_compression_opts.max_dict_bytes =
compression_max_dict_bytes_;
if (compression_failure_type_ == kTestCompressionFail) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTableBuilder::CompressBlockInternal:TamperWithReturnValue",
[](void* arg) {
bool* ret = static_cast<bool*>(arg);
*ret = false;
});
} else if (compression_failure_type_ == kTestDecompressionFail) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UncompressBlockContentsForCompressionType:TamperWithReturnValue",
[](void* arg) {
Status* ret = static_cast<Status*>(arg);
ASSERT_OK(*ret);
*ret = Status::Corruption("kTestDecompressionFail");
});
} else if (compression_failure_type_ == kTestDecompressionCorruption) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UncompressBlockContentsForCompressionType:"
"TamperWithDecompressionOutput",
[](void* arg) {
BlockContents* contents = static_cast<BlockContents*>(arg);
// Ensure uncompressed data != original data
const size_t len = contents->data.size() + 1;
std::unique_ptr<char[]> fake_data(new char[len]());
*contents = BlockContents(std::move(fake_data), len);
});
}
std::map<std::string, std::string> key_value_written;
const int kKeySize = 5;
const int kValUnitSize = 16;
const int kValSize = 256;
Random rnd(405);
Status s = Status::OK();
DestroyAndReopen(options);
// Write 10 random files
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 5; j++) {
std::string key = RandomString(&rnd, kKeySize);
// Ensure good compression ratio
std::string valueUnit = RandomString(&rnd, kValUnitSize);
std::string value;
for (int k = 0; k < kValSize; k += kValUnitSize) {
value += valueUnit;
}
s = Put(key, value);
if (compression_failure_type_ == kTestCompressionFail) {
key_value_written[key] = value;
ASSERT_OK(s);
}
}
s = Flush();
if (compression_failure_type_ == kTestCompressionFail) {
ASSERT_OK(s);
}
s = dbfull()->TEST_WaitForCompact();
if (compression_failure_type_ == kTestCompressionFail) {
ASSERT_OK(s);
}
if (i == 4) {
// Make compression fail at the mid of table building
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
}
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
if (compression_failure_type_ == kTestCompressionFail) {
// Should be kNoCompression, check content consistency
std::unique_ptr<Iterator> db_iter(db_->NewIterator(ReadOptions()));
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
std::string key = db_iter->key().ToString();
std::string value = db_iter->value().ToString();
ASSERT_NE(key_value_written.find(key), key_value_written.end());
ASSERT_EQ(key_value_written[key], value);
key_value_written.erase(key);
}
ASSERT_EQ(0, key_value_written.size());
} else if (compression_failure_type_ == kTestDecompressionFail) {
ASSERT_EQ(std::string(s.getState()),
"Could not decompress: kTestDecompressionFail");
} else if (compression_failure_type_ == kTestDecompressionCorruption) {
ASSERT_EQ(std::string(s.getState()),
"Decompressed block did not match raw block");
}
}
TEST_F(DBTest2, CompressionOptions) {
if (!Zlib_Supported() || !Snappy_Supported()) {
return;
}
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.max_bytes_for_level_base = 100;
options.max_bytes_for_level_multiplier = 2;
options.num_levels = 7;
options.max_background_compactions = 1;
CompactionCompressionListener* listener =
new CompactionCompressionListener(&options);
options.listeners.emplace_back(listener);
const int kKeySize = 5;
const int kValSize = 20;
Random rnd(301);
std::vector<uint32_t> compression_parallel_threads = {1, 4};
std::map<std::string, std::string> key_value_written;
for (int iter = 0; iter <= 2; iter++) {
listener->max_level_checked = 0;
if (iter == 0) {
// Use different compression algorithms for different levels but
// always use Zlib for bottommost level
options.compression_per_level = {kNoCompression, kNoCompression,
kNoCompression, kSnappyCompression,
kSnappyCompression, kSnappyCompression,
kZlibCompression};
options.compression = kNoCompression;
options.bottommost_compression = kZlibCompression;
} else if (iter == 1) {
// Use Snappy except for bottommost level use ZLib
options.compression_per_level = {};
options.compression = kSnappyCompression;
options.bottommost_compression = kZlibCompression;
} else if (iter == 2) {
// Use Snappy everywhere
options.compression_per_level = {};
options.compression = kSnappyCompression;
options.bottommost_compression = kDisableCompressionOption;
}
for (auto num_threads : compression_parallel_threads) {
options.compression_opts.parallel_threads = num_threads;
options.bottommost_compression_opts.parallel_threads = num_threads;
DestroyAndReopen(options);
// Write 10 random files
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 5; j++) {
std::string key = RandomString(&rnd, kKeySize);
std::string value = RandomString(&rnd, kValSize);
key_value_written[key] = value;
ASSERT_OK(Put(key, value));
}
ASSERT_OK(Flush());
dbfull()->TEST_WaitForCompact();
}
// Make sure that we wrote enough to check all 7 levels
ASSERT_EQ(listener->max_level_checked, 6);
// Make sure database content is the same as key_value_written
std::unique_ptr<Iterator> db_iter(db_->NewIterator(ReadOptions()));
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
std::string key = db_iter->key().ToString();
std::string value = db_iter->value().ToString();
ASSERT_NE(key_value_written.find(key), key_value_written.end());
ASSERT_EQ(key_value_written[key], value);
key_value_written.erase(key);
}
ASSERT_EQ(0, key_value_written.size());
}
}
}
class CompactionStallTestListener : public EventListener {
public:
CompactionStallTestListener() : compacting_files_cnt_(0), compacted_files_cnt_(0) {}
void OnCompactionBegin(DB* /*db*/, const CompactionJobInfo& ci) override {
ASSERT_EQ(ci.cf_name, "default");
ASSERT_EQ(ci.base_input_level, 0);
ASSERT_EQ(ci.compaction_reason, CompactionReason::kLevelL0FilesNum);
compacting_files_cnt_ += ci.input_files.size();
}
void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override {
ASSERT_EQ(ci.cf_name, "default");
ASSERT_EQ(ci.base_input_level, 0);
ASSERT_EQ(ci.compaction_reason, CompactionReason::kLevelL0FilesNum);
compacted_files_cnt_ += ci.input_files.size();
}
std::atomic<size_t> compacting_files_cnt_;
std::atomic<size_t> compacted_files_cnt_;
};
TEST_F(DBTest2, CompactionStall) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkCompaction", "DBTest2::CompactionStall:0"},
{"DBImpl::BGWorkCompaction", "DBTest2::CompactionStall:1"},
{"DBTest2::CompactionStall:2",
"DBImpl::NotifyOnCompactionBegin::UnlockMutex"},
{"DBTest2::CompactionStall:3",
"DBImpl::NotifyOnCompactionCompleted::UnlockMutex"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 4;
options.max_background_compactions = 40;
CompactionStallTestListener* listener = new CompactionStallTestListener();
options.listeners.emplace_back(listener);
DestroyAndReopen(options);
// make sure all background compaction jobs can be scheduled
auto stop_token =
dbfull()->TEST_write_controler().GetCompactionPressureToken();
Random rnd(301);
// 4 Files in L0
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(RandomString(&rnd, 10), RandomString(&rnd, 10)));
}
ASSERT_OK(Flush());
}
// Wait for compaction to be triggered
TEST_SYNC_POINT("DBTest2::CompactionStall:0");
// Clear "DBImpl::BGWorkCompaction" SYNC_POINT since we want to hold it again
// at DBTest2::CompactionStall::1
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
// Another 6 L0 files to trigger compaction again
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(RandomString(&rnd, 10), RandomString(&rnd, 10)));
}
ASSERT_OK(Flush());
}
// Wait for another compaction to be triggered
TEST_SYNC_POINT("DBTest2::CompactionStall:1");
// Hold NotifyOnCompactionBegin in the unlock mutex section
TEST_SYNC_POINT("DBTest2::CompactionStall:2");
// Hold NotifyOnCompactionCompleted in the unlock mutex section
TEST_SYNC_POINT("DBTest2::CompactionStall:3");
dbfull()->TEST_WaitForCompact();
ASSERT_LT(NumTableFilesAtLevel(0),
options.level0_file_num_compaction_trigger);
ASSERT_GT(listener->compacted_files_cnt_.load(),
10 - options.level0_file_num_compaction_trigger);
ASSERT_EQ(listener->compacting_files_cnt_.load(), listener->compacted_files_cnt_.load());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#endif // ROCKSDB_LITE
TEST_F(DBTest2, FirstSnapshotTest) {
Options options;
options.write_buffer_size = 100000; // Small write buffer
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, options);
// This snapshot will have sequence number 0 what is expected behaviour.
const Snapshot* s1 = db_->GetSnapshot();
Put(1, "k1", std::string(100000, 'x')); // Fill memtable
Put(1, "k2", std::string(100000, 'y')); // Trigger flush
db_->ReleaseSnapshot(s1);
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, DuplicateSnapshot) {
Options options;
options = CurrentOptions(options);
std::vector<const Snapshot*> snapshots;
DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);
SequenceNumber oldest_ww_snap, first_ww_snap;
Put("k", "v"); // inc seq
snapshots.push_back(db_->GetSnapshot());
snapshots.push_back(db_->GetSnapshot());
Put("k", "v"); // inc seq
snapshots.push_back(db_->GetSnapshot());
snapshots.push_back(dbi->GetSnapshotForWriteConflictBoundary());
first_ww_snap = snapshots.back()->GetSequenceNumber();
Put("k", "v"); // inc seq
snapshots.push_back(dbi->GetSnapshotForWriteConflictBoundary());
snapshots.push_back(db_->GetSnapshot());
Put("k", "v"); // inc seq
snapshots.push_back(db_->GetSnapshot());
{
InstrumentedMutexLock l(dbi->mutex());
auto seqs = dbi->snapshots().GetAll(&oldest_ww_snap);
ASSERT_EQ(seqs.size(), 4); // duplicates are not counted
ASSERT_EQ(oldest_ww_snap, first_ww_snap);
}
for (auto s : snapshots) {
db_->ReleaseSnapshot(s);
}
}
#endif // ROCKSDB_LITE
class PinL0IndexAndFilterBlocksTest
: public DBTestBase,
public testing::WithParamInterface<std::tuple<bool, bool>> {
public:
PinL0IndexAndFilterBlocksTest() : DBTestBase("/db_pin_l0_index_bloom_test") {}
void SetUp() override {
infinite_max_files_ = std::get<0>(GetParam());
disallow_preload_ = std::get<1>(GetParam());
}
void CreateTwoLevels(Options* options, bool close_afterwards) {
if (infinite_max_files_) {
options->max_open_files = -1;
}
options->create_if_missing = true;
options->statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
options->table_factory.reset(new BlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, *options);
Put(1, "a", "begin");
Put(1, "z", "end");
ASSERT_OK(Flush(1));
// move this table to L1
dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
// reset block cache
table_options.block_cache = NewLRUCache(64 * 1024);
options->table_factory.reset(NewBlockBasedTableFactory(table_options));
TryReopenWithColumnFamilies({"default", "pikachu"}, *options);
// create new table at L0
Put(1, "a2", "begin2");
Put(1, "z2", "end2");
ASSERT_OK(Flush(1));
if (close_afterwards) {
Close(); // This ensures that there is no ref to block cache entries
}
table_options.block_cache->EraseUnRefEntries();
}
bool infinite_max_files_;
bool disallow_preload_;
};
TEST_P(PinL0IndexAndFilterBlocksTest,
IndexAndFilterBlocksOfNewTableAddedToCacheWithPinning) {
Options options = CurrentOptions();
if (infinite_max_files_) {
options.max_open_files = -1;
}
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(20));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "key", "val"));
// Create a new table.
ASSERT_OK(Flush(1));
// index/filter blocks added to block cache right after table creation.
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
// only index/filter were added
ASSERT_EQ(2, TestGetTickerCount(options, BLOCK_CACHE_ADD));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_DATA_MISS));
std::string value;
// Miss and hit count should remain the same, they're all pinned.
db_->KeyMayExist(ReadOptions(), handles_[1], "key", &value);
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
// Miss and hit count should remain the same, they're all pinned.
value = Get(1, "key");
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(0, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
TEST_P(PinL0IndexAndFilterBlocksTest,
MultiLevelIndexAndFilterBlocksCachedWithPinning) {
Options options = CurrentOptions();
PinL0IndexAndFilterBlocksTest::CreateTwoLevels(&options, false);
// get base cache values
uint64_t fm = TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS);
uint64_t fh = TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT);
uint64_t im = TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS);
uint64_t ih = TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT);
std::string value;
// this should be read from L0
// so cache values don't change
value = Get(1, "a2");
ASSERT_EQ(fm, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
// this should be read from L1
// the file is opened, prefetching results in a cache filter miss
// the block is loaded and added to the cache,
// then the get results in a cache hit for L1
// When we have inifinite max_files, there is still cache miss because we have
// reset the block cache
value = Get(1, "a");
ASSERT_EQ(fm + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(im + 1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
}
TEST_P(PinL0IndexAndFilterBlocksTest, DisablePrefetchingNonL0IndexAndFilter) {
Options options = CurrentOptions();
// This ensures that db does not ref anything in the block cache, so
// EraseUnRefEntries could clear them up.
bool close_afterwards = true;
PinL0IndexAndFilterBlocksTest::CreateTwoLevels(&options, close_afterwards);
// Get base cache values
uint64_t fm = TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS);
uint64_t fh = TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT);
uint64_t im = TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS);
uint64_t ih = TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT);
if (disallow_preload_) {
// Now we have two files. We narrow the max open files to allow 3 entries
// so that preloading SST files won't happen.
options.max_open_files = 13;
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = 13;
});
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Reopen database. If max_open_files is set as -1, table readers will be
// preloaded. This will trigger a BlockBasedTable::Open() and prefetch
// L0 index and filter. Level 1's prefetching is disabled in DB::Open()
TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
if (!disallow_preload_) {
// After reopen, cache miss are increased by one because we read (and only
// read) filter and index on L0
ASSERT_EQ(fm + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
} else {
// If max_open_files is not -1, we do not preload table readers, so there is
// no change.
