You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db_stress_tool/no_batched_ops_stress.cc

885 lines
31 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
#ifndef NDEBUG
#include "utilities/fault_injection_fs.h"
#endif // NDEBUG
namespace ROCKSDB_NAMESPACE {
class NonBatchedOpsStressTest : public StressTest {
public:
NonBatchedOpsStressTest() {}
virtual ~NonBatchedOpsStressTest() {}
void VerifyDb(ThreadState* thread) const override {
ReadOptions options(FLAGS_verify_checksum, true);
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GenerateTimestampForRead();
ts = ts_str;
options.timestamp = &ts;
}
auto shared = thread->shared;
const int64_t max_key = shared->GetMaxKey();
const int64_t keys_per_thread = max_key / shared->GetNumThreads();
int64_t start = keys_per_thread * thread->tid;
int64_t end = start + keys_per_thread;
uint64_t prefix_to_use =
(FLAGS_prefix_size < 0) ? 1 : static_cast<size_t>(FLAGS_prefix_size);
if (thread->tid == shared->GetNumThreads() - 1) {
end = max_key;
}
for (size_t cf = 0; cf < column_families_.size(); ++cf) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
if (thread->rand.OneIn(3)) {
// 1/3 chance use iterator to verify this range
Slice prefix;
std::string seek_key = Key(start);
std::unique_ptr<Iterator> iter(
db_->NewIterator(options, column_families_[cf]));
iter->Seek(seek_key);
prefix = Slice(seek_key.data(), prefix_to_use);
for (auto i = start; i < end; i++) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
std::string from_db;
std::string keystr = Key(i);
Slice k = keystr;
Slice pfx = Slice(keystr.data(), prefix_to_use);
// Reseek when the prefix changes
if (prefix_to_use > 0 && prefix.compare(pfx) != 0) {
iter->Seek(k);
seek_key = keystr;
prefix = Slice(seek_key.data(), prefix_to_use);
}
Status s = iter->status();
if (iter->Valid()) {
Slice iter_key = iter->key();
if (iter->key().compare(k) > 0) {
s = Status::NotFound(Slice());
} else if (iter->key().compare(k) == 0) {
from_db = iter->value().ToString();
iter->Next();
} else if (iter_key.compare(k) < 0) {
VerificationAbort(shared, "An out of range key was found",
static_cast<int>(cf), i);
}
} else {
// The iterator found no value for the key in question, so do not
// move to the next item in the iterator
s = Status::NotFound();
}
VerifyValue(static_cast<int>(cf), i, options, shared, from_db, s,
true);
if (from_db.length()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.length());
}
}
} else if (thread->rand.OneIn(2)) {
// 1/3 chance use Get to verify this range
for (auto i = start; i < end; i++) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
std::string from_db;
std::string keystr = Key(i);
Slice k = keystr;
Status s = db_->Get(options, column_families_[cf], k, &from_db);
VerifyValue(static_cast<int>(cf), i, options, shared, from_db, s,
true);
if (from_db.length()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.length());
}
}
} else {
// 1/3 chance use MultiGet to verify this range
for (auto i = start; i < end;) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
// Keep the batch size to some reasonable value
size_t batch_size = thread->rand.Uniform(128) + 1;
batch_size = std::min<size_t>(batch_size, end - i);
std::vector<std::string> keystrs(batch_size);
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
for (size_t j = 0; j < batch_size; ++j) {
keystrs[j] = Key(i + j);
keys[j] = Slice(keystrs[j].data(), keystrs[j].length());
}
db_->MultiGet(options, column_families_[cf], batch_size, keys.data(),
values.data(), statuses.data());
for (size_t j = 0; j < batch_size; ++j) {
