You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/write_thread.h

281 lines
11 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#pragma once
#include <assert.h>
#include <stdint.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <vector>
#include <type_traits>
#include "db/write_callback.h"
#include "rocksdb/types.h"
#include "rocksdb/status.h"
#include "rocksdb/write_batch.h"
#include "util/autovector.h"
#include "util/instrumented_mutex.h"
namespace rocksdb {
class WriteThread {
public:
enum State : uint8_t {
// The initial state of a writer. This is a Writer that is
// waiting in JoinBatchGroup. This state can be left when another
// thread informs the waiter that it has become a group leader
// (-> STATE_GROUP_LEADER), when a leader that has chosen to be
// non-parallel informs a follower that its writes have been committed
// (-> STATE_COMPLETED), or when a leader that has chosen to perform
// updates in parallel and needs this Writer to apply its batch (->
// STATE_PARALLEL_FOLLOWER).
STATE_INIT = 1,
// The state used to inform a waiting Writer that it has become the
// leader, and it should now build a write batch group. Tricky:
// this state is not used if newest_writer_ is empty when a writer
// enqueues itself, because there is no need to wait (or even to
// create the mutex and condvar used to wait) in that case. This is
// a terminal state unless the leader chooses to make this a parallel
// batch, in which case the last parallel worker to finish will move
// the leader to STATE_COMPLETED.
STATE_GROUP_LEADER = 2,
// A Writer that has returned as a follower in a parallel group.
// It should apply its batch to the memtable and then call
// CompleteParallelWorker. When someone calls ExitAsBatchGroupLeader
// or EarlyExitParallelGroup this state will get transitioned to
// STATE_COMPLETED.
STATE_PARALLEL_FOLLOWER = 4,
// A follower whose writes have been applied, or a parallel leader
// whose followers have all finished their work. This is a terminal
// state.
STATE_COMPLETED = 8,
// A state indicating that the thread may be waiting using StateMutex()
// and StateCondVar()
STATE_LOCKED_WAITING = 16,
};
struct Writer;
struct ParallelGroup {
Writer* leader;
Writer* last_writer;
SequenceNumber last_sequence;
bool early_exit_allowed;
// before running goes to zero, status needs leader->StateMutex()
Status status;
std::atomic<uint32_t> running;
};
// Information kept for every waiting writer.
struct Writer {
WriteBatch* batch;
bool sync;
bool disableWAL;
bool in_batch_group;
WriteCallback* callback;
bool made_waitable; // records lazy construction of mutex and cv
std::atomic<uint8_t> state; // write under StateMutex() or pre-link
ParallelGroup* parallel_group;
SequenceNumber sequence; // the sequence number to use
Status status; // status of memtable inserter
Status callback_status; // status returned by callback->Callback()
std::aligned_storage<sizeof(std::mutex)>::type state_mutex_bytes;
std::aligned_storage<sizeof(std::condition_variable)>::type state_cv_bytes;
Writer* link_older; // read/write only before linking, or as leader
Writer* link_newer; // lazy, read/write only before linking, or as leader
Writer()
: batch(nullptr),
sync(false),
disableWAL(false),
in_batch_group(false),
callback(nullptr),
made_waitable(false),
state(STATE_INIT),
parallel_group(nullptr),
link_older(nullptr),
link_newer(nullptr) {}
~Writer() {
if (made_waitable) {
StateMutex().~mutex();
StateCV().~condition_variable();
}
}
bool CheckCallback(DB* db) {
if (callback != nullptr) {
callback_status = callback->Callback(db);
}
return callback_status.ok();
}
void CreateMutex() {
if (!made_waitable) {
// Note that made_waitable is tracked separately from state
// transitions, because we can't atomically create the mutex and
// link into the list.
made_waitable = true;
new (&state_mutex_bytes) std::mutex;
new (&state_cv_bytes) std::condition_variable;
}
}
// returns the aggregate status of this Writer
Status FinalStatus() {
if (!status.ok()) {
// a non-ok memtable write status takes presidence
assert(callback == nullptr || callback_status.ok());
return status;
} else if (!callback_status.ok()) {
// if the callback failed then that is the status we want
// because a memtable insert should not have been attempted
assert(callback != nullptr);
assert(status.ok());
return callback_status;
} else {
// if there is no callback then we only care about
// the memtable insert status
assert(callback == nullptr || callback_status.ok());
return status;
}
}
bool CallbackFailed() {
return (callback != nullptr) && !callback_status.ok();
}
// No other mutexes may be acquired while holding StateMutex(), it is
// always last in the order
std::mutex& StateMutex() {
assert(made_waitable);
return *static_cast<std::mutex*>(static_cast<void*>(&state_mutex_bytes));
}
std::condition_variable& StateCV() {
assert(made_waitable);
return *static_cast<std::condition_variable*>(
static_cast<void*>(&state_cv_bytes));
}
};
WriteThread(uint64_t max_yield_usec, uint64_t slow_yield_usec);
// IMPORTANT: None of the methods in this class rely on the db mutex
// for correctness. All of the methods except JoinBatchGroup and
// EnterUnbatched may be called either with or without the db mutex held.