ASSERT_EQ(fm, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
std::string value;
// this should be read from L0
value = Get(1, "a2");
// If max_open_files is -1, we have pinned index and filter in Rep, so there
// will not be changes in index and filter misses or hits. If max_open_files
// is not -1, Get() will open a TableReader and prefetch index and filter.
ASSERT_EQ(fm + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
// this should be read from L1
value = Get(1, "a");
if (!disallow_preload_) {
// In inifinite max files case, there's a cache miss in executing Get()
// because index and filter are not prefetched before.
ASSERT_EQ(fm + 2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 2, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
} else {
// In this case, cache miss will be increased by one in
// BlockBasedTable::Open() because this is not in DB::Open() code path so we
// will prefetch L1's index and filter. Cache hit will also be increased by
// one because Get() will read index and filter from the block cache
// prefetched in previous Open() call.
ASSERT_EQ(fm + 2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 2, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih + 1, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
// Force a full compaction to one single file. There will be a block
// cache read for both of index and filter. If prefetch doesn't explicitly
// happen, it will happen when verifying the file.
Compact(1, "a", "zzzzz");
dbfull()->TEST_WaitForCompact();
if (!disallow_preload_) {
ASSERT_EQ(fm + 3, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 3, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih + 3, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
} else {
ASSERT_EQ(fm + 3, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 3, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih + 4, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
// Bloom and index hit will happen when a Get() happens.
value = Get(1, "a");
if (!disallow_preload_) {
ASSERT_EQ(fm + 3, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh + 1, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 3, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih + 4, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
} else {
ASSERT_EQ(fm + 3, TestGetTickerCount(options, BLOCK_CACHE_FILTER_MISS));
ASSERT_EQ(fh + 2, TestGetTickerCount(options, BLOCK_CACHE_FILTER_HIT));
ASSERT_EQ(im + 3, TestGetTickerCount(options, BLOCK_CACHE_INDEX_MISS));
ASSERT_EQ(ih + 5, TestGetTickerCount(options, BLOCK_CACHE_INDEX_HIT));
}
}
INSTANTIATE_TEST_CASE_P(PinL0IndexAndFilterBlocksTest,
PinL0IndexAndFilterBlocksTest,
::testing::Values(std::make_tuple(true, false),
std::make_tuple(false, false),
std::make_tuple(false, true)));
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, MaxCompactionBytesTest) {
Options options = CurrentOptions();
options.memtable_factory.reset(
new SpecialSkipListFactory(DBTestBase::kNumKeysByGenerateNewRandomFile));
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 200 << 10;
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 100 << 10;
// Infinite for full compaction.
options.max_compaction_bytes = options.target_file_size_base * 100;
Reopen(options);
Random rnd(301);
for (int num = 0; num < 8; num++) {
GenerateNewRandomFile(&rnd);
}
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ("0,0,8", FilesPerLevel(0));
// When compact from Ln -> Ln+1, cut a file if the file overlaps with
// more than three files in Ln+1.
options.max_compaction_bytes = options.target_file_size_base * 3;
Reopen(options);
GenerateNewRandomFile(&rnd);
// Add three more small files that overlap with the previous file
for (int i = 0; i < 3; i++) {
Put("a", "z");
ASSERT_OK(Flush());
}
dbfull()->TEST_WaitForCompact();
// Output files to L1 are cut to three pieces, according to
// options.max_compaction_bytes
ASSERT_EQ("0,3,8", FilesPerLevel(0));
}
static void UniqueIdCallback(void* arg) {
int* result = reinterpret_cast<int*>(arg);
if (*result == -1) {
*result = 0;
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"GetUniqueIdFromFile:FS_IOC_GETVERSION", UniqueIdCallback);
}
class MockPersistentCache : public PersistentCache {
public:
explicit MockPersistentCache(const bool is_compressed, const size_t max_size)
: is_compressed_(is_compressed), max_size_(max_size) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"GetUniqueIdFromFile:FS_IOC_GETVERSION", UniqueIdCallback);
}
~MockPersistentCache() override {}
PersistentCache::StatsType Stats() override {
return PersistentCache::StatsType();
}
uint64_t NewId() override {
return last_id_.fetch_add(1, std::memory_order_relaxed);
}
Status Insert(const Slice& page_key, const char* data,
const size_t size) override {
MutexLock _(&lock_);
if (size_ > max_size_) {
size_ -= data_.begin()->second.size();
data_.erase(data_.begin());
}
data_.insert(std::make_pair(page_key.ToString(), std::string(data, size)));
size_ += size;
return Status::OK();
}
Status Lookup(const Slice& page_key, std::unique_ptr<char[]>* data,
size_t* size) override {
MutexLock _(&lock_);
auto it = data_.find(page_key.ToString());
if (it == data_.end()) {
return Status::NotFound();
}
assert(page_key.ToString() == it->first);
data->reset(new char[it->second.size()]);
memcpy(data->get(), it->second.c_str(), it->second.size());
*size = it->second.size();
return Status::OK();
}
bool IsCompressed() override { return is_compressed_; }
std::string GetPrintableOptions() const override {
return "MockPersistentCache";
}
port::Mutex lock_;
std::map<std::string, std::string> data_;
const bool is_compressed_ = true;
size_t size_ = 0;
const size_t max_size_ = 10 * 1024; // 10KiB
std::atomic<uint64_t> last_id_{1};
};
#ifdef OS_LINUX
// Make sure that in CPU time perf context counters, Env::NowCPUNanos()
// is used, rather than Env::CPUNanos();
TEST_F(DBTest2, TestPerfContextGetCpuTime) {
// force resizing table cache so table handle is not preloaded so that
// we can measure find_table_nanos during Get().
dbfull()->TEST_table_cache()->SetCapacity(0);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
env_->now_cpu_count_.store(0);
// CPU timing is not enabled with kEnableTimeExceptForMutex
SetPerfLevel(PerfLevel::kEnableTimeExceptForMutex);
ASSERT_EQ("bar", Get("foo"));
ASSERT_EQ(0, get_perf_context()->get_cpu_nanos);
ASSERT_EQ(0, env_->now_cpu_count_.load());
uint64_t kDummyAddonTime = uint64_t{1000000000000};
// Add time to NowNanos() reading.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TableCache::FindTable:0",
[&](void* /*arg*/) { env_->addon_time_.fetch_add(kDummyAddonTime); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
ASSERT_EQ("bar", Get("foo"));
ASSERT_GT(env_->now_cpu_count_.load(), 2);
ASSERT_LT(get_perf_context()->get_cpu_nanos, kDummyAddonTime);
ASSERT_GT(get_perf_context()->find_table_nanos, kDummyAddonTime);
SetPerfLevel(PerfLevel::kDisable);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, TestPerfContextIterCpuTime) {
DestroyAndReopen(CurrentOptions());
// force resizing table cache so table handle is not preloaded so that
// we can measure find_table_nanos during iteration
dbfull()->TEST_table_cache()->SetCapacity(0);
const size_t kNumEntries = 10;
for (size_t i = 0; i < kNumEntries; ++i) {
ASSERT_OK(Put("k" + ToString(i), "v" + ToString(i)));
}
ASSERT_OK(Flush());
for (size_t i = 0; i < kNumEntries; ++i) {
ASSERT_EQ("v" + ToString(i), Get("k" + ToString(i)));
}
std::string last_key = "k" + ToString(kNumEntries - 1);
std::string last_value = "v" + ToString(kNumEntries - 1);
env_->now_cpu_count_.store(0);
// CPU timing is not enabled with kEnableTimeExceptForMutex
SetPerfLevel(PerfLevel::kEnableTimeExceptForMutex);
Iterator* iter = db_->NewIterator(ReadOptions());
iter->Seek("k0");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
iter->SeekForPrev(last_key);
ASSERT_TRUE(iter->Valid());
iter->SeekToLast();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(last_value, iter->value().ToString());
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
ASSERT_EQ(0, get_perf_context()->iter_seek_cpu_nanos);
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v1", iter->value().ToString());
ASSERT_EQ(0, get_perf_context()->iter_next_cpu_nanos);
iter->Prev();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
ASSERT_EQ(0, get_perf_context()->iter_prev_cpu_nanos);
ASSERT_EQ(0, env_->now_cpu_count_.load());
delete iter;
uint64_t kDummyAddonTime = uint64_t{1000000000000};
// Add time to NowNanos() reading.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TableCache::FindTable:0",
[&](void* /*arg*/) { env_->addon_time_.fetch_add(kDummyAddonTime); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
iter = db_->NewIterator(ReadOptions());
iter->Seek("k0");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
iter->SeekForPrev(last_key);
ASSERT_TRUE(iter->Valid());
iter->SeekToLast();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(last_value, iter->value().ToString());
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
ASSERT_GT(get_perf_context()->iter_seek_cpu_nanos, 0);
ASSERT_LT(get_perf_context()->iter_seek_cpu_nanos, kDummyAddonTime);
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v1", iter->value().ToString());
ASSERT_GT(get_perf_context()->iter_next_cpu_nanos, 0);
ASSERT_LT(get_perf_context()->iter_next_cpu_nanos, kDummyAddonTime);
iter->Prev();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
ASSERT_GT(get_perf_context()->iter_prev_cpu_nanos, 0);
ASSERT_LT(get_perf_context()->iter_prev_cpu_nanos, kDummyAddonTime);
ASSERT_GE(env_->now_cpu_count_.load(), 12);
ASSERT_GT(get_perf_context()->find_table_nanos, kDummyAddonTime);
SetPerfLevel(PerfLevel::kDisable);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
delete iter;
}
#endif // OS_LINUX
#if !defined OS_SOLARIS
TEST_F(DBTest2, PersistentCache) {
int num_iter = 80;
Options options;
options.write_buffer_size = 64 * 1024; // small write buffer
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options = CurrentOptions(options);
auto bsizes = {/*no block cache*/ 0, /*1M*/ 1 * 1024 * 1024};
auto types = {/*compressed*/ 1, /*uncompressed*/ 0};
for (auto bsize : bsizes) {
for (auto type : types) {
BlockBasedTableOptions table_options;
table_options.persistent_cache.reset(
new MockPersistentCache(type, 10 * 1024));
table_options.no_block_cache = true;
table_options.block_cache = bsize ? NewLRUCache(bsize) : nullptr;
table_options.block_cache_compressed = nullptr;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
// default column family doesn't have block cache
Options no_block_cache_opts;
no_block_cache_opts.statistics = options.statistics;
no_block_cache_opts = CurrentOptions(no_block_cache_opts);
BlockBasedTableOptions table_options_no_bc;
table_options_no_bc.no_block_cache = true;
no_block_cache_opts.table_factory.reset(
NewBlockBasedTableFactory(table_options_no_bc));
ReopenWithColumnFamilies(
{"default", "pikachu"},
std::vector<Options>({no_block_cache_opts, options}));
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
std::vector<std::string> values;
std::string str;
for (int i = 0; i < num_iter; i++) {
if (i % 4 == 0) { // high compression ratio
str = RandomString(&rnd, 1000);
}
values.push_back(str);
ASSERT_OK(Put(1, Key(i), values[i]));
}
// flush all data from memtable so that reads are from block cache
ASSERT_OK(Flush(1));
for (int i = 0; i < num_iter; i++) {
ASSERT_EQ(Get(1, Key(i)), values[i]);
}
auto hit = options.statistics->getTickerCount(PERSISTENT_CACHE_HIT);
auto miss = options.statistics->getTickerCount(PERSISTENT_CACHE_MISS);
ASSERT_GT(hit, 0);
ASSERT_GT(miss, 0);
}
}
}
#endif // !defined OS_SOLARIS
namespace {
void CountSyncPoint() {
TEST_SYNC_POINT_CALLBACK("DBTest2::MarkedPoint", nullptr /* arg */);
}
} // namespace
TEST_F(DBTest2, SyncPointMarker) {
std::atomic<int> sync_point_called(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBTest2::MarkedPoint",
[&](void* /*arg*/) { sync_point_called.fetch_add(1); });
// The first dependency enforces Marker can be loaded before MarkedPoint.
// The second checks that thread 1's MarkedPoint should be disabled here.