Status s = statuses[j];
std::string from_db = values[j].ToString();
VerifyValue(static_cast<int>(cf), i + j, options, shared, from_db,
s, true);
if (from_db.length()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i + j),
from_db.data(), from_db.length());
}
}
i += batch_size;
}
}
}
}
void MaybeClearOneColumnFamily(ThreadState* thread) override {
if (FLAGS_column_families > 1) {
if (thread->rand.OneInOpt(FLAGS_clear_column_family_one_in)) {
// drop column family and then create it again (can't drop default)
int cf = thread->rand.Next() % (FLAGS_column_families - 1) + 1;
std::string new_name = ToString(new_column_family_name_.fetch_add(1));
{
MutexLock l(thread->shared->GetMutex());
fprintf(
stdout,
"[CF %d] Dropping and recreating column family. new name: %s\n",
cf, new_name.c_str());
}
thread->shared->LockColumnFamily(cf);
Status s = db_->DropColumnFamily(column_families_[cf]);
delete column_families_[cf];
if (!s.ok()) {
fprintf(stderr, "dropping column family error: %s\n",
s.ToString().c_str());
std::terminate();
}
s = db_->CreateColumnFamily(ColumnFamilyOptions(options_), new_name,
&column_families_[cf]);
column_family_names_[cf] = new_name;
thread->shared->ClearColumnFamily(cf);
if (!s.ok()) {
fprintf(stderr, "creating column family error: %s\n",
s.ToString().c_str());
std::terminate();
}
thread->shared->UnlockColumnFamily(cf);
}
}
}
bool ShouldAcquireMutexOnKey() const override { return true; }
bool IsStateTracked() const override { return true; }
Status TestGet(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
auto cfh = column_families_[rand_column_families[0]];
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
std::string from_db;
int error_count = 0;
#ifndef NDEBUG
if (fault_fs_guard) {
fault_fs_guard->EnableErrorInjection();
SharedState::ignore_read_error = false;
}
#endif // NDEBUG
Status s = db_->Get(read_opts, cfh, key, &from_db);
#ifndef NDEBUG
if (fault_fs_guard) {
error_count = fault_fs_guard->GetAndResetErrorCount();
}
#endif // NDEBUG
if (s.ok()) {
#ifndef NDEBUG
if (fault_fs_guard) {
if (error_count && !SharedState::ignore_read_error) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from Get\n");
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintFaultBacktrace();
std::terminate();
}
}
#endif // NDEBUG
// found case
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
// not found case
thread->stats.AddGets(1, 0);
} else {
if (error_count == 0) {
// errors case
thread->stats.AddErrors(1);
} else {
thread->stats.AddVerifiedErrors(1);
}
}
#ifndef NDEBUG
if (fault_fs_guard) {
fault_fs_guard->DisableErrorInjection();
}
#endif // NDEBUG
return s;
}
std::vector<Status> TestMultiGet(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
size_t num_keys = rand_keys.size();
std::vector<std::string> key_str;
std::vector<Slice> keys;
key_str.reserve(num_keys);
keys.reserve(num_keys);
std::vector<PinnableSlice> values(num_keys);
std::vector<Status> statuses(num_keys);
ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]];
int error_count = 0;
// Do a consistency check between Get and MultiGet. Don't do it too
// often as it will slow db_stress down
bool do_consistency_check = thread->rand.OneIn(4);
ReadOptions readoptionscopy = read_opts;
if (do_consistency_check) {
readoptionscopy.snapshot = db_->GetSnapshot();
}
// To appease clang analyzer
const bool use_txn = FLAGS_use_txn;
// Create a transaction in order to write some data. The purpose is to
// exercise WriteBatchWithIndex::MultiGetFromBatchAndDB. The transaction
// will be rolled back once MultiGet returns.