// Correctness is maintained by ensuring that only a single thread is
// a leader at a time.
// Registers w as ready to become part of a batch group, waits until the
// caller should perform some work, and returns the current state of the
// writer. If w has become the leader of a write batch group, returns
// STATE_GROUP_LEADER. If w has been made part of a sequential batch
// group and the leader has performed the write, returns STATE_DONE.
// If w has been made part of a parallel batch group and is reponsible
// for updating the memtable, returns STATE_PARALLEL_FOLLOWER.
//
// The db mutex SHOULD NOT be held when calling this function, because
// it will block.
//
// Writer* w: Writer to be executed as part of a batch group
void JoinBatchGroup(Writer* w);
// Constructs a write batch group led by leader, which should be a
// Writer passed to JoinBatchGroup on the current thread.
//
// Writer* leader: Writer that is STATE_GROUP_LEADER
// Writer** last_writer: Out-param that identifies the last follower
// autovector<WriteBatch*>* write_batch_group: Out-param of group members
// returns: Total batch group byte size
size_t EnterAsBatchGroupLeader(
Writer* leader, Writer** last_writer,
autovector<WriteThread::Writer*>* write_batch_group);
// Causes JoinBatchGroup to return STATE_PARALLEL_FOLLOWER for all of the
// non-leader members of this write batch group. Sets Writer::sequence
// before waking them up.
//
// ParallalGroup* pg: Extra state used to coordinate the parallel add
// SequenceNumber sequence: Starting sequence number to assign to Writer-s
void LaunchParallelFollowers(ParallelGroup* pg, SequenceNumber sequence);
// Reports the completion of w's batch to the parallel group leader, and
// waits for the rest of the parallel batch to complete. Returns true
// if this thread is the last to complete, and hence should advance
// the sequence number and then call EarlyExitParallelGroup, false if
// someone else has already taken responsibility for that.
bool CompleteParallelWorker(Writer* w);
// This method performs an early completion of a parallel write group,
// where the cleanup work of the leader is performed by a follower who
// happens to be the last parallel worker to complete.
void EarlyExitParallelGroup(Writer* w);
// Unlinks the Writer-s in a batch group, wakes up the non-leaders,
// and wakes up the next leader (if any).
//
// Writer* leader: From EnterAsBatchGroupLeader
// Writer* last_writer: Value of out-param of EnterAsBatchGroupLeader
// Status status: Status of write operation
void ExitAsBatchGroupLeader(Writer* leader, Writer* last_writer,
Status status);
// Waits for all preceding writers (unlocking mu while waiting), then
// registers w as the currently proceeding writer.
//
// Writer* w: A Writer not eligible for batching
// InstrumentedMutex* mu: The db mutex, to unlock while waiting
// REQUIRES: db mutex held
void EnterUnbatched(Writer* w, InstrumentedMutex* mu);
// Completes a Writer begun with EnterUnbatched, unblocking subsequent
// writers.
void ExitUnbatched(Writer* w);
struct AdaptationContext {
const char* name;
std::atomic<int32_t> value;
explicit AdaptationContext(const char* name0) : name(name0), value(0) {}
};
private:
uint64_t max_yield_usec_;
uint64_t slow_yield_usec_;
// Points to the newest pending Writer. Only leader can remove
// elements, adding can be done lock-free by anybody
std::atomic<Writer*> newest_writer_;
// Waits for w->state & goal_mask using w->StateMutex(). Returns
// the state that satisfies goal_mask.
uint8_t BlockingAwaitState(Writer* w, uint8_t goal_mask);
// Blocks until w->state & goal_mask, returning the state value
// that satisfied the predicate. Uses ctx to adaptively use
// std::this_thread::yield() to avoid mutex overheads. ctx should be
// a context-dependent static.
uint8_t AwaitState(Writer* w, uint8_t goal_mask, AdaptationContext* ctx);
void SetState(Writer* w, uint8_t new_state);
// Links w into the newest_writer_ list. Sets *linked_as_leader to
// true if w was linked directly into the leader position. Safe to
// call from multiple threads without external locking.
void LinkOne(Writer* w, bool* linked_as_leader);
// Computes any missing link_newer links. Should not be called
// concurrently with itself.
void CreateMissingNewerLinks(Writer* head);
};
} // namespace rocksdb