// Execution order:
// | Thread 1 | Thread 2 |
// | | Marker |
// | MarkedPoint | |
// | Thread1First | |
// | | MarkedPoint |
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependencyAndMarkers(
{{"DBTest2::SyncPointMarker:Thread1First", "DBTest2::MarkedPoint"}},
{{"DBTest2::SyncPointMarker:Marker", "DBTest2::MarkedPoint"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::function<void()> func1 = [&]() {
CountSyncPoint();
TEST_SYNC_POINT("DBTest2::SyncPointMarker:Thread1First");
};
std::function<void()> func2 = [&]() {
TEST_SYNC_POINT("DBTest2::SyncPointMarker:Marker");
CountSyncPoint();
};
auto thread1 = port::Thread(func1);
auto thread2 = port::Thread(func2);
thread1.join();
thread2.join();
// Callback is only executed once
ASSERT_EQ(sync_point_called.load(), 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#endif
size_t GetEncodedEntrySize(size_t key_size, size_t value_size) {
std::string buffer;
PutVarint32(&buffer, static_cast<uint32_t>(0));
PutVarint32(&buffer, static_cast<uint32_t>(key_size));
PutVarint32(&buffer, static_cast<uint32_t>(value_size));
return buffer.size() + key_size + value_size;
}
TEST_F(DBTest2, ReadAmpBitmap) {
Options options = CurrentOptions();
BlockBasedTableOptions bbto;
uint32_t bytes_per_bit[2] = {1, 16};
for (size_t k = 0; k < 2; k++) {
// Disable delta encoding to make it easier to calculate read amplification
bbto.use_delta_encoding = false;
// Huge block cache to make it easier to calculate read amplification
bbto.block_cache = NewLRUCache(1024 * 1024 * 1024);
bbto.read_amp_bytes_per_bit = bytes_per_bit[k];
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
const size_t kNumEntries = 10000;
Random rnd(301);
for (size_t i = 0; i < kNumEntries; i++) {
ASSERT_OK(Put(Key(static_cast<int>(i)), RandomString(&rnd, 100)));
}
ASSERT_OK(Flush());
Close();
Reopen(options);
// Read keys/values randomly and verify that reported read amp error
// is less than 2%
uint64_t total_useful_bytes = 0;
std::set<int> read_keys;
std::string value;
for (size_t i = 0; i < kNumEntries * 5; i++) {
int key_idx = rnd.Next() % kNumEntries;
std::string key = Key(key_idx);
ASSERT_OK(db_->Get(ReadOptions(), key, &value));
if (read_keys.find(key_idx) == read_keys.end()) {
auto internal_key = InternalKey(key, 0, ValueType::kTypeValue);
total_useful_bytes +=
GetEncodedEntrySize(internal_key.size(), value.size());
read_keys.insert(key_idx);
}
double expected_read_amp =
static_cast<double>(total_useful_bytes) /
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES);
double read_amp =
static_cast<double>(options.statistics->getTickerCount(
READ_AMP_ESTIMATE_USEFUL_BYTES)) /
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES);
double error_pct = fabs(expected_read_amp - read_amp) * 100;
// Error between reported read amp and real read amp should be less than
// 2%
EXPECT_LE(error_pct, 2);
}
// Make sure we read every thing in the DB (which is smaller than our cache)
Iterator* iter = db_->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(iter->value().ToString(), Get(iter->key().ToString()));
}
delete iter;
// Read amp is on average 100% since we read all what we loaded in memory
if (k == 0) {
ASSERT_EQ(
options.statistics->getTickerCount(READ_AMP_ESTIMATE_USEFUL_BYTES),
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES));
} else {
ASSERT_NEAR(
options.statistics->getTickerCount(READ_AMP_ESTIMATE_USEFUL_BYTES) *
1.0f /
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES),
1, .01);
}
}
}
#ifndef OS_SOLARIS // GetUniqueIdFromFile is not implemented
TEST_F(DBTest2, ReadAmpBitmapLiveInCacheAfterDBClose) {
{
const int kIdBufLen = 100;
char id_buf[kIdBufLen];
#ifndef OS_WIN
// You can't open a directory on windows using random access file
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(dbname_, &file, EnvOptions()));
if (file->GetUniqueId(id_buf, kIdBufLen) == 0) {
// fs holding db directory doesn't support getting a unique file id,
// this means that running this test will fail because lru_cache will load
// the blocks again regardless of them being already in the cache
return;
}
#else
std::unique_ptr<Directory> dir;
ASSERT_OK(env_->NewDirectory(dbname_, &dir));
if (dir->GetUniqueId(id_buf, kIdBufLen) == 0) {
// fs holding db directory doesn't support getting a unique file id,
// this means that running this test will fail because lru_cache will load
// the blocks again regardless of them being already in the cache
return;
}
#endif
}
uint32_t bytes_per_bit[2] = {1, 16};
for (size_t k = 0; k < 2; k++) {
std::shared_ptr<Cache> lru_cache = NewLRUCache(1024 * 1024 * 1024);
std::shared_ptr<Statistics> stats = ROCKSDB_NAMESPACE::CreateDBStatistics();
Options options = CurrentOptions();
BlockBasedTableOptions bbto;
// Disable delta encoding to make it easier to calculate read amplification
bbto.use_delta_encoding = false;
// Huge block cache to make it easier to calculate read amplification
bbto.block_cache = lru_cache;
bbto.read_amp_bytes_per_bit = bytes_per_bit[k];
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.statistics = stats;
DestroyAndReopen(options);
const int kNumEntries = 10000;
Random rnd(301);
for (int i = 0; i < kNumEntries; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, 100)));
}
ASSERT_OK(Flush());
Close();
Reopen(options);
uint64_t total_useful_bytes = 0;
std::set<int> read_keys;
std::string value;
// Iter1: Read half the DB, Read even keys
// Key(0), Key(2), Key(4), Key(6), Key(8), ...
for (int i = 0; i < kNumEntries; i += 2) {
std::string key = Key(i);
ASSERT_OK(db_->Get(ReadOptions(), key, &value));
if (read_keys.find(i) == read_keys.end()) {
auto internal_key = InternalKey(key, 0, ValueType::kTypeValue);
total_useful_bytes +=
GetEncodedEntrySize(internal_key.size(), value.size());
read_keys.insert(i);
}
}
size_t total_useful_bytes_iter1 =
options.statistics->getTickerCount(READ_AMP_ESTIMATE_USEFUL_BYTES);
size_t total_loaded_bytes_iter1 =
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES);
Close();
std::shared_ptr<Statistics> new_statistics =
ROCKSDB_NAMESPACE::CreateDBStatistics();
// Destroy old statistics obj that the blocks in lru_cache are pointing to
options.statistics.reset();
// Use the statistics object that we just created
options.statistics = new_statistics;
Reopen(options);
// Iter2: Read half the DB, Read odd keys
// Key(1), Key(3), Key(5), Key(7), Key(9), ...
for (int i = 1; i < kNumEntries; i += 2) {
std::string key = Key(i);
ASSERT_OK(db_->Get(ReadOptions(), key, &value));
if (read_keys.find(i) == read_keys.end()) {
auto internal_key = InternalKey(key, 0, ValueType::kTypeValue);
total_useful_bytes +=
GetEncodedEntrySize(internal_key.size(), value.size());
read_keys.insert(i);
}
}
size_t total_useful_bytes_iter2 =
options.statistics->getTickerCount(READ_AMP_ESTIMATE_USEFUL_BYTES);
size_t total_loaded_bytes_iter2 =
options.statistics->getTickerCount(READ_AMP_TOTAL_READ_BYTES);
// Read amp is on average 100% since we read all what we loaded in memory
if (k == 0) {
ASSERT_EQ(total_useful_bytes_iter1 + total_useful_bytes_iter2,
total_loaded_bytes_iter1 + total_loaded_bytes_iter2);
} else {
ASSERT_NEAR((total_useful_bytes_iter1 + total_useful_bytes_iter2) * 1.0f /
(total_loaded_bytes_iter1 + total_loaded_bytes_iter2),
1, .01);
}
}
}
#endif // !OS_SOLARIS
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, AutomaticCompactionOverlapManualCompaction) {
Options options = CurrentOptions();
options.num_levels = 3;
options.IncreaseParallelism(20);
DestroyAndReopen(options);
ASSERT_OK(Put(Key(0), "a"));
ASSERT_OK(Put(Key(5), "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(10), "a"));
ASSERT_OK(Put(Key(15), "a"));
ASSERT_OK(Flush());
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
auto get_stat = [](std::string level_str, LevelStatType type,
std::map<std::string, std::string> props) {
auto prop_str =
"compaction." + level_str + "." +
InternalStats::compaction_level_stats.at(type).property_name.c_str();
auto prop_item = props.find(prop_str);
return prop_item == props.end() ? 0 : std::stod(prop_item->second);
};
// Trivial move 2 files to L2
ASSERT_EQ("0,0,2", FilesPerLevel());
// Also test that the stats GetMapProperty API reporting the same result
{
std::map<std::string, std::string> prop;
ASSERT_TRUE(dbfull()->GetMapProperty("rocksdb.cfstats", &prop));
ASSERT_EQ(0, get_stat("L0", LevelStatType::NUM_FILES, prop));
ASSERT_EQ(0, get_stat("L1", LevelStatType::NUM_FILES, prop));
ASSERT_EQ(2, get_stat("L2", LevelStatType::NUM_FILES, prop));
ASSERT_EQ(2, get_stat("Sum", LevelStatType::NUM_FILES, prop));
}
// While the compaction is running, we will create 2 new files that
// can fit in L2, these 2 files will be moved to L2 and overlap with
// the running compaction and break the LSM consistency.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():Start", [&](void* /*arg*/) {
ASSERT_OK(
dbfull()->SetOptions({{"level0_file_num_compaction_trigger", "2"},
{"max_bytes_for_level_base", "1"}}));
ASSERT_OK(Put(Key(6), "a"));
ASSERT_OK(Put(Key(7), "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(8), "a"));
ASSERT_OK(Put(Key(9), "a"));
ASSERT_OK(Flush());
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Run a manual compaction that will compact the 2 files in L2
// into 1 file in L2
cro.exclusive_manual_compaction = false;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
// Test that the stats GetMapProperty API reporting 1 file in L2
{
std::map<std::string, std::string> prop;
ASSERT_TRUE(dbfull()->GetMapProperty("rocksdb.cfstats", &prop));
ASSERT_EQ(1, get_stat("L2", LevelStatType::NUM_FILES, prop));
}
}
TEST_F(DBTest2, ManualCompactionOverlapManualCompaction) {
Options options = CurrentOptions();
options.num_levels = 2;
options.IncreaseParallelism(20);
options.disable_auto_compactions = true;
DestroyAndReopen(options);
ASSERT_OK(Put(Key(0), "a"));
ASSERT_OK(Put(Key(5), "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(10), "a"));
ASSERT_OK(Put(Key(15), "a"));
ASSERT_OK(Flush());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
// Trivial move 2 files to L1
ASSERT_EQ("0,2", FilesPerLevel());
std::function<void()> bg_manual_compact = [&]() {
std::string k1 = Key(6);
std::string k2 = Key(9);
Slice k1s(k1);
Slice k2s(k2);
CompactRangeOptions cro;
cro.exclusive_manual_compaction = false;
ASSERT_OK(db_->CompactRange(cro, &k1s, &k2s));
};
ROCKSDB_NAMESPACE::port::Thread bg_thread;
// While the compaction is running, we will create 2 new files that
// can fit in L1, these 2 files will be moved to L1 and overlap with
// the running compaction and break the LSM consistency.
std::atomic<bool> flag(false);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():Start", [&](void* /*arg*/) {
if (flag.exchange(true)) {
// We want to make sure to call this callback only once
return;
}
ASSERT_OK(Put(Key(6), "a"));
ASSERT_OK(Put(Key(7), "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(8), "a"));
ASSERT_OK(Put(Key(9), "a"));
ASSERT_OK(Flush());
// Start a non-exclusive manual compaction in a bg thread
bg_thread = port::Thread(bg_manual_compact);
// This manual compaction conflict with the other manual compaction
// so it should wait until the first compaction finish
env_->SleepForMicroseconds(1000000);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Run a manual compaction that will compact the 2 files in L1
// into 1 file in L1
CompactRangeOptions cro;
cro.exclusive_manual_compaction = false;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
bg_thread.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, PausingManualCompaction1) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.num_levels = 7;
DestroyAndReopen(options);
Random rnd(301);
// Generate a file containing 10 keys.
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, 50)));
}
ASSERT_OK(Flush());
// Generate another file containing same keys
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, 50)));
}
ASSERT_OK(Flush());
int manual_compactions_paused = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():PausingManualCompaction:1", [&](void* arg) {
auto paused = reinterpret_cast<std::atomic<bool>*>(arg);
ASSERT_FALSE(paused->load(std::memory_order_acquire));
paused->store(true, std::memory_order_release);
manual_compactions_paused += 1;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<std::string> files_before_compact, files_after_compact;
// Remember file name before compaction is triggered
std::vector<LiveFileMetaData> files_meta;
dbfull()->GetLiveFilesMetaData(&files_meta);
for (auto file : files_meta) {
files_before_compact.push_back(file.name);
}
// OK, now trigger a manual compaction
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
// Wait for compactions to get scheduled and stopped
dbfull()->TEST_WaitForCompact(true);
// Get file names after compaction is stopped
files_meta.clear();
dbfull()->GetLiveFilesMetaData(&files_meta);
for (auto file : files_meta) {
files_after_compact.push_back(file.name);
}
// Like nothing happened
ASSERT_EQ(files_before_compact, files_after_compact);
ASSERT_EQ(manual_compactions_paused, 1);
manual_compactions_paused = 0;
// Now make sure CompactFiles also not run
dbfull()->CompactFiles(ROCKSDB_NAMESPACE::CompactionOptions(),
files_before_compact, 0);
// Wait for manual compaction to get scheduled and finish
dbfull()->TEST_WaitForCompact(true);
files_meta.clear();
files_after_compact.clear();
dbfull()->GetLiveFilesMetaData(&files_meta);
for (auto file : files_meta) {
files_after_compact.push_back(file.name);
}
ASSERT_EQ(files_before_compact, files_after_compact);
// CompactFiles returns at entry point
ASSERT_EQ(manual_compactions_paused, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
// PausingManualCompaction does not affect auto compaction
TEST_F(DBTest2, PausingManualCompaction2) {
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
options.disable_auto_compactions = false;
DestroyAndReopen(options);
dbfull()->DisableManualCompaction();
Random rnd(301);
for (int i = 0; i < 2; i++) {
// Generate a file containing 10 keys.