#ifndef ROCKSDB_LITE
Transaction* txn = nullptr;
if (use_txn) {
WriteOptions wo;
Status s = NewTxn(wo, &txn);
if (!s.ok()) {
fprintf(stderr, "NewTxn: %s\n", s.ToString().c_str());
std::terminate();
}
}
#endif
for (size_t i = 0; i < num_keys; ++i) {
key_str.emplace_back(Key(rand_keys[i]));
keys.emplace_back(key_str.back());
#ifndef ROCKSDB_LITE
if (use_txn) {
// With a 1 in 10 probability, insert the just added key in the batch
// into the transaction. This will create an overlap with the MultiGet
// keys and exercise some corner cases in the code
if (thread->rand.OneIn(10)) {
int op = thread->rand.Uniform(2);
Status s;
switch (op) {
case 0:
case 1: {
uint32_t value_base =
thread->rand.Next() % thread->shared->UNKNOWN_SENTINEL;
char value[100];
size_t sz = GenerateValue(value_base, value, sizeof(value));
Slice v(value, sz);
if (op == 0) {
s = txn->Put(cfh, keys.back(), v);
} else {
s = txn->Merge(cfh, keys.back(), v);
}
break;
}
case 2:
s = txn->Delete(cfh, keys.back());
break;
default:
assert(false);
}
if (!s.ok()) {
fprintf(stderr, "Transaction put: %s\n", s.ToString().c_str());
std::terminate();
}
}
}
#endif
}
if (!use_txn) {
#ifndef NDEBUG
if (fault_fs_guard) {
fault_fs_guard->EnableErrorInjection();
SharedState::ignore_read_error = false;
}
#endif // NDEBUG
db_->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(),
statuses.data());
#ifndef NDEBUG
if (fault_fs_guard) {
error_count = fault_fs_guard->GetAndResetErrorCount();
}
#endif // NDEBUG
} else {
#ifndef ROCKSDB_LITE
txn->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(),
statuses.data());
#endif
}
#ifndef NDEBUG
if (fault_fs_guard && error_count && !SharedState::ignore_read_error) {
int stat_nok = 0;
for (const auto& s : statuses) {
if (!s.ok() && !s.IsNotFound()) {
stat_nok++;
}
}
if (stat_nok < error_count) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from MultiGet. \n");
fprintf(stderr, "num_keys %zu Expected %d errors, seen %d\n", num_keys,
error_count, stat_nok);
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintFaultBacktrace();
std::terminate();
}
}
if (fault_fs_guard) {
fault_fs_guard->DisableErrorInjection();
}
#endif // NDEBUG
for (size_t i = 0; i < statuses.size(); ++i) {
Status s = statuses[i];
bool is_consistent = true;
// Only do the consistency check if no error was injected and MultiGet
// didn't return an unexpected error
if (do_consistency_check && !error_count && (s.ok() || s.IsNotFound())) {
Status tmp_s;
std::string value;
if (use_txn) {
#ifndef ROCKSDB_LITE
tmp_s = txn->Get(readoptionscopy, cfh, keys[i], &value);
#endif // ROCKSDB_LITE
} else {
tmp_s = db_->Get(readoptionscopy, cfh, keys[i], &value);
}
if (!tmp_s.ok() && !tmp_s.IsNotFound()) {
fprintf(stderr, "Get error: %s\n", s.ToString().c_str());
is_consistent = false;
} else if (!s.ok() && tmp_s.ok()) {
fprintf(stderr, "MultiGet returned different results with key %s\n",
keys[i].ToString(true).c_str());
fprintf(stderr, "Get returned ok, MultiGet returned not found\n");
is_consistent = false;
} else if (s.ok() && tmp_s.IsNotFound()) {
fprintf(stderr, "MultiGet returned different results with key %s\n",
keys[i].ToString(true).c_str());
fprintf(stderr, "MultiGet returned ok, Get returned not found\n");
is_consistent = false;
} else if (s.ok() && value != values[i].ToString()) {
fprintf(stderr, "MultiGet returned different results with key %s\n",
keys[i].ToString(true).c_str());
fprintf(stderr, "MultiGet returned value %s\n",
values[i].ToString(true).c_str());
fprintf(stderr, "Get returned value %s\n", value.c_str());
is_consistent = false;
}
}
if (!is_consistent) {
fprintf(stderr, "TestMultiGet error: is_consistent is false\n");
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state
thread->shared->SetVerificationFailure();
break;
} else if (s.ok()) {
// found case
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
// not found case
thread->stats.AddGets(1, 0);
} else if (s.IsMergeInProgress() && use_txn) {
// With txn this is sometimes expected.
thread->stats.AddGets(1, 1);
} else {
if (error_count == 0) {
// errors case
fprintf(stderr, "MultiGet error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
} else {
thread->stats.AddVerifiedErrors(1);
}
}
}
if (readoptionscopy.snapshot) {
db_->ReleaseSnapshot(readoptionscopy.snapshot);
}
if (use_txn) {
#ifndef ROCKSDB_LITE
RollbackTxn(txn);
#endif
}
return statuses;
}
Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
auto cfh = column_families_[rand_column_families[0]];
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
Slice prefix = Slice(key.data(), FLAGS_prefix_size);
std::string upper_bound;
Slice ub_slice;
ReadOptions ro_copy = read_opts;
// Get the next prefix first and then see if we want to set upper bound.
// We'll use the next prefix in an assertion later on
if (GetNextPrefix(prefix, &upper_bound) && thread->rand.OneIn(2)) {
// For half of the time, set the upper bound to the next prefix
ub_slice = Slice(upper_bound);
ro_copy.iterate_upper_bound = &ub_slice;
}
Iterator* iter = db_->NewIterator(ro_copy, cfh);
unsigned long count = 0;
for (iter->Seek(prefix); iter->Valid() && iter->key().starts_with(prefix);
iter->Next()) {
++count;
}
assert(count <= GetPrefixKeyCount(prefix.ToString(), upper_bound));
Status s = iter->status();
if (iter->status().ok()) {
thread->stats.AddPrefixes(1, count);
} else {
fprintf(stderr, "TestPrefixScan error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
}
delete iter;
return s;
}
Status TestPut(ThreadState* thread, WriteOptions& write_opts,
const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys, char (&value)[100],
std::unique_ptr<MutexLock>& lock) override {
auto shared = thread->shared;
int64_t max_key = shared->GetMaxKey();
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
std::string write_ts_str;
Slice write_ts;
while (!shared->AllowsOverwrite(rand_key) &&
(FLAGS_use_merge || shared->Exists(rand_column_family, rand_key))) {
lock.reset();
rand_key = thread->rand.Next() % max_key;
rand_column_family = thread->rand.Next() % FLAGS_column_families;
lock.reset(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
if (FLAGS_user_timestamp_size > 0) {
write_ts_str = NowNanosStr();
write_ts = write_ts_str;
}
}
if (write_ts.size() == 0 && FLAGS_user_timestamp_size) {
write_ts_str = NowNanosStr();
write_ts = write_ts_str;
}
std::string key_str = Key(rand_key);
Slice key = key_str;
ColumnFamilyHandle* cfh = column_families_[rand_column_family];
if (FLAGS_verify_before_write) {
std::string key_str2 = Key(rand_key);
Slice k = key_str2;
std::string from_db;
Status s = db_->Get(read_opts, cfh, k, &from_db);
if (!VerifyValue(rand_column_family, rand_key, read_opts, shared, from_db,
s, true)) {
return s;
}
}
uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL;
size_t sz = GenerateValue(value_base, value, sizeof(value));
Slice v(value, sz);
shared->Put(rand_column_family, rand_key, value_base, true /* pending */);
Status s;
if (FLAGS_use_merge) {
if (!FLAGS_use_txn) {
s = db_->Merge(write_opts, cfh, key, v);
} else {
#ifndef ROCKSDB_LITE
Transaction* txn;
s = NewTxn(write_opts, &txn);
if (s.ok()) {
s = txn->Merge(cfh, key, v);
if (s.ok()) {
s = CommitTxn(txn);
}
}
#endif
}
} else {
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->Put(write_opts, cfh, key, v);
} else {
s = db_->Put(write_opts, cfh, key, write_ts, v);
}
} else {
#ifndef ROCKSDB_LITE
Transaction* txn;
s = NewTxn(write_opts, &txn);
if (s.ok()) {
s = txn->Put(cfh, key, v);
if (s.ok()) {
s = CommitTxn(txn);
}
}
#endif
}
}
shared->Put(rand_column_family, rand_key, value_base, false /* pending */);
if (!s.ok()) {
if (FLAGS_injest_error_severity >= 2) {
if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
std::terminate();
}
} else {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
std::terminate();
}
}
thread->stats.AddBytesForWrites(1, sz);
PrintKeyValue(rand_column_family, static_cast<uint32_t>(rand_key), value,
sz);
return s;
}
Status TestDelete(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
std::unique_ptr<MutexLock>& lock) override {
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
auto shared = thread->shared;
int64_t max_key = shared->GetMaxKey();
// OPERATION delete
// If the chosen key does not allow overwrite and it does not exist,
// choose another key.