for (int j = 0; j < 100; j++) {
ASSERT_OK(Put(Key(j), RandomString(&rnd, 50)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact(true));
std::vector<LiveFileMetaData> files_meta;
dbfull()->GetLiveFilesMetaData(&files_meta);
ASSERT_EQ(files_meta.size(), 1);
}
TEST_F(DBTest2, PausingManualCompaction3) {
CompactRangeOptions compact_options;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.num_levels = 7;
Random rnd(301);
auto generate_files = [&]() {
for (int i = 0; i < options.num_levels; i++) {
for (int j = 0; j < options.num_levels - i + 1; j++) {
for (int k = 0; k < 1000; k++) {
ASSERT_OK(Put(Key(k + j * 1000), RandomString(&rnd, 50)));
}
Flush();
}
for (int l = 1; l < options.num_levels - i; l++) {
MoveFilesToLevel(l);
}
}
};
DestroyAndReopen(options);
generate_files();
#ifndef ROCKSDB_LITE
ASSERT_EQ("2,3,4,5,6,7,8", FilesPerLevel());
#endif // !ROCKSDB_LITE
int run_manual_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():PausingManualCompaction:1",
[&](void* /*arg*/) { run_manual_compactions++; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
dbfull()->DisableManualCompaction();
dbfull()->CompactRange(compact_options, nullptr, nullptr);
dbfull()->TEST_WaitForCompact(true);
// As manual compaction disabled, not even reach sync point
ASSERT_EQ(run_manual_compactions, 0);
#ifndef ROCKSDB_LITE
ASSERT_EQ("2,3,4,5,6,7,8", FilesPerLevel());
#endif // !ROCKSDB_LITE
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearCallBack(
"CompactionJob::Run():PausingManualCompaction:1");
dbfull()->EnableManualCompaction();
dbfull()->CompactRange(compact_options, nullptr, nullptr);
dbfull()->TEST_WaitForCompact(true);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel());
#endif // !ROCKSDB_LITE
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, PausingManualCompaction4) {
CompactRangeOptions compact_options;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.num_levels = 7;
Random rnd(301);
auto generate_files = [&]() {
for (int i = 0; i < options.num_levels; i++) {
for (int j = 0; j < options.num_levels - i + 1; j++) {
for (int k = 0; k < 1000; k++) {
ASSERT_OK(Put(Key(k + j * 1000), RandomString(&rnd, 50)));
}
Flush();
}
for (int l = 1; l < options.num_levels - i; l++) {
MoveFilesToLevel(l);
}
}
};
DestroyAndReopen(options);
generate_files();
#ifndef ROCKSDB_LITE
ASSERT_EQ("2,3,4,5,6,7,8", FilesPerLevel());
#endif // !ROCKSDB_LITE
int run_manual_compactions = 0;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run():PausingManualCompaction:2", [&](void* arg) {
auto paused = reinterpret_cast<std::atomic<bool>*>(arg);
ASSERT_FALSE(paused->load(std::memory_order_acquire));
paused->store(true, std::memory_order_release);
run_manual_compactions++;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
dbfull()->EnableManualCompaction();
dbfull()->CompactRange(compact_options, nullptr, nullptr);
dbfull()->TEST_WaitForCompact(true);
ASSERT_EQ(run_manual_compactions, 1);
#ifndef ROCKSDB_LITE
ASSERT_EQ("2,3,4,5,6,7,8", FilesPerLevel());
#endif // !ROCKSDB_LITE
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearCallBack(
"CompactionJob::Run():PausingManualCompaction:2");
dbfull()->EnableManualCompaction();
dbfull()->CompactRange(compact_options, nullptr, nullptr);
dbfull()->TEST_WaitForCompact(true);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel());
#endif // !ROCKSDB_LITE
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, OptimizeForPointLookup) {
Options options = CurrentOptions();
Close();
options.OptimizeForPointLookup(2);
ASSERT_OK(DB::Open(options, dbname_, &db_));
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
Flush();
ASSERT_EQ("v1", Get("foo"));
}
TEST_F(DBTest2, OptimizeForSmallDB) {
Options options = CurrentOptions();
Close();
options.OptimizeForSmallDb();
// Find the cache object
ASSERT_EQ(std::string(BlockBasedTableFactory::kName),
std::string(options.table_factory->Name()));
BlockBasedTableOptions* table_options =
reinterpret_cast<BlockBasedTableOptions*>(
options.table_factory->GetOptions());
ASSERT_TRUE(table_options != nullptr);
std::shared_ptr<Cache> cache = table_options->block_cache;
ASSERT_EQ(0, cache->GetUsage());
ASSERT_OK(DB::Open(options, dbname_, &db_));
ASSERT_OK(Put("foo", "v1"));
// memtable size is costed to the block cache
ASSERT_NE(0, cache->GetUsage());
ASSERT_EQ("v1", Get("foo"));
Flush();
size_t prev_size = cache->GetUsage();
// Remember block cache size, so that we can find that
// it is filled after Get().
// Use pinnable slice so that it can ping the block so that
// when we check the size it is not evicted.
PinnableSlice value;
ASSERT_OK(db_->Get(ReadOptions(), db_->DefaultColumnFamily(), "foo", &value));
ASSERT_GT(cache->GetUsage(), prev_size);
value.Reset();
}
#endif // ROCKSDB_LITE
TEST_F(DBTest2, IterRaceFlush1) {
ASSERT_OK(Put("foo", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::NewIterator:1", "DBTest2::IterRaceFlush:1"},
{"DBTest2::IterRaceFlush:2", "DBImpl::NewIterator:2"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread t1([&] {
TEST_SYNC_POINT("DBTest2::IterRaceFlush:1");
ASSERT_OK(Put("foo", "v2"));
Flush();
TEST_SYNC_POINT("DBTest2::IterRaceFlush:2");
});
// iterator is created after the first Put(), so it should see either
// "v1" or "v2".
{
std::unique_ptr<Iterator> it(db_->NewIterator(ReadOptions()));
it->Seek("foo");
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key().ToString());
}
t1.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, IterRaceFlush2) {
ASSERT_OK(Put("foo", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::NewIterator:3", "DBTest2::IterRaceFlush2:1"},
{"DBTest2::IterRaceFlush2:2", "DBImpl::NewIterator:4"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread t1([&] {
TEST_SYNC_POINT("DBTest2::IterRaceFlush2:1");
ASSERT_OK(Put("foo", "v2"));
Flush();
TEST_SYNC_POINT("DBTest2::IterRaceFlush2:2");
});
// iterator is created after the first Put(), so it should see either
// "v1" or "v2".
{
std::unique_ptr<Iterator> it(db_->NewIterator(ReadOptions()));
it->Seek("foo");
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key().ToString());
}
t1.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, IterRefreshRaceFlush) {
ASSERT_OK(Put("foo", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"ArenaWrappedDBIter::Refresh:1", "DBTest2::IterRefreshRaceFlush:1"},
{"DBTest2::IterRefreshRaceFlush:2", "ArenaWrappedDBIter::Refresh:2"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread t1([&] {
TEST_SYNC_POINT("DBTest2::IterRefreshRaceFlush:1");
ASSERT_OK(Put("foo", "v2"));
Flush();
TEST_SYNC_POINT("DBTest2::IterRefreshRaceFlush:2");
});
// iterator is created after the first Put(), so it should see either
// "v1" or "v2".
{
std::unique_ptr<Iterator> it(db_->NewIterator(ReadOptions()));
it->Refresh();
it->Seek("foo");
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key().ToString());
}
t1.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, GetRaceFlush1) {
ASSERT_OK(Put("foo", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::GetImpl:1", "DBTest2::GetRaceFlush:1"},
{"DBTest2::GetRaceFlush:2", "DBImpl::GetImpl:2"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ROCKSDB_NAMESPACE::port::Thread t1([&] {
TEST_SYNC_POINT("DBTest2::GetRaceFlush:1");
ASSERT_OK(Put("foo", "v2"));
Flush();
TEST_SYNC_POINT("DBTest2::GetRaceFlush:2");
});
// Get() is issued after the first Put(), so it should see either
// "v1" or "v2".
ASSERT_NE("NOT_FOUND", Get("foo"));
t1.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, GetRaceFlush2) {
ASSERT_OK(Put("foo", "v1"));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::GetImpl:3", "DBTest2::GetRaceFlush:1"},
{"DBTest2::GetRaceFlush:2", "DBImpl::GetImpl:4"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
port::Thread t1([&] {
TEST_SYNC_POINT("DBTest2::GetRaceFlush:1");
ASSERT_OK(Put("foo", "v2"));
Flush();
TEST_SYNC_POINT("DBTest2::GetRaceFlush:2");
});
// Get() is issued after the first Put(), so it should see either
// "v1" or "v2".
ASSERT_NE("NOT_FOUND", Get("foo"));
t1.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, DirectIO) {
if (!IsDirectIOSupported()) {
return;
}
Options options = CurrentOptions();
options.use_direct_reads = options.use_direct_io_for_flush_and_compaction =
true;
options.allow_mmap_reads = options.allow_mmap_writes = false;
DestroyAndReopen(options);
ASSERT_OK(Put(Key(0), "a"));
ASSERT_OK(Put(Key(5), "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(10), "a"));
ASSERT_OK(Put(Key(15), "a"));
ASSERT_OK(Flush());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
Reopen(options);
}
TEST_F(DBTest2, MemtableOnlyIterator) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "first"));
ASSERT_OK(Put(1, "bar", "second"));
ReadOptions ropt;
ropt.read_tier = kMemtableTier;
std::string value;
Iterator* it = nullptr;
// Before flushing
// point lookups
ASSERT_OK(db_->Get(ropt, handles_[1], "foo", &value));
ASSERT_EQ("first", value);
ASSERT_OK(db_->Get(ropt, handles_[1], "bar", &value));
ASSERT_EQ("second", value);
// Memtable-only iterator (read_tier=kMemtableTier); data not flushed yet.
it = db_->NewIterator(ropt, handles_[1]);
int count = 0;
for (it->SeekToFirst(); it->Valid(); it->Next()) {
ASSERT_TRUE(it->Valid());
count++;
}
ASSERT_TRUE(!it->Valid());
ASSERT_EQ(2, count);
delete it;
Flush(1);
// After flushing
// point lookups
ASSERT_OK(db_->Get(ropt, handles_[1], "foo", &value));
ASSERT_EQ("first", value);
ASSERT_OK(db_->Get(ropt, handles_[1], "bar", &value));
ASSERT_EQ("second", value);
// nothing should be returned using memtable-only iterator after flushing.
it = db_->NewIterator(ropt, handles_[1]);
count = 0;
for (it->SeekToFirst(); it->Valid(); it->Next()) {
ASSERT_TRUE(it->Valid());
count++;
}
ASSERT_TRUE(!it->Valid());
ASSERT_EQ(0, count);
delete it;
// Add a key to memtable
ASSERT_OK(Put(1, "foobar", "third"));
it = db_->NewIterator(ropt, handles_[1]);
count = 0;
for (it->SeekToFirst(); it->Valid(); it->Next()) {
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foobar", it->key().ToString());
ASSERT_EQ("third", it->value().ToString());
count++;
}
ASSERT_TRUE(!it->Valid());
ASSERT_EQ(1, count);
delete it;
}
TEST_F(DBTest2, LowPriWrite) {
Options options = CurrentOptions();
// Compaction pressure should trigger since 6 files
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 12;
options.level0_stop_writes_trigger = 30;
options.delayed_write_rate = 8 * 1024 * 1024;
Reopen(options);
std::atomic<int> rate_limit_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"GenericRateLimiter::Request:1", [&](void* arg) {
rate_limit_count.fetch_add(1);
int64_t* rate_bytes_per_sec = static_cast<int64_t*>(arg);
ASSERT_EQ(1024 * 1024, *rate_bytes_per_sec);
});
// Block compaction
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"DBTest.LowPriWrite:0", "DBImpl::BGWorkCompaction"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
for (int i = 0; i < 6; i++) {
wo.low_pri = false;
Put("", "", wo);
wo.low_pri = true;
Put("", "", wo);
Flush();
}
ASSERT_EQ(0, rate_limit_count.load());
wo.low_pri = true;
Put("", "", wo);
ASSERT_EQ(1, rate_limit_count.load());
wo.low_pri = false;
Put("", "", wo);
ASSERT_EQ(1, rate_limit_count.load());
TEST_SYNC_POINT("DBTest.LowPriWrite:0");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
dbfull()->TEST_WaitForCompact();
wo.low_pri = true;
Put("", "", wo);
ASSERT_EQ(1, rate_limit_count.load());
wo.low_pri = false;
Put("", "", wo);
ASSERT_EQ(1, rate_limit_count.load());
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, RateLimitedCompactionReads) {
// compaction input has 512KB data
const int kNumKeysPerFile = 128;
const int kBytesPerKey = 1024;
const int kNumL0Files = 4;
for (auto use_direct_io : {false, true}) {
if (use_direct_io && !IsDirectIOSupported()) {
continue;
}
Options options = CurrentOptions();
options.compression = kNoCompression;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.memtable_factory.reset(new SpecialSkipListFactory(kNumKeysPerFile));
options.new_table_reader_for_compaction_inputs = true;
// takes roughly one second, split into 100 x 10ms intervals. Each interval
// permits 5.12KB, which is smaller than the block size, so this test
// exercises the code for chunking reads.
options.rate_limiter.reset(NewGenericRateLimiter(
static_cast<int64_t>(kNumL0Files * kNumKeysPerFile *
kBytesPerKey) /* rate_bytes_per_sec */,
10 * 1000 /* refill_period_us */, 10 /* fairness */,
RateLimiter::Mode::kReadsOnly));
options.use_direct_reads = options.use_direct_io_for_flush_and_compaction =
use_direct_io;
BlockBasedTableOptions bbto;
bbto.block_size = 16384;
bbto.no_block_cache = true;
options.table_factory.reset(new BlockBasedTableFactory(bbto));
DestroyAndReopen(options);
for (int i = 0; i < kNumL0Files; ++i) {
for (int j = 0; j <= kNumKeysPerFile; ++j) {
ASSERT_OK(Put(Key(j), DummyString(kBytesPerKey)));
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(i + 1, NumTableFilesAtLevel(0));
}
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, options.rate_limiter->GetTotalBytesThrough(Env::IO_HIGH));
// should be slightly above 512KB due to non-data blocks read. Arbitrarily
// chose 1MB as the upper bound on the total bytes read.
size_t rate_limited_bytes =
options.rate_limiter->GetTotalBytesThrough(Env::IO_LOW);
// Include the explicit prefetch of the footer in direct I/O case.
size_t direct_io_extra = use_direct_io ? 512 * 1024 : 0;
ASSERT_GE(
rate_limited_bytes,
static_cast<size_t>(kNumKeysPerFile * kBytesPerKey * kNumL0Files));
ASSERT_LT(
rate_limited_bytes,
static_cast<size_t>(2 * kNumKeysPerFile * kBytesPerKey * kNumL0Files +
direct_io_extra));
Iterator* iter = db_->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(iter->value().ToString(), DummyString(kBytesPerKey));
}
delete iter;
// bytes read for user iterator shouldn't count against the rate limit.
ASSERT_EQ(rate_limited_bytes,
static_cast<size_t>(
options.rate_limiter->GetTotalBytesThrough(Env::IO_LOW)));
}
}
#endif // ROCKSDB_LITE
// Make sure DB can be reopen with reduced number of levels, given no file
// is on levels higher than the new num_levels.
TEST_F(DBTest2, ReduceLevel) {
Options options;
options.disable_auto_compactions = true;
options.num_levels = 7;
Reopen(options);
Put("foo", "bar");
Flush();
MoveFilesToLevel(6);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,0,0,0,0,0,1", FilesPerLevel());
#endif // !ROCKSDB_LITE
CompactRangeOptions compact_options;
compact_options.change_level = true;
compact_options.target_level = 1;
dbfull()->CompactRange(compact_options, nullptr, nullptr);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,1", FilesPerLevel());
#endif // !ROCKSDB_LITE
options.num_levels = 3;
Reopen(options);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,1", FilesPerLevel());
#endif // !ROCKSDB_LITE
}
// Test that ReadCallback is actually used in both memtbale and sst tables
TEST_F(DBTest2, ReadCallbackTest) {
Options options;
options.disable_auto_compactions = true;
options.num_levels = 7;
Reopen(options);
std::vector<const Snapshot*> snapshots;
// Try to create a db with multiple layers and a memtable
const std::string key = "foo";
const std::string value = "bar";
// This test assumes that the seq start with 1 and increased by 1 after each
// write batch of size 1. If that behavior changes, the test needs to be
// updated as well.
// TODO(myabandeh): update this test to use the seq number that is returned by
// the DB instead of assuming what seq the DB used.
int i = 1;
for (; i < 10; i++) {
Put(key, value + std::to_string(i));
// Take a snapshot to avoid the value being removed during compaction
auto snapshot = dbfull()->GetSnapshot();
snapshots.push_back(snapshot);
}
Flush();
for (; i < 20; i++) {
Put(key, value + std::to_string(i));
// Take a snapshot to avoid the value being removed during compaction
auto snapshot = dbfull()->GetSnapshot();
snapshots.push_back(snapshot);
}
Flush();
MoveFilesToLevel(6);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,0,0,0,0,0,2", FilesPerLevel());
#endif // !ROCKSDB_LITE
for (; i < 30; i++) {
Put(key, value + std::to_string(i));
auto snapshot = dbfull()->GetSnapshot();
snapshots.push_back(snapshot);
}
Flush();
#ifndef ROCKSDB_LITE
ASSERT_EQ("1,0,0,0,0,0,2", FilesPerLevel());
#endif // !ROCKSDB_LITE
// And also add some values to the memtable
for (; i < 40; i++) {
Put(key, value + std::to_string(i));
auto snapshot = dbfull()->GetSnapshot();
snapshots.push_back(snapshot);
}
class TestReadCallback : public ReadCallback {
public:
explicit TestReadCallback(SequenceNumber snapshot)
: ReadCallback(snapshot), snapshot_(snapshot) {}
bool IsVisibleFullCheck(SequenceNumber seq) override {
return seq <= snapshot_;
}
private:
SequenceNumber snapshot_;
};
for (int seq = 1; seq < i; seq++) {
PinnableSlice pinnable_val;
ReadOptions roptions;
TestReadCallback callback(seq);
bool dont_care = true;
DBImpl::GetImplOptions get_impl_options;
get_impl_options.column_family = dbfull()->DefaultColumnFamily();
get_impl_options.value = &pinnable_val;
get_impl_options.value_found = &dont_care;
get_impl_options.callback = &callback;
Status s = dbfull()->GetImpl(roptions, key, get_impl_options);
ASSERT_TRUE(s.ok());
// Assuming that after each Put the DB increased seq by one, the value and
// seq number must be equal since we also inc value by 1 after each Put.
ASSERT_EQ(value + std::to_string(seq), pinnable_val.ToString());
}
for (auto snapshot : snapshots) {
dbfull()->ReleaseSnapshot(snapshot);
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, LiveFilesOmitObsoleteFiles) {
// Regression test for race condition where an obsolete file is returned to
// user as a "live file" but then deleted, all while file deletions are
// disabled.
//
// It happened like this:
//
// 1. [flush thread] Log file "x.log" found by FindObsoleteFiles
// 2. [user thread] DisableFileDeletions, GetSortedWalFiles are called and the
// latter returned "x.log"
// 3. [flush thread] PurgeObsoleteFiles deleted "x.log"
// 4. [user thread] Reading "x.log" failed
//
// Unfortunately the only regression test I can come up with involves sleep.
// We cannot set SyncPoints to repro since, once the fix is applied, the
// SyncPoints would cause a deadlock as the repro's sequence of events is now
// prohibited.
//
// Instead, if we sleep for a second between Find and Purge, and ensure the
// read attempt happens after purge, then the sequence of events will almost
// certainly happen on the old code.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::BackgroundCallFlush:FilesFound",
"DBTest2::LiveFilesOmitObsoleteFiles:FlushTriggered"},
{"DBImpl::PurgeObsoleteFiles:End",
"DBTest2::LiveFilesOmitObsoleteFiles:LiveFilesCaptured"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::PurgeObsoleteFiles:Begin",
[&](void* /*arg*/) { env_->SleepForMicroseconds(1000000); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Put("key", "val");
FlushOptions flush_opts;
flush_opts.wait = false;
db_->Flush(flush_opts);
TEST_SYNC_POINT("DBTest2::LiveFilesOmitObsoleteFiles:FlushTriggered");
db_->DisableFileDeletions();
VectorLogPtr log_files;
db_->GetSortedWalFiles(log_files);
TEST_SYNC_POINT("DBTest2::LiveFilesOmitObsoleteFiles:LiveFilesCaptured");
for (const auto& log_file : log_files) {
ASSERT_OK(env_->FileExists(LogFileName(dbname_, log_file->LogNumber())));
}
db_->EnableFileDeletions();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, TestNumPread) {
Options options = CurrentOptions();
// disable block cache
BlockBasedTableOptions table_options;
table_options.no_block_cache = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
env_->count_random_reads_ = true;
env_->random_file_open_counter_.store(0);
ASSERT_OK(Put("bar", "foo"));
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
// After flush, we'll open the file and read footer, meta block,
// property block and index block.
ASSERT_EQ(4, env_->random_read_counter_.Read());
ASSERT_EQ(1, env_->random_file_open_counter_.load());
// One pread per a normal data block read
env_->random_file_open_counter_.store(0);
env_->random_read_counter_.Reset();
ASSERT_EQ("bar", Get("foo"));
ASSERT_EQ(1, env_->random_read_counter_.Read());
// All files are already opened.
ASSERT_EQ(0, env_->random_file_open_counter_.load());
env_->random_file_open_counter_.store(0);
env_->random_read_counter_.Reset();
ASSERT_OK(Put("bar2", "foo2"));
ASSERT_OK(Put("foo2", "bar2"));
ASSERT_OK(Flush());
// After flush, we'll open the file and read footer, meta block,
// property block and index block.
ASSERT_EQ(4, env_->random_read_counter_.Read());
ASSERT_EQ(1, env_->random_file_open_counter_.load());
// Compaction needs two input blocks, which requires 2 preads, and
// generate a new SST file which needs 4 preads (footer, meta block,
// property block and index block). In total 6.
env_->random_file_open_counter_.store(0);
env_->random_read_counter_.Reset();
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(6, env_->random_read_counter_.Read());
// All compactin input files should have already been opened.
ASSERT_EQ(1, env_->random_file_open_counter_.load());
// One pread per a normal data block read
env_->random_file_open_counter_.store(0);
env_->random_read_counter_.Reset();
ASSERT_EQ("foo2", Get("bar2"));
ASSERT_EQ(1, env_->random_read_counter_.Read());
// SST files are already opened.
ASSERT_EQ(0, env_->random_file_open_counter_.load());
}
TEST_F(DBTest2, TraceAndReplay) {
Options options = CurrentOptions();
options.merge_operator = MergeOperators::CreatePutOperator();
ReadOptions ro;
WriteOptions wo;
TraceOptions trace_opts;
EnvOptions env_opts;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
Iterator* single_iter = nullptr;
ASSERT_TRUE(db_->EndTrace().IsIOError());
std::string trace_filename = dbname_ + "/rocksdb.trace";
std::unique_ptr<TraceWriter> trace_writer;
ASSERT_OK(NewFileTraceWriter(env_, env_opts, trace_filename, &trace_writer));
ASSERT_OK(db_->StartTrace(trace_opts, std::move(trace_writer)));
ASSERT_OK(Put(0, "a", "1"));
ASSERT_OK(Merge(0, "b", "2"));
ASSERT_OK(Delete(0, "c"));
ASSERT_OK(SingleDelete(0, "d"));
ASSERT_OK(db_->DeleteRange(wo, dbfull()->DefaultColumnFamily(), "e", "f"));
WriteBatch batch;
ASSERT_OK(batch.Put("f", "11"));
ASSERT_OK(batch.Merge("g", "12"));
ASSERT_OK(batch.Delete("h"));
ASSERT_OK(batch.SingleDelete("i"));
ASSERT_OK(batch.DeleteRange("j", "k"));
ASSERT_OK(db_->Write(wo, &batch));
single_iter = db_->NewIterator(ro);
single_iter->Seek("f");
single_iter->SeekForPrev("g");
delete single_iter;
ASSERT_EQ("1", Get(0, "a"));
ASSERT_EQ("12", Get(0, "g"));
ASSERT_OK(Put(1, "foo", "bar"));
ASSERT_OK(Put(1, "rocksdb", "rocks"));
ASSERT_EQ("NOT_FOUND", Get(1, "leveldb"));
ASSERT_OK(db_->EndTrace());
// These should not get into the trace file as it is after EndTrace.
Put("hello", "world");
Merge("foo", "bar");
// Open another db, replay, and verify the data
std::string value;
std::string dbname2 = test::PerThreadDBPath(env_, "/db_replay");
ASSERT_OK(DestroyDB(dbname2, options));
// Using a different name than db2, to pacify infer's use-after-lifetime
// warnings (http://fbinfer.com).
DB* db2_init = nullptr;
options.create_if_missing = true;
ASSERT_OK(DB::Open(options, dbname2, &db2_init));
ColumnFamilyHandle* cf;
ASSERT_OK(
db2_init->CreateColumnFamily(ColumnFamilyOptions(), "pikachu", &cf));
delete cf;
delete db2_init;
DB* db2 = nullptr;
std::vector<ColumnFamilyDescriptor> column_families;
ColumnFamilyOptions cf_options;
cf_options.merge_operator = MergeOperators::CreatePutOperator();
column_families.push_back(ColumnFamilyDescriptor("default", cf_options));
column_families.push_back(
ColumnFamilyDescriptor("pikachu", ColumnFamilyOptions()));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DB::Open(DBOptions(), dbname2, column_families, &handles, &db2));
env_->SleepForMicroseconds(100);
// Verify that the keys don't already exist
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "g", &value).IsNotFound());
std::unique_ptr<TraceReader> trace_reader;
ASSERT_OK(NewFileTraceReader(env_, env_opts, trace_filename, &trace_reader));
Replayer replayer(db2, handles_, std::move(trace_reader));
ASSERT_OK(replayer.Replay());
ASSERT_OK(db2->Get(ro, handles[0], "a", &value));
ASSERT_EQ("1", value);
ASSERT_OK(db2->Get(ro, handles[0], "g", &value));
ASSERT_EQ("12", value);
ASSERT_TRUE(db2->Get(ro, handles[0], "hello", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "world", &value).IsNotFound());
ASSERT_OK(db2->Get(ro, handles[1], "foo", &value));
ASSERT_EQ("bar", value);
ASSERT_OK(db2->Get(ro, handles[1], "rocksdb", &value));
ASSERT_EQ("rocks", value);
for (auto handle : handles) {
delete handle;
}
delete db2;
ASSERT_OK(DestroyDB(dbname2, options));
}
TEST_F(DBTest2, TraceWithLimit) {
Options options = CurrentOptions();
options.merge_operator = MergeOperators::CreatePutOperator();
ReadOptions ro;
WriteOptions wo;
TraceOptions trace_opts;
EnvOptions env_opts;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
// test the max trace file size options
trace_opts.max_trace_file_size = 5;
std::string trace_filename = dbname_ + "/rocksdb.trace1";
std::unique_ptr<TraceWriter> trace_writer;
ASSERT_OK(NewFileTraceWriter(env_, env_opts, trace_filename, &trace_writer));
ASSERT_OK(db_->StartTrace(trace_opts, std::move(trace_writer)));
ASSERT_OK(Put(0, "a", "1"));
ASSERT_OK(Put(0, "b", "1"));
ASSERT_OK(Put(0, "c", "1"));
ASSERT_OK(db_->EndTrace());
std::string dbname2 = test::PerThreadDBPath(env_, "/db_replay2");
std::string value;
ASSERT_OK(DestroyDB(dbname2, options));
// Using a different name than db2, to pacify infer's use-after-lifetime
// warnings (http://fbinfer.com).
DB* db2_init = nullptr;
options.create_if_missing = true;
ASSERT_OK(DB::Open(options, dbname2, &db2_init));
ColumnFamilyHandle* cf;
ASSERT_OK(
db2_init->CreateColumnFamily(ColumnFamilyOptions(), "pikachu", &cf));
delete cf;
delete db2_init;
DB* db2 = nullptr;
std::vector<ColumnFamilyDescriptor> column_families;
ColumnFamilyOptions cf_options;
cf_options.merge_operator = MergeOperators::CreatePutOperator();
column_families.push_back(ColumnFamilyDescriptor("default", cf_options));
column_families.push_back(
ColumnFamilyDescriptor("pikachu", ColumnFamilyOptions()));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DB::Open(DBOptions(), dbname2, column_families, &handles, &db2));
env_->SleepForMicroseconds(100);
// Verify that the keys don't already exist
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "b", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "c", &value).IsNotFound());
std::unique_ptr<TraceReader> trace_reader;
ASSERT_OK(NewFileTraceReader(env_, env_opts, trace_filename, &trace_reader));
Replayer replayer(db2, handles_, std::move(trace_reader));
ASSERT_OK(replayer.Replay());
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "b", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "c", &value).IsNotFound());
for (auto handle : handles) {
delete handle;
}
delete db2;
ASSERT_OK(DestroyDB(dbname2, options));
}
TEST_F(DBTest2, TraceWithSampling) {
Options options = CurrentOptions();
ReadOptions ro;
WriteOptions wo;
TraceOptions trace_opts;
EnvOptions env_opts;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
// test the trace file sampling options
trace_opts.sampling_frequency = 2;
std::string trace_filename = dbname_ + "/rocksdb.trace_sampling";
std::unique_ptr<TraceWriter> trace_writer;
ASSERT_OK(NewFileTraceWriter(env_, env_opts, trace_filename, &trace_writer));
ASSERT_OK(db_->StartTrace(trace_opts, std::move(trace_writer)));
ASSERT_OK(Put(0, "a", "1"));
ASSERT_OK(Put(0, "b", "2"));
ASSERT_OK(Put(0, "c", "3"));
ASSERT_OK(Put(0, "d", "4"));
ASSERT_OK(Put(0, "e", "5"));
ASSERT_OK(db_->EndTrace());
std::string dbname2 = test::PerThreadDBPath(env_, "/db_replay_sampling");
std::string value;
ASSERT_OK(DestroyDB(dbname2, options));
// Using a different name than db2, to pacify infer's use-after-lifetime
// warnings (http://fbinfer.com).
DB* db2_init = nullptr;
options.create_if_missing = true;
ASSERT_OK(DB::Open(options, dbname2, &db2_init));
ColumnFamilyHandle* cf;
ASSERT_OK(
db2_init->CreateColumnFamily(ColumnFamilyOptions(), "pikachu", &cf));
delete cf;
delete db2_init;
DB* db2 = nullptr;
std::vector<ColumnFamilyDescriptor> column_families;
ColumnFamilyOptions cf_options;
column_families.push_back(ColumnFamilyDescriptor("default", cf_options));
column_families.push_back(
ColumnFamilyDescriptor("pikachu", ColumnFamilyOptions()));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DB::Open(DBOptions(), dbname2, column_families, &handles, &db2));
env_->SleepForMicroseconds(100);
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "b", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "c", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "d", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "e", &value).IsNotFound());
std::unique_ptr<TraceReader> trace_reader;
ASSERT_OK(NewFileTraceReader(env_, env_opts, trace_filename, &trace_reader));
Replayer replayer(db2, handles_, std::move(trace_reader));
ASSERT_OK(replayer.Replay());
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_FALSE(db2->Get(ro, handles[0], "b", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "c", &value).IsNotFound());
ASSERT_FALSE(db2->Get(ro, handles[0], "d", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "e", &value).IsNotFound());
for (auto handle : handles) {
delete handle;
}
delete db2;
ASSERT_OK(DestroyDB(dbname2, options));
}
TEST_F(DBTest2, TraceWithFilter) {
Options options = CurrentOptions();
options.merge_operator = MergeOperators::CreatePutOperator();
ReadOptions ro;
WriteOptions wo;
TraceOptions trace_opts;
EnvOptions env_opts;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
Iterator* single_iter = nullptr;
trace_opts.filter = TraceFilterType::kTraceFilterWrite;
std::string trace_filename = dbname_ + "/rocksdb.trace";
std::unique_ptr<TraceWriter> trace_writer;
ASSERT_OK(NewFileTraceWriter(env_, env_opts, trace_filename, &trace_writer));
ASSERT_OK(db_->StartTrace(trace_opts, std::move(trace_writer)));
ASSERT_OK(Put(0, "a", "1"));
ASSERT_OK(Merge(0, "b", "2"));
ASSERT_OK(Delete(0, "c"));
ASSERT_OK(SingleDelete(0, "d"));
ASSERT_OK(db_->DeleteRange(wo, dbfull()->DefaultColumnFamily(), "e", "f"));
WriteBatch batch;
ASSERT_OK(batch.Put("f", "11"));
ASSERT_OK(batch.Merge("g", "12"));
ASSERT_OK(batch.Delete("h"));
ASSERT_OK(batch.SingleDelete("i"));
ASSERT_OK(batch.DeleteRange("j", "k"));
ASSERT_OK(db_->Write(wo, &batch));
single_iter = db_->NewIterator(ro);
single_iter->Seek("f");
single_iter->SeekForPrev("g");
delete single_iter;
ASSERT_EQ("1", Get(0, "a"));
ASSERT_EQ("12", Get(0, "g"));
ASSERT_OK(Put(1, "foo", "bar"));
ASSERT_OK(Put(1, "rocksdb", "rocks"));
ASSERT_EQ("NOT_FOUND", Get(1, "leveldb"));
ASSERT_OK(db_->EndTrace());
// These should not get into the trace file as it is after EndTrace.
Put("hello", "world");
Merge("foo", "bar");
// Open another db, replay, and verify the data
std::string value;
std::string dbname2 = test::TmpDir(env_) + "/db_replay";
ASSERT_OK(DestroyDB(dbname2, options));
// Using a different name than db2, to pacify infer's use-after-lifetime
// warnings (http://fbinfer.com).
DB* db2_init = nullptr;
options.create_if_missing = true;
ASSERT_OK(DB::Open(options, dbname2, &db2_init));
ColumnFamilyHandle* cf;
ASSERT_OK(
db2_init->CreateColumnFamily(ColumnFamilyOptions(), "pikachu", &cf));
delete cf;
delete db2_init;
DB* db2 = nullptr;
std::vector<ColumnFamilyDescriptor> column_families;
ColumnFamilyOptions cf_options;
cf_options.merge_operator = MergeOperators::CreatePutOperator();
column_families.push_back(ColumnFamilyDescriptor("default", cf_options));
column_families.push_back(
ColumnFamilyDescriptor("pikachu", ColumnFamilyOptions()));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DB::Open(DBOptions(), dbname2, column_families, &handles, &db2));
env_->SleepForMicroseconds(100);
// Verify that the keys don't already exist
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "g", &value).IsNotFound());
std::unique_ptr<TraceReader> trace_reader;
ASSERT_OK(NewFileTraceReader(env_, env_opts, trace_filename, &trace_reader));
Replayer replayer(db2, handles_, std::move(trace_reader));
ASSERT_OK(replayer.Replay());
// All the key-values should not present since we filter out the WRITE ops.
ASSERT_TRUE(db2->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "g", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "hello", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "world", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "foo", &value).IsNotFound());
ASSERT_TRUE(db2->Get(ro, handles[0], "rocksdb", &value).IsNotFound());
for (auto handle : handles) {
delete handle;
}
delete db2;
ASSERT_OK(DestroyDB(dbname2, options));
// Set up a new db.
std::string dbname3 = test::TmpDir(env_) + "/db_not_trace_read";
ASSERT_OK(DestroyDB(dbname3, options));
DB* db3_init = nullptr;
options.create_if_missing = true;
ColumnFamilyHandle* cf3;
ASSERT_OK(DB::Open(options, dbname3, &db3_init));
ASSERT_OK(
db3_init->CreateColumnFamily(ColumnFamilyOptions(), "pikachu", &cf3));
delete cf3;
delete db3_init;
column_families.clear();
column_families.push_back(ColumnFamilyDescriptor("default", cf_options));
column_families.push_back(
ColumnFamilyDescriptor("pikachu", ColumnFamilyOptions()));
handles.clear();
DB* db3 = nullptr;
ASSERT_OK(DB::Open(DBOptions(), dbname3, column_families, &handles, &db3));
env_->SleepForMicroseconds(100);
// Verify that the keys don't already exist
ASSERT_TRUE(db3->Get(ro, handles[0], "a", &value).IsNotFound());
ASSERT_TRUE(db3->Get(ro, handles[0], "g", &value).IsNotFound());
//The tracer will not record the READ ops.
trace_opts.filter = TraceFilterType::kTraceFilterGet;
std::string trace_filename3 = dbname_ + "/rocksdb.trace_3";
std::unique_ptr<TraceWriter> trace_writer3;
ASSERT_OK(
NewFileTraceWriter(env_, env_opts, trace_filename3, &trace_writer3));
ASSERT_OK(db3->StartTrace(trace_opts, std::move(trace_writer3)));
ASSERT_OK(db3->Put(wo, handles[0], "a", "1"));
ASSERT_OK(db3->Merge(wo, handles[0], "b", "2"));
ASSERT_OK(db3->Delete(wo, handles[0], "c"));
ASSERT_OK(db3->SingleDelete(wo, handles[0], "d"));
ASSERT_OK(db3->Get(ro, handles[0], "a", &value));
ASSERT_EQ(value, "1");
ASSERT_TRUE(db3->Get(ro, handles[0], "c", &value).IsNotFound());
ASSERT_OK(db3->EndTrace());
for (auto handle : handles) {
delete handle;
}
delete db3;
ASSERT_OK(DestroyDB(dbname3, options));
std::unique_ptr<TraceReader> trace_reader3;
ASSERT_OK(
NewFileTraceReader(env_, env_opts, trace_filename3, &trace_reader3));
// Count the number of records in the trace file;
int count = 0;
std::string data;
Status s;
while (true) {
s = trace_reader3->Read(&data);
if (!s.ok()) {
break;
}
count += 1;
}
// We also need to count the header and footer
// 4 WRITE + HEADER + FOOTER = 6
ASSERT_EQ(count, 6);
}
#endif // ROCKSDB_LITE
TEST_F(DBTest2, PinnableSliceAndMmapReads) {
Options options = CurrentOptions();
options.allow_mmap_reads = true;
options.max_open_files = 100;
options.compression = kNoCompression;
Reopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
PinnableSlice pinned_value;
ASSERT_EQ(Get("foo", &pinned_value), Status::OK());
// It is not safe to pin mmap files as they might disappear by compaction
ASSERT_FALSE(pinned_value.IsPinned());
ASSERT_EQ(pinned_value.ToString(), "bar");
dbfull()->TEST_CompactRange(0 /* level */, nullptr /* begin */,
nullptr /* end */, nullptr /* column_family */,
true /* disallow_trivial_move */);
// Ensure pinned_value doesn't rely on memory munmap'd by the above
// compaction. It crashes if it does.
ASSERT_EQ(pinned_value.ToString(), "bar");
#ifndef ROCKSDB_LITE
pinned_value.Reset();
// Unsafe to pin mmap files when they could be kicked out of table cache
Close();
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ(Get("foo", &pinned_value), Status::OK());
ASSERT_FALSE(pinned_value.IsPinned());
ASSERT_EQ(pinned_value.ToString(), "bar");
pinned_value.Reset();
// In read-only mode with infinite capacity on table cache it should pin the
// value and avoid the memcpy
Close();
options.max_open_files = -1;
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ(Get("foo", &pinned_value), Status::OK());
ASSERT_TRUE(pinned_value.IsPinned());
ASSERT_EQ(pinned_value.ToString(), "bar");
#endif
}
TEST_F(DBTest2, DISABLED_IteratorPinnedMemory) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions bbto;
bbto.no_block_cache = false;
bbto.cache_index_and_filter_blocks = false;
bbto.block_cache = NewLRUCache(100000);
bbto.block_size = 400; // small block size
options.table_factory.reset(new BlockBasedTableFactory(bbto));
Reopen(options);
Random rnd(301);
std::string v = RandomString(&rnd, 400);
// Since v is the size of a block, each key should take a block
// of 400+ bytes.
Put("1", v);
Put("3", v);
Put("5", v);
Put("7", v);
ASSERT_OK(Flush());
ASSERT_EQ(0, bbto.block_cache->GetPinnedUsage());
// Verify that iterators don't pin more than one data block in block cache
// at each time.
{
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
iter->SeekToFirst();
for (int i = 0; i < 4; i++) {
ASSERT_TRUE(iter->Valid());
// Block cache should contain exactly one block.
ASSERT_GT(bbto.block_cache->GetPinnedUsage(), 0);
ASSERT_LT(bbto.block_cache->GetPinnedUsage(), 800);
iter->Next();
}
ASSERT_FALSE(iter->Valid());
iter->Seek("4");
ASSERT_TRUE(iter->Valid());
ASSERT_GT(bbto.block_cache->GetPinnedUsage(), 0);
ASSERT_LT(bbto.block_cache->GetPinnedUsage(), 800);
iter->Seek("3");
ASSERT_TRUE(iter->Valid());
ASSERT_GT(bbto.block_cache->GetPinnedUsage(), 0);
ASSERT_LT(bbto.block_cache->GetPinnedUsage(), 800);
}
ASSERT_EQ(0, bbto.block_cache->GetPinnedUsage());
// Test compaction case
Put("2", v);
Put("5", v);
Put("6", v);
Put("8", v);
ASSERT_OK(Flush());
// Clear existing data in block cache
bbto.block_cache->SetCapacity(0);
bbto.block_cache->SetCapacity(100000);
// Verify compaction input iterators don't hold more than one data blocks at
// one time.
std::atomic<bool> finished(false);
std::atomic<int> block_newed(0);
std::atomic<int> block_destroyed(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Block::Block:0", [&](void* /*arg*/) {
if (finished) {
return;
}
// Two iterators. At most 2 outstanding blocks.
EXPECT_GE(block_newed.load(), block_destroyed.load());
EXPECT_LE(block_newed.load(), block_destroyed.load() + 1);
block_newed.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"Block::~Block", [&](void* /*arg*/) {
if (finished) {
return;
}
// Two iterators. At most 2 outstanding blocks.
EXPECT_GE(block_newed.load(), block_destroyed.load() + 1);
EXPECT_LE(block_newed.load(), block_destroyed.load() + 2);
block_destroyed.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"CompactionJob::Run:BeforeVerify",
[&](void* /*arg*/) { finished = true; });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
// Two input files. Each of them has 4 data blocks.
ASSERT_EQ(8, block_newed.load());
ASSERT_EQ(8, block_destroyed.load());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, TestBBTTailPrefetch) {
std::atomic<bool> called(false);
size_t expected_lower_bound = 512 * 1024;
size_t expected_higher_bound = 512 * 1024;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTable::Open::TailPrefetchLen", [&](void* arg) {
size_t* prefetch_size = static_cast<size_t*>(arg);
EXPECT_LE(expected_lower_bound, *prefetch_size);
EXPECT_GE(expected_higher_bound, *prefetch_size);
called = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Put("1", "1");
Put("9", "1");
Flush();
expected_lower_bound = 0;
expected_higher_bound = 8 * 1024;
Put("1", "1");
Put("9", "1");
Flush();
Put("1", "1");
Put("9", "1");
Flush();
// Full compaction to make sure there is no L0 file after the open.
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_TRUE(called.load());
called = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
std::atomic<bool> first_call(true);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTable::Open::TailPrefetchLen", [&](void* arg) {
size_t* prefetch_size = static_cast<size_t*>(arg);
if (first_call) {
EXPECT_EQ(4 * 1024, *prefetch_size);
first_call = false;
} else {
EXPECT_GE(4 * 1024, *prefetch_size);
}
called = true;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.max_file_opening_threads = 1; // one thread
BlockBasedTableOptions table_options;
table_options.cache_index_and_filter_blocks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.max_open_files = -1;
Reopen(options);
Put("1", "1");
Put("9", "1");
Flush();
Put("1", "1");
Put("9", "1");
Flush();
ASSERT_TRUE(called.load());
called = false;
// Parallel loading SST files
options.max_file_opening_threads = 16;
Reopen(options);
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_TRUE(called.load());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(DBTest2, TestGetColumnFamilyHandleUnlocked) {
// Setup sync point dependency to reproduce the race condition of
// DBImpl::GetColumnFamilyHandleUnlocked
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"TestGetColumnFamilyHandleUnlocked::GetColumnFamilyHandleUnlocked1",
"TestGetColumnFamilyHandleUnlocked::PreGetColumnFamilyHandleUnlocked2"},
{"TestGetColumnFamilyHandleUnlocked::GetColumnFamilyHandleUnlocked2",
"TestGetColumnFamilyHandleUnlocked::ReadColumnFamilyHandle1"},
});
SyncPoint::GetInstance()->EnableProcessing();
CreateColumnFamilies({"test1", "test2"}, Options());
ASSERT_EQ(handles_.size(), 2);
DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);
port::Thread user_thread1([&]() {
auto cfh = dbi->GetColumnFamilyHandleUnlocked(handles_[0]->GetID());
ASSERT_EQ(cfh->GetID(), handles_[0]->GetID());
TEST_SYNC_POINT("TestGetColumnFamilyHandleUnlocked::GetColumnFamilyHandleUnlocked1");
TEST_SYNC_POINT("TestGetColumnFamilyHandleUnlocked::ReadColumnFamilyHandle1");
ASSERT_EQ(cfh->GetID(), handles_[0]->GetID());
});
port::Thread user_thread2([&]() {
TEST_SYNC_POINT("TestGetColumnFamilyHandleUnlocked::PreGetColumnFamilyHandleUnlocked2");
auto cfh = dbi->GetColumnFamilyHandleUnlocked(handles_[1]->GetID());
ASSERT_EQ(cfh->GetID(), handles_[1]->GetID());
TEST_SYNC_POINT("TestGetColumnFamilyHandleUnlocked::GetColumnFamilyHandleUnlocked2");
ASSERT_EQ(cfh->GetID(), handles_[1]->GetID());
});
user_thread1.join();
user_thread2.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, TestCompactFiles) {
// Setup sync point dependency to reproduce the race condition of
// DBImpl::GetColumnFamilyHandleUnlocked
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"TestCompactFiles::IngestExternalFile1",
"TestCompactFiles::IngestExternalFile2"},
});
SyncPoint::GetInstance()->EnableProcessing();
Options options;
options.num_levels = 2;
options.disable_auto_compactions = true;
Reopen(options);
auto* handle = db_->DefaultColumnFamily();
ASSERT_EQ(db_->NumberLevels(handle), 2);
ROCKSDB_NAMESPACE::SstFileWriter sst_file_writer{
ROCKSDB_NAMESPACE::EnvOptions(), options};
std::string external_file1 = dbname_ + "/test_compact_files1.sst_t";
std::string external_file2 = dbname_ + "/test_compact_files2.sst_t";
std::string external_file3 = dbname_ + "/test_compact_files3.sst_t";
ASSERT_OK(sst_file_writer.Open(external_file1));
ASSERT_OK(sst_file_writer.Put("1", "1"));
ASSERT_OK(sst_file_writer.Put("2", "2"));
ASSERT_OK(sst_file_writer.Finish());
ASSERT_OK(sst_file_writer.Open(external_file2));
ASSERT_OK(sst_file_writer.Put("3", "3"));
ASSERT_OK(sst_file_writer.Put("4", "4"));
ASSERT_OK(sst_file_writer.Finish());
ASSERT_OK(sst_file_writer.Open(external_file3));
ASSERT_OK(sst_file_writer.Put("5", "5"));
ASSERT_OK(sst_file_writer.Put("6", "6"));
ASSERT_OK(sst_file_writer.Finish());
ASSERT_OK(db_->IngestExternalFile(handle, {external_file1, external_file3},
IngestExternalFileOptions()));
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 2);
std::vector<std::string> files;
GetSstFiles(env_, dbname_, &files);
ASSERT_EQ(files.size(), 2);
port::Thread user_thread1(
[&]() { db_->CompactFiles(CompactionOptions(), handle, files, 1); });
port::Thread user_thread2([&]() {
ASSERT_OK(db_->IngestExternalFile(handle, {external_file2},
IngestExternalFileOptions()));
TEST_SYNC_POINT("TestCompactFiles::IngestExternalFile1");
});
user_thread1.join();
user_thread2.join();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
#endif // ROCKSDB_LITE
// TODO: figure out why this test fails in appveyor
#ifndef OS_WIN
TEST_F(DBTest2, MultiDBParallelOpenTest) {
const int kNumDbs = 2;
Options options = CurrentOptions();
std::vector<std::string> dbnames;
for (int i = 0; i < kNumDbs; ++i) {
dbnames.emplace_back(test::TmpDir(env_) + "/db" + ToString(i));
ASSERT_OK(DestroyDB(dbnames.back(), options));
}
// Verify empty DBs can be created in parallel
std::vector<std::thread> open_threads;
std::vector<DB*> dbs{static_cast<unsigned int>(kNumDbs), nullptr};
options.create_if_missing = true;
for (int i = 0; i < kNumDbs; ++i) {
open_threads.emplace_back(
[&](int dbnum) {
ASSERT_OK(DB::Open(options, dbnames[dbnum], &dbs[dbnum]));
},
i);
}
// Now add some data and close, so next we can verify non-empty DBs can be
// recovered in parallel
for (int i = 0; i < kNumDbs; ++i) {
open_threads[i].join();
ASSERT_OK(dbs[i]->Put(WriteOptions(), "xi", "gua"));
delete dbs[i];
}
// Verify non-empty DBs can be recovered in parallel
dbs.clear();
open_threads.clear();
for (int i = 0; i < kNumDbs; ++i) {
open_threads.emplace_back(
[&](int dbnum) {
ASSERT_OK(DB::Open(options, dbnames[dbnum], &dbs[dbnum]));
},
i);
}
// Wait and cleanup
for (int i = 0; i < kNumDbs; ++i) {
open_threads[i].join();
delete dbs[i];
ASSERT_OK(DestroyDB(dbnames[i], options));
}
}
#endif // OS_WIN
namespace {
class DummyOldStats : public Statistics {
public:
uint64_t getTickerCount(uint32_t /*ticker_type*/) const override { return 0; }
void recordTick(uint32_t /* ticker_type */, uint64_t /* count */) override {
num_rt++;
}
void setTickerCount(uint32_t /*ticker_type*/, uint64_t /*count*/) override {}
uint64_t getAndResetTickerCount(uint32_t /*ticker_type*/) override {
return 0;
}
void measureTime(uint32_t /*histogram_type*/, uint64_t /*count*/) override {
num_mt++;
}
void histogramData(
uint32_t /*histogram_type*/,
ROCKSDB_NAMESPACE::HistogramData* const /*data*/) const override {}
std::string getHistogramString(uint32_t /*type*/) const override {
return "";
}
bool HistEnabledForType(uint32_t /*type*/) const override { return false; }
std::string ToString() const override { return ""; }
int num_rt = 0;
int num_mt = 0;
};
} // namespace
TEST_F(DBTest2, OldStatsInterface) {
DummyOldStats* dos = new DummyOldStats();
std::shared_ptr<Statistics> stats(dos);
Options options = CurrentOptions();
options.create_if_missing = true;
options.statistics = stats;
Reopen(options);
Put("foo", "bar");
ASSERT_EQ("bar", Get("foo"));
ASSERT_OK(Flush());
ASSERT_EQ("bar", Get("foo"));
ASSERT_GT(dos->num_rt, 0);
ASSERT_GT(dos->num_mt, 0);
}
TEST_F(DBTest2, CloseWithUnreleasedSnapshot) {
const Snapshot* ss = db_->GetSnapshot();
for (auto h : handles_) {
db_->DestroyColumnFamilyHandle(h);
}
handles_.clear();
ASSERT_NOK(db_->Close());
db_->ReleaseSnapshot(ss);
ASSERT_OK(db_->Close());
delete db_;
db_ = nullptr;
}
TEST_F(DBTest2, PrefixBloomReseek) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(3));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
// Construct two L1 files with keys:
// f1:[aaa1 ccc1] f2:[ddd0]
ASSERT_OK(Put("aaa1", ""));
ASSERT_OK(Put("ccc1", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("ddd0", ""));
ASSERT_OK(Flush());
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kSkip;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_OK(Put("bbb1", ""));
Iterator* iter = db_->NewIterator(ReadOptions());
// Seeking into f1, the iterator will check bloom filter which returns the
// file iterator ot be invalidate, and the cursor will put into f2, with
// the next key to be "ddd0".
iter->Seek("bbb1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbb1", iter->key().ToString());
// Reseek ccc1, the L1 iterator needs to go back to f1 and reseek.
iter->Seek("ccc1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("ccc1", iter->key().ToString());
delete iter;
}
TEST_F(DBTest2, PrefixBloomFilteredOut) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(3));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
// Construct two L1 files with keys:
// f1:[aaa1 ccc1] f2:[ddd0]
ASSERT_OK(Put("aaa1", ""));
ASSERT_OK(Put("ccc1", ""));
ASSERT_OK(Flush());
ASSERT_OK(Put("ddd0", ""));
ASSERT_OK(Flush());
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kSkip;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
Iterator* iter = db_->NewIterator(ReadOptions());
// Bloom filter is filterd out by f1.
// This is just one of several valid position following the contract.
// Postioning to ccc1 or ddd0 is also valid. This is just to validate
// the behavior of the current implementation. If underlying implementation
// changes, the test might fail here.
iter->Seek("bbb1");
ASSERT_FALSE(iter->Valid());
delete iter;
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, RowCacheSnapshot) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.row_cache = NewLRUCache(8 * 8192);
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put("foo", "bar2"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo2", "bar"));
const Snapshot* s2 = db_->GetSnapshot();
ASSERT_OK(Put("foo3", "bar"));
const Snapshot* s3 = db_->GetSnapshot();
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 0);
ASSERT_EQ(Get("foo"), "bar2");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
ASSERT_EQ(Get("foo"), "bar2");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 1);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
ASSERT_EQ(Get("foo", s1), "bar1");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 1);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 2);
ASSERT_EQ(Get("foo", s2), "bar2");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 2);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 2);
ASSERT_EQ(Get("foo", s1), "bar1");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 3);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 2);
ASSERT_EQ(Get("foo", s3), "bar2");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 4);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 2);
db_->ReleaseSnapshot(s1);
db_->ReleaseSnapshot(s2);
db_->ReleaseSnapshot(s3);
}
#endif // ROCKSDB_LITE
// When DB is reopened with multiple column families, the manifest file
// is written after the first CF is flushed, and it is written again
// after each flush. If DB crashes between the flushes, the flushed CF
// flushed will pass the latest log file, and now we require it not
// to be corrupted, and triggering a corruption report.
// We need to fix the bug and enable the test.
TEST_F(DBTest2, CrashInRecoveryMultipleCF) {
const std::vector<std::string> sync_points = {
"DBImpl::RecoverLogFiles:BeforeFlushFinalMemtable",
"VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:0"};
for (const auto& test_sync_point : sync_points) {
Options options = CurrentOptions();
// First destroy original db to ensure a clean start.
DestroyAndReopen(options);
options.create_if_missing = true;
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(Put(1, "foo", "bar"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Put(1, "foo", "bar"));
// The value is large enough to be divided to two blocks.
std::string large_value(400, ' ');
ASSERT_OK(Put("foo1", large_value));
ASSERT_OK(Put("foo2", large_value));
Close();
// Corrupt the log file in the middle, so that it is not corrupted
// in the tail.
std::vector<std::string> filenames;
ASSERT_OK(env_->GetChildren(dbname_, &filenames));
for (const auto& f : filenames) {
uint64_t number;
FileType type;
if (ParseFileName(f, &number, &type) && type == FileType::kLogFile) {
std::string fname = dbname_ + "/" + f;
std::string file_content;
ASSERT_OK(ReadFileToString(env_, fname, &file_content));
file_content[400] = 'h';
file_content[401] = 'a';
ASSERT_OK(WriteStringToFile(env_, file_content, fname));
break;
}
}
// Reopen and freeze the file system after the first manifest write.
FaultInjectionTestEnv fit_env(options.env);
options.env = &fit_env;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
test_sync_point,
[&](void* /*arg*/) { fit_env.SetFilesystemActive(false); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
ASSERT_NOK(TryReopenWithColumnFamilies(
{kDefaultColumnFamilyName, "pikachu"}, options));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
fit_env.SetFilesystemActive(true);
// If we continue using failure ingestion Env, it will conplain something
// when renaming current file, which is not expected. Need to investigate
// why.
options.env = env_;
ASSERT_OK(TryReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"},
options));
}
}
TEST_F(DBTest2, SeekFileRangeDeleteTail) {
Options options = CurrentOptions();
options.prefix_extractor.reset(NewCappedPrefixTransform(1));
options.num_levels = 3;
DestroyAndReopen(options);
ASSERT_OK(Put("a", "a"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(
db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(), "a", "f"));
ASSERT_OK(Put("b", "a"));
ASSERT_OK(Flush());
ASSERT_OK(Put("x", "a"));
ASSERT_OK(Put("z", "a"));
ASSERT_OK(Flush());
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
{
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<Iterator> iter(db_->NewIterator(ro));
iter->Seek("e");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("x", iter->key().ToString());
}
db_->ReleaseSnapshot(s1);
}
TEST_F(DBTest2, BackgroundPurgeTest) {
Options options = CurrentOptions();
options.write_buffer_manager =
std::make_shared<ROCKSDB_NAMESPACE::WriteBufferManager>(1 << 20);
options.avoid_unnecessary_blocking_io = true;
DestroyAndReopen(options);
size_t base_value = options.write_buffer_manager->memory_usage();
ASSERT_OK(Put("a", "a"));
Iterator* iter = db_->NewIterator(ReadOptions());
ASSERT_OK(Flush());
size_t value = options.write_buffer_manager->memory_usage();
ASSERT_GT(value, base_value);
db_->GetEnv()->SetBackgroundThreads(1, Env::Priority::HIGH);
test::SleepingBackgroundTask sleeping_task_after;
db_->GetEnv()->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_after, Env::Priority::HIGH);
delete iter;
Env::Default()->SleepForMicroseconds(100000);
value = options.write_buffer_manager->memory_usage();
ASSERT_GT(value, base_value);
sleeping_task_after.WakeUp();
sleeping_task_after.WaitUntilDone();
test::SleepingBackgroundTask sleeping_task_after2;
db_->GetEnv()->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_after2, Env::Priority::HIGH);
sleeping_task_after2.WakeUp();
sleeping_task_after2.WaitUntilDone();
value = options.write_buffer_manager->memory_usage();
ASSERT_EQ(base_value, value);
}
TEST_F(DBTest2, SwitchMemtableRaceWithNewManifest) {
Options options = CurrentOptions();
DestroyAndReopen(options);
options.max_manifest_file_size = 10;
options.create_if_missing = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(2, handles_.size());
ASSERT_OK(Put("foo", "value"));
const int kL0Files = options.level0_file_num_compaction_trigger;
for (int i = 0; i < kL0Files; ++i) {
ASSERT_OK(Put(/*cf=*/1, "a", std::to_string(i)));
ASSERT_OK(Flush(/*cf=*/1));
}
port::Thread thread([&]() { ASSERT_OK(Flush()); });
ASSERT_OK(dbfull()->TEST_WaitForCompact());
thread.join();
}
TEST_F(DBTest2, SameSmallestInSameLevel) {
// This test validates fractional casacading logic when several files at one
// one level only contains the same user key.
Options options = CurrentOptions();
options.merge_operator = MergeOperators::CreateStringAppendOperator();
DestroyAndReopen(options);
ASSERT_OK(Put("key", "1"));
ASSERT_OK(Put("key", "2"));
ASSERT_OK(db_->Merge(WriteOptions(), "key", "3"));
ASSERT_OK(db_->Merge(WriteOptions(), "key", "4"));
Flush();
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 2;
ASSERT_OK(dbfull()->CompactRange(cro, db_->DefaultColumnFamily(), nullptr,
nullptr));
ASSERT_OK(db_->Merge(WriteOptions(), "key", "5"));
Flush();
ASSERT_OK(db_->Merge(WriteOptions(), "key", "6"));
Flush();
ASSERT_OK(db_->Merge(WriteOptions(), "key", "7"));
Flush();
ASSERT_OK(db_->Merge(WriteOptions(), "key", "8"));
Flush();
dbfull()->TEST_WaitForCompact(true);
#ifndef ROCKSDB_LITE
ASSERT_EQ("0,4,1", FilesPerLevel());
#endif // ROCKSDB_LITE
ASSERT_EQ("2,3,4,5,6,7,8", Get("key"));
}
TEST_F(DBTest2, FileConsistencyCheckInOpen) {
Put("foo", "bar");
Flush();
SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistencyBeforeReturn", [&](void* arg) {
Status* ret_s = static_cast<Status*>(arg);
*ret_s = Status::Corruption("fcc");
});
SyncPoint::GetInstance()->EnableProcessing();
Options options = CurrentOptions();
options.force_consistency_checks = true;
ASSERT_NOK(TryReopen(options));
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest2, BlockBasedTablePrefixIndexSeekForPrev) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.block_size = 300;
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.index_shortening =
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
Reopen(options);
Random rnd(301);
std::string large_value = RandomString(&rnd, 500);
ASSERT_OK(Put("a1", large_value));
ASSERT_OK(Put("x1", large_value));
ASSERT_OK(Put("y1", large_value));
Flush();
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ReadOptions()));
iterator->SeekForPrev("x3");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("x1", iterator->key().ToString());
iterator->SeekForPrev("a3");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("a1", iterator->key().ToString());
iterator->SeekForPrev("y3");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("y1", iterator->key().ToString());
// Query more than one non-existing prefix to cover the case both
// of empty hash bucket and hash bucket conflict.
iterator->SeekForPrev("b1");
// Result should be not valid or "a1".
if (iterator->Valid()) {
ASSERT_EQ("a1", iterator->key().ToString());
}
iterator->SeekForPrev("c1");
// Result should be not valid or "a1".
if (iterator->Valid()) {
ASSERT_EQ("a1", iterator->key().ToString());
}
iterator->SeekForPrev("d1");
// Result should be not valid or "a1".
if (iterator->Valid()) {
ASSERT_EQ("a1", iterator->key().ToString());
}
iterator->SeekForPrev("y3");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("y1", iterator->key().ToString());
}
}
TEST_F(DBTest2, ChangePrefixExtractor) {
for (bool use_partitioned_filter : {true, false}) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
// Sometimes filter is checked based on upper bound. Assert counters
// for that case. Otherwise, only check data correctness.
#ifndef ROCKSDB_LITE
bool expect_filter_check = !use_partitioned_filter;
#else
bool expect_filter_check = false;
#endif
table_options.partition_filters = use_partitioned_filter;
if (use_partitioned_filter) {
table_options.index_type =
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
}
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
DestroyAndReopen(options);
Random rnd(301);
ASSERT_OK(Put("aa", ""));
ASSERT_OK(Put("xb", ""));
ASSERT_OK(Put("xx1", ""));
ASSERT_OK(Put("xz1", ""));
ASSERT_OK(Put("zz", ""));
Flush();
// After reopening DB with prefix size 2 => 1, prefix extractor
// won't take effective unless it won't change results based
// on upper bound and seek key.
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
Reopen(options);
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ReadOptions()));
iterator->Seek("xa");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
// It's a bug that the counter BLOOM_FILTER_PREFIX_CHECKED is not
// correct in this case. So don't check counters in this case.
if (expect_filter_check) {
ASSERT_EQ(0, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
iterator->Seek("xz");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xz1", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(0, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
std::string ub_str = "xg9";
Slice ub(ub_str);
ReadOptions ro;
ro.iterate_upper_bound = &ub;
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
// SeekForPrev() never uses prefix bloom if it is changed.
iterator->SeekForPrev("xg0");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(0, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
ub_str = "xx9";
ub = Slice(ub_str);
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("x");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(0, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
iterator->Seek("xx0");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xx1", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(1, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
CompactRangeOptions compact_range_opts;
compact_range_opts.bottommost_level_compaction =
BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(compact_range_opts, nullptr, nullptr));
ASSERT_OK(db_->CompactRange(compact_range_opts, nullptr, nullptr));
// Re-execute similar queries after a full compaction
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ReadOptions()));
iterator->Seek("x");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(2, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
iterator->Seek("xg");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xx1", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(3, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
iterator->Seek("xz");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xz1", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(4, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->SeekForPrev("xx0");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(5, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
iterator->Seek("xx0");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xx1", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(6, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
ub_str = "xg9";
ub = Slice(ub_str);
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->SeekForPrev("xg0");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("xb", iterator->key().ToString());
if (expect_filter_check) {
ASSERT_EQ(7, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
}
}
}
TEST_F(DBTest2, BlockBasedTablePrefixGetIndexNotFound) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.block_size = 300;
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.index_shortening =
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
options.level0_file_num_compaction_trigger = 8;
Reopen(options);
ASSERT_OK(Put("b1", "ok"));
Flush();
// Flushing several files so that the chance that hash bucket
// is empty fo "b" in at least one of the files is high.
ASSERT_OK(Put("a1", ""));
ASSERT_OK(Put("c1", ""));
Flush();
ASSERT_OK(Put("a2", ""));
ASSERT_OK(Put("c2", ""));
Flush();
ASSERT_OK(Put("a3", ""));
ASSERT_OK(Put("c3", ""));
Flush();
ASSERT_OK(Put("a4", ""));
ASSERT_OK(Put("c4", ""));
Flush();
ASSERT_OK(Put("a5", ""));
ASSERT_OK(Put("c5", ""));
Flush();
ASSERT_EQ("ok", Get("b1"));
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest2, AutoPrefixMode1) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
options.statistics = CreateDBStatistics();
Reopen(options);
Random rnd(301);
std::string large_value = RandomString(&rnd, 500);
ASSERT_OK(Put("a1", large_value));
ASSERT_OK(Put("x1", large_value));
ASSERT_OK(Put("y1", large_value));
Flush();
ReadOptions ro;
ro.total_order_seek = false;
ro.auto_prefix_mode = true;
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("b1");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("x1", iterator->key().ToString());
ASSERT_EQ(0, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
std::string ub_str = "b9";
Slice ub(ub_str);
ro.iterate_upper_bound = &ub;
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("b1");
ASSERT_FALSE(iterator->Valid());
ASSERT_EQ(1, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
ub_str = "z";
ub = Slice(ub_str);
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("b1");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("x1", iterator->key().ToString());
ASSERT_EQ(1, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
ub_str = "c";
ub = Slice(ub_str);
{
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("b1");
ASSERT_FALSE(iterator->Valid());
ASSERT_EQ(2, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
}
// The same queries without recreating iterator
{
ub_str = "b9";
ub = Slice(ub_str);
ro.iterate_upper_bound = &ub;
std::unique_ptr<Iterator> iterator(db_->NewIterator(ro));
iterator->Seek("b1");
ASSERT_FALSE(iterator->Valid());
ASSERT_EQ(3, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
ub_str = "z";
ub = Slice(ub_str);
iterator->Seek("b1");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("x1", iterator->key().ToString());
ASSERT_EQ(3, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
ub_str = "c";
ub = Slice(ub_str);
iterator->Seek("b1");
ASSERT_FALSE(iterator->Valid());
ASSERT_EQ(4, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
ub_str = "b9";
ub = Slice(ub_str);
ro.iterate_upper_bound = &ub;
iterator->SeekForPrev("b1");
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("a1", iterator->key().ToString());
ASSERT_EQ(4, TestGetTickerCount(options, BLOOM_FILTER_PREFIX_CHECKED));
ub_str = "zz";
ub = Slice(ub_str);
ro.iterate_upper_bound = &ub;
iterator->SeekToLast();
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("y1", iterator->key().ToString());
iterator->SeekToFirst();
ASSERT_TRUE(iterator->Valid());
ASSERT_EQ("a1", iterator->key().ToString());
}
}
#endif // ROCKSDB_LITE
// WAL recovery mode is WALRecoveryMode::kPointInTimeRecovery.
TEST_F(DBTest2, PointInTimeRecoveryWithIOErrorWhileReadingWal) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value0"));
Close();
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
bool should_inject_error = false;
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::RecoverLogFiles:BeforeReadWal",
[&](void* /*arg*/) { should_inject_error = true; });
SyncPoint::GetInstance()->SetCallBack(
"LogReader::ReadMore:AfterReadFile", [&](void* arg) {
if (should_inject_error) {
ASSERT_NE(nullptr, arg);
*reinterpret_cast<Status*>(arg) = Status::IOError("Injected IOError");
}
});
SyncPoint::GetInstance()->EnableProcessing();
options.avoid_flush_during_recovery = true;
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
Status s = TryReopen(options);
ASSERT_TRUE(s.IsIOError());
}
} // namespace ROCKSDB_NAMESPACE
#ifdef ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
extern "C" {
void RegisterCustomObjects(int argc, char** argv);
}
#else
void RegisterCustomObjects(int /*argc*/, char** /*argv*/) {}
#endif // !ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}