std::string write_ts_str;
Slice write_ts;
while (!shared->AllowsOverwrite(rand_key) &&
!shared->Exists(rand_column_family, rand_key)) {
lock.reset();
rand_key = thread->rand.Next() % max_key;
rand_column_family = thread->rand.Next() % FLAGS_column_families;
lock.reset(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
if (FLAGS_user_timestamp_size > 0) {
write_ts_str = NowNanosStr();
write_ts = write_ts_str;
}
}
if (write_ts.size() == 0 && FLAGS_user_timestamp_size) {
write_ts_str = NowNanosStr();
write_ts = write_ts_str;
}
std::string key_str = Key(rand_key);
Slice key = key_str;
auto cfh = column_families_[rand_column_family];
// Use delete if the key may be overwritten and a single deletion
// otherwise.
Status s;
if (shared->AllowsOverwrite(rand_key)) {
shared->Delete(rand_column_family, rand_key, true /* pending */);
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->Delete(write_opts, cfh, key);
} else {
s = db_->Delete(write_opts, cfh, key, write_ts);
}
} else {
#ifndef ROCKSDB_LITE
Transaction* txn;
s = NewTxn(write_opts, &txn);
if (s.ok()) {
s = txn->Delete(cfh, key);
if (s.ok()) {
s = CommitTxn(txn);
}
}
#endif
}
shared->Delete(rand_column_family, rand_key, false /* pending */);
thread->stats.AddDeletes(1);
if (!s.ok()) {
if (FLAGS_injest_error_severity >= 2) {
if (!is_db_stopped_ &&
s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
std::terminate();
}
} else {
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
std::terminate();
}
}
} else {
shared->SingleDelete(rand_column_family, rand_key, true /* pending */);
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->SingleDelete(write_opts, cfh, key);
} else {
s = db_->SingleDelete(write_opts, cfh, key, write_ts);
}
} else {
#ifndef ROCKSDB_LITE
Transaction* txn;
s = NewTxn(write_opts, &txn);
if (s.ok()) {
s = txn->SingleDelete(cfh, key);
if (s.ok()) {
s = CommitTxn(txn);
}
}
#endif
}
shared->SingleDelete(rand_column_family, rand_key, false /* pending */);
thread->stats.AddSingleDeletes(1);
if (!s.ok()) {
if (FLAGS_injest_error_severity >= 2) {
if (!is_db_stopped_ &&
s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "single delete error: %s\n", s.ToString().c_str());
std::terminate();
}
} else {
fprintf(stderr, "single delete error: %s\n", s.ToString().c_str());
std::terminate();
}
}
}
return s;
}
Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
std::unique_ptr<MutexLock>& lock) override {
// OPERATION delete range
std::vector<std::unique_ptr<MutexLock>> range_locks;
// delete range does not respect disallowed overwrites. the keys for
// which overwrites are disallowed are randomly distributed so it
// could be expensive to find a range where each key allows
// overwrites.
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
auto shared = thread->shared;
int64_t max_key = shared->GetMaxKey();
if (rand_key > max_key - FLAGS_range_deletion_width) {
lock.reset();
rand_key =
thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1);
range_locks.emplace_back(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
} else {
range_locks.emplace_back(std::move(lock));
}
for (int j = 1; j < FLAGS_range_deletion_width; ++j) {
if (((rand_key + j) & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) {
range_locks.emplace_back(new MutexLock(
shared->GetMutexForKey(rand_column_family, rand_key + j)));
}
}
shared->DeleteRange(rand_column_family, rand_key,
rand_key + FLAGS_range_deletion_width,
true /* pending */);
std::string keystr = Key(rand_key);
Slice key = keystr;
auto cfh = column_families_[rand_column_family];
std::string end_keystr = Key(rand_key + FLAGS_range_deletion_width);
Slice end_key = end_keystr;
Status s = db_->DeleteRange(write_opts, cfh, key, end_key);
if (!s.ok()) {
if (FLAGS_injest_error_severity >= 2) {
if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "delete range error: %s\n", s.ToString().c_str());
std::terminate();
}
} else {
fprintf(stderr, "delete range error: %s\n", s.ToString().c_str());
std::terminate();
}
}
int covered = shared->DeleteRange(rand_column_family, rand_key,
rand_key + FLAGS_range_deletion_width,
false /* pending */);
thread->stats.AddRangeDeletions(1);
thread->stats.AddCoveredByRangeDeletions(covered);
return s;
}
#ifdef ROCKSDB_LITE
void TestIngestExternalFile(
ThreadState* /* thread */,
const std::vector<int>& /* rand_column_families */,
const std::vector<int64_t>& /* rand_keys */,
std::unique_ptr<MutexLock>& /* lock */) override {
assert(false);
fprintf(stderr,
"RocksDB lite does not support "
"TestIngestExternalFile\n");
std::terminate();
}
#else
void TestIngestExternalFile(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
std::unique_ptr<MutexLock>& lock) override {
const std::string sst_filename =
FLAGS_db + "/." + ToString(thread->tid) + ".sst";
Status s;
if (db_stress_env->FileExists(sst_filename).ok()) {
// Maybe we terminated abnormally before, so cleanup to give this file
// ingestion a clean slate
s = db_stress_env->DeleteFile(sst_filename);
}
SstFileWriter sst_file_writer(EnvOptions(options_), options_);
if (s.ok()) {
s = sst_file_writer.Open(sst_filename);
}
int64_t key_base = rand_keys[0];
int column_family = rand_column_families[0];
std::vector<std::unique_ptr<MutexLock>> range_locks;
std::vector<uint32_t> values;
SharedState* shared = thread->shared;
// Grab locks, set pending state on expected values, and add keys
for (int64_t key = key_base;
s.ok() && key < std::min(key_base + FLAGS_ingest_external_file_width,
shared->GetMaxKey());
++key) {
if (key == key_base) {
range_locks.emplace_back(std::move(lock));
} else if ((key & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) {
range_locks.emplace_back(
new MutexLock(shared->GetMutexForKey(column_family, key)));
}
uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL;
values.push_back(value_base);
shared->Put(column_family, key, value_base, true /* pending */);
char value[100];
size_t value_len = GenerateValue(value_base, value, sizeof(value));
auto key_str = Key(key);
s = sst_file_writer.Put(Slice(key_str), Slice(value, value_len));
}
if (s.ok()) {
s = sst_file_writer.Finish();
}
if (s.ok()) {
s = db_->IngestExternalFile(column_families_[column_family],
{sst_filename}, IngestExternalFileOptions());
}
if (!s.ok()) {
fprintf(stderr, "file ingestion error: %s\n", s.ToString().c_str());
std::terminate();
}
int64_t key = key_base;
for (int32_t value : values) {
shared->Put(column_family, key, value, false /* pending */);
++key;
}
}
#endif // ROCKSDB_LITE
bool VerifyValue(int cf, int64_t key, const ReadOptions& /*opts*/,
SharedState* shared, const std::string& value_from_db,
const Status& s, bool strict = false) const {
if (shared->HasVerificationFailedYet()) {
return false;
}
// compare value_from_db with the value in the shared state
char value[kValueMaxLen];
uint32_t value_base = shared->Get(cf, key);
if (value_base == SharedState::UNKNOWN_SENTINEL) {
return true;
}
if (value_base == SharedState::DELETION_SENTINEL && !strict) {
return true;
}
if (s.ok()) {
if (value_base == SharedState::DELETION_SENTINEL) {
VerificationAbort(shared, "Unexpected value found", cf, key);
return false;
}
size_t sz = GenerateValue(value_base, value, sizeof(value));
if (value_from_db.length() != sz) {
VerificationAbort(shared, "Length of value read is not equal", cf, key);
return false;
}
if (memcmp(value_from_db.data(), value, sz) != 0) {
VerificationAbort(shared, "Contents of value read don't match", cf,
key);
return false;
}
} else {
if (value_base != SharedState::DELETION_SENTINEL) {
VerificationAbort(shared, "Value not found: " + s.ToString(), cf, key);
return false;
}
}
return true;
}
};
StressTest* CreateNonBatchedOpsStressTest() {
return new NonBatchedOpsStressTest();
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS