fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1383 lines
50 KiB
1383 lines
50 KiB
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction_picker.h"
|
|
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include <limits>
|
|
#include <string>
|
|
#include "db/filename.h"
|
|
#include "util/log_buffer.h"
|
|
#include "util/statistics.h"
|
|
#include "util/string_util.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
namespace {
|
|
uint64_t TotalCompensatedFileSize(const std::vector<FileMetaData*>& files) {
|
|
uint64_t sum = 0;
|
|
for (size_t i = 0; i < files.size() && files[i]; i++) {
|
|
sum += files[i]->compensated_file_size;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// Determine compression type, based on user options, level of the output
|
|
// file and whether compression is disabled.
|
|
// If enable_compression is false, then compression is always disabled no
|
|
// matter what the values of the other two parameters are.
|
|
// Otherwise, the compression type is determined based on options and level.
|
|
CompressionType GetCompressionType(const ImmutableCFOptions& ioptions,
|
|
int level, int base_level,
|
|
const bool enable_compression = true) {
|
|
if (!enable_compression) {
|
|
// disable compression
|
|
return kNoCompression;
|
|
}
|
|
// If the use has specified a different compression level for each level,
|
|
// then pick the compression for that level.
|
|
if (!ioptions.compression_per_level.empty()) {
|
|
assert(level == 0 || level >= base_level);
|
|
int idx = (level == 0) ? 0 : level - base_level + 1;
|
|
|
|
const int n = static_cast<int>(ioptions.compression_per_level.size()) - 1;
|
|
// It is possible for level_ to be -1; in that case, we use level
|
|
// 0's compression. This occurs mostly in backwards compatibility
|
|
// situations when the builder doesn't know what level the file
|
|
// belongs to. Likewise, if level is beyond the end of the
|
|
// specified compression levels, use the last value.
|
|
return ioptions.compression_per_level[std::max(0, std::min(idx, n))];
|
|
} else {
|
|
return ioptions.compression;
|
|
}
|
|
}
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
CompactionPicker::CompactionPicker(const ImmutableCFOptions& ioptions,
|
|
const InternalKeyComparator* icmp)
|
|
: ioptions_(ioptions),
|
|
compactions_in_progress_(ioptions_.num_levels),
|
|
icmp_(icmp) {
|
|
}
|
|
|
|
CompactionPicker::~CompactionPicker() {}
|
|
|
|
// Clear all files to indicate that they are not being compacted
|
|
// Delete this compaction from the list of running compactions.
|
|
void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) {
|
|
c->MarkFilesBeingCompacted(false);
|
|
compactions_in_progress_[c->level()].erase(c);
|
|
if (!status.ok()) {
|
|
c->ResetNextCompactionIndex();
|
|
}
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const std::vector<FileMetaData*>& inputs,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
assert(!inputs.empty());
|
|
smallest->Clear();
|
|
largest->Clear();
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
FileMetaData* f = inputs[i];
|
|
if (i == 0) {
|
|
*smallest = f->smallest;
|
|
*largest = f->largest;
|
|
} else {
|
|
if (icmp_->Compare(f->smallest, *smallest) < 0) {
|
|
*smallest = f->smallest;
|
|
}
|
|
if (icmp_->Compare(f->largest, *largest) > 0) {
|
|
*largest = f->largest;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const std::vector<FileMetaData*>& inputs1,
|
|
const std::vector<FileMetaData*>& inputs2,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
std::vector<FileMetaData*> all = inputs1;
|
|
all.insert(all.end(), inputs2.begin(), inputs2.end());
|
|
GetRange(all, smallest, largest);
|
|
}
|
|
|
|
bool CompactionPicker::ExpandWhileOverlapping(const std::string& cf_name,
|
|
VersionStorageInfo* vstorage,
|
|
Compaction* c) {
|
|
assert(c != nullptr);
|
|
// If inputs are empty then there is nothing to expand.
|
|
if (c->inputs_[0].empty()) {
|
|
assert(c->inputs(c->num_input_levels() - 1)->empty());
|
|
// This isn't good compaction
|
|
return false;
|
|
}
|
|
|
|
// GetOverlappingInputs will always do the right thing for level-0.
|
|
// So we don't need to do any expansion if level == 0.
|
|
if (c->level() == 0) {
|
|
return true;
|
|
}
|
|
|
|
const int level = c->level();
|
|
InternalKey smallest, largest;
|
|
|
|
// Keep expanding c->inputs_[0] until we are sure that there is a
|
|
// "clean cut" boundary between the files in input and the surrounding files.
|
|
// This will ensure that no parts of a key are lost during compaction.
|
|
int hint_index = -1;
|
|
size_t old_size;
|
|
do {
|
|
old_size = c->inputs_[0].size();
|
|
GetRange(c->inputs_[0].files, &smallest, &largest);
|
|
c->inputs_[0].clear();
|
|
vstorage->GetOverlappingInputs(level, &smallest, &largest,
|
|
&c->inputs_[0].files, hint_index,
|
|
&hint_index);
|
|
} while(c->inputs_[0].size() > old_size);
|
|
|
|
// Get the new range
|
|
GetRange(c->inputs_[0].files, &smallest, &largest);
|
|
|
|
// If, after the expansion, there are files that are already under
|
|
// compaction, then we must drop/cancel this compaction.
|
|
int parent_index = -1;
|
|
if (c->inputs_[0].empty()) {
|
|
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
|
|
"[%s] ExpandWhileOverlapping() failure because zero input files",
|
|
cf_name.c_str());
|
|
}
|
|
if (c->inputs_[0].empty() || FilesInCompaction(c->inputs_[0].files) ||
|
|
(c->level() != c->output_level() &&
|
|
RangeInCompaction(vstorage, &smallest, &largest, c->output_level(),
|
|
&parent_index))) {
|
|
c->inputs_[0].clear();
|
|
c->inputs_[c->num_input_levels() - 1].clear();
|
|
if (!c->inputs_[0].empty()) {
|
|
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
|
|
"[%s] ExpandWhileOverlapping() failure because some of the necessary"
|
|
" compaction input files are currently being compacted.",
|
|
c->column_family_data()->GetName().c_str());
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if any one of specified files are being compacted
|
|
bool CompactionPicker::FilesInCompaction(
|
|
const std::vector<FileMetaData*>& files) {
|
|
for (unsigned int i = 0; i < files.size(); i++) {
|
|
if (files[i]->being_compacted) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Compaction* CompactionPicker::FormCompaction(
|
|
const CompactionOptions& compact_options,
|
|
const autovector<CompactionInputFiles>& input_files,
|
|
int output_level, VersionStorageInfo* vstorage,
|
|
const MutableCFOptions& mutable_cf_options) const {
|
|
uint64_t max_grandparent_overlap_bytes =
|
|
output_level + 1 < vstorage->num_levels() ?
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(output_level + 1) :
|
|
std::numeric_limits<uint64_t>::max();
|
|
assert(input_files.size());
|
|
auto c = new Compaction(vstorage, input_files,
|
|
input_files[0].level, output_level,
|
|
max_grandparent_overlap_bytes,
|
|
compact_options, false);
|
|
c->mutable_cf_options_ = mutable_cf_options;
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// TODO(yhchiang): complete the SetBottomMostLevel as follows
|
|
// If there is no any key of the range in DB that is older than the
|
|
// range to compact, it is bottom most. For leveled compaction,
|
|
// if number-of_level-1 is empty, and output is going to number-of_level-2,
|
|
// it is also bottom-most. On the other hand, if number of level=1 (
|
|
// something like universal), the compaction is only "bottom-most" if
|
|
// the oldest file is involved.
|
|
c->SetupBottomMostLevel(
|
|
vstorage,
|
|
(output_level == vstorage->num_levels() - 1),
|
|
(output_level == 0));
|
|
return c;
|
|
}
|
|
|
|
Status CompactionPicker::GetCompactionInputsFromFileNumbers(
|
|
autovector<CompactionInputFiles>* input_files,
|
|
std::unordered_set<uint64_t>* input_set,
|
|
const VersionStorageInfo* vstorage,
|
|
const CompactionOptions& compact_options) const {
|
|
if (input_set->size() == 0U) {
|
|
return Status::InvalidArgument(
|
|
"Compaction must include at least one file.");
|
|
}
|
|
assert(input_files);
|
|
|
|
autovector<CompactionInputFiles> matched_input_files;
|
|
matched_input_files.resize(vstorage->num_levels());
|
|
int first_non_empty_level = -1;
|
|
int last_non_empty_level = -1;
|
|
// TODO(yhchiang): use a lazy-initialized mapping from
|
|
// file_number to FileMetaData in Version.
|
|
for (int level = 0; level < vstorage->num_levels(); ++level) {
|
|
for (auto file : vstorage->LevelFiles(level)) {
|
|
auto iter = input_set->find(file->fd.GetNumber());
|
|
if (iter != input_set->end()) {
|
|
matched_input_files[level].files.push_back(file);
|
|
input_set->erase(iter);
|
|
last_non_empty_level = level;
|
|
if (first_non_empty_level == -1) {
|
|
first_non_empty_level = level;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!input_set->empty()) {
|
|
std::string message(
|
|
"Cannot find matched SST files for the following file numbers:");
|
|
for (auto fn : *input_set) {
|
|
message += " ";
|
|
message += ToString(fn);
|
|
}
|
|
return Status::InvalidArgument(message);
|
|
}
|
|
|
|
for (int level = first_non_empty_level;
|
|
level <= last_non_empty_level; ++level) {
|
|
matched_input_files[level].level = level;
|
|
input_files->emplace_back(std::move(matched_input_files[level]));
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
|
|
// Returns true if any one of the parent files are being compacted
|
|
bool CompactionPicker::RangeInCompaction(VersionStorageInfo* vstorage,
|
|
const InternalKey* smallest,
|
|
const InternalKey* largest, int level,
|
|
int* level_index) {
|
|
std::vector<FileMetaData*> inputs;
|
|
assert(level < NumberLevels());
|
|
|
|
vstorage->GetOverlappingInputs(level, smallest, largest, &inputs,
|
|
*level_index, level_index);
|
|
return FilesInCompaction(inputs);
|
|
}
|
|
|
|
// Populates the set of inputs of all other levels that overlap with the
|
|
// start level.
|
|
// Now we assume all levels except start level and output level are empty.
|
|
// Will also attempt to expand "start level" if that doesn't expand
|
|
// "output level" or cause "level" to include a file for compaction that has an
|
|
// overlapping user-key with another file.
|
|
void CompactionPicker::SetupOtherInputs(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, Compaction* c) {
|
|
// If inputs are empty, then there is nothing to expand.
|
|
// If both input and output levels are the same, no need to consider
|
|
// files at level "level+1"
|
|
if (c->inputs_[0].empty() || c->level() == c->output_level()) {
|
|
return;
|
|
}
|
|
|
|
// For now, we only support merging two levels, start level and output level.
|
|
// We need to assert other levels are empty.
|
|
for (int l = c->start_level() + 1; l < c->output_level(); l++) {
|
|
assert(vstorage->NumLevelFiles(l) == 0);
|
|
}
|
|
|
|
const int level = c->level();
|
|
InternalKey smallest, largest;
|
|
|
|
// Get the range one last time.
|
|
GetRange(c->inputs_[0].files, &smallest, &largest);
|
|
|
|
// Populate the set of next-level files (inputs_GetOutputLevelInputs()) to
|
|
// include in compaction
|
|
vstorage->GetOverlappingInputs(c->output_level(), &smallest, &largest,
|
|
&c->inputs_[c->num_input_levels() - 1].files,
|
|
c->parent_index_, &c->parent_index_);
|
|
|
|
// Get entire range covered by compaction
|
|
InternalKey all_start, all_limit;
|
|
GetRange(c->inputs_[0].files, c->inputs_[c->num_input_levels() - 1].files,
|
|
&all_start, &all_limit);
|
|
|
|
// See if we can further grow the number of inputs in "level" without
|
|
// changing the number of "level+1" files we pick up. We also choose NOT
|
|
// to expand if this would cause "level" to include some entries for some
|
|
// user key, while excluding other entries for the same user key. This
|
|
// can happen when one user key spans multiple files.
|
|
if (!c->inputs(c->num_input_levels() - 1)->empty()) {
|
|
std::vector<FileMetaData*> expanded0;
|
|
vstorage->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0,
|
|
c->base_index_, nullptr);
|
|
const uint64_t inputs0_size = TotalCompensatedFileSize(c->inputs_[0].files);
|
|
const uint64_t inputs1_size =
|
|
TotalCompensatedFileSize(c->inputs_[c->num_input_levels() - 1].files);
|
|
const uint64_t expanded0_size = TotalCompensatedFileSize(expanded0);
|
|
uint64_t limit = mutable_cf_options.ExpandedCompactionByteSizeLimit(level);
|
|
if (expanded0.size() > c->inputs_[0].size() &&
|
|
inputs1_size + expanded0_size < limit &&
|
|
!FilesInCompaction(expanded0) &&
|
|
!vstorage->HasOverlappingUserKey(&expanded0, level)) {
|
|
InternalKey new_start, new_limit;
|
|
GetRange(expanded0, &new_start, &new_limit);
|
|
std::vector<FileMetaData*> expanded1;
|
|
vstorage->GetOverlappingInputs(c->output_level(), &new_start, &new_limit,
|
|
&expanded1, c->parent_index_,
|
|
&c->parent_index_);
|
|
if (expanded1.size() == c->inputs(c->num_input_levels() - 1)->size() &&
|
|
!FilesInCompaction(expanded1)) {
|
|
Log(InfoLogLevel::INFO_LEVEL, ioptions_.info_log,
|
|
"[%s] Expanding@%d %zu+%zu (%" PRIu64 "+%" PRIu64
|
|
" bytes) to %zu+%zu (%" PRIu64 "+%" PRIu64 "bytes)\n",
|
|
cf_name.c_str(), level, c->inputs_[0].size(),
|
|
c->inputs(c->num_input_levels() - 1)->size(), inputs0_size,
|
|
inputs1_size, expanded0.size(), expanded1.size(), expanded0_size,
|
|
inputs1_size);
|
|
smallest = new_start;
|
|
largest = new_limit;
|
|
c->inputs_[0].files = expanded0;
|
|
c->inputs_[c->num_input_levels() - 1].files = expanded1;
|
|
GetRange(c->inputs_[0].files,
|
|
c->inputs_[c->num_input_levels() - 1].files, &all_start,
|
|
&all_limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the set of grandparent files that overlap this compaction
|
|
// (parent == level+1; grandparent == level+2)
|
|
if (c->output_level() + 1 < NumberLevels()) {
|
|
vstorage->GetOverlappingInputs(c->output_level() + 1, &all_start,
|
|
&all_limit, &c->grandparents_);
|
|
}
|
|
}
|
|
|
|
Compaction* CompactionPicker::CompactRange(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, int input_level, int output_level,
|
|
uint32_t output_path_id, const InternalKey* begin, const InternalKey* end,
|
|
InternalKey** compaction_end) {
|
|
// CompactionPickerFIFO has its own implementation of compact range
|
|
assert(ioptions_.compaction_style != kCompactionStyleFIFO);
|
|
|
|
std::vector<FileMetaData*> inputs;
|
|
bool covering_the_whole_range = true;
|
|
|
|
// All files are 'overlapping' in universal style compaction.
|
|
// We have to compact the entire range in one shot.
|
|
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
|
|
begin = nullptr;
|
|
end = nullptr;
|
|
}
|
|
|
|
vstorage->GetOverlappingInputs(input_level, begin, end, &inputs);
|
|
if (inputs.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Avoid compacting too much in one shot in case the range is large.
|
|
// But we cannot do this for level-0 since level-0 files can overlap
|
|
// and we must not pick one file and drop another older file if the
|
|
// two files overlap.
|
|
if (input_level > 0) {
|
|
const uint64_t limit = mutable_cf_options.MaxFileSizeForLevel(input_level) *
|
|
mutable_cf_options.source_compaction_factor;
|
|
uint64_t total = 0;
|
|
for (size_t i = 0; i + 1 < inputs.size(); ++i) {
|
|
uint64_t s = inputs[i]->compensated_file_size;
|
|
total += s;
|
|
if (total >= limit) {
|
|
**compaction_end = inputs[i + 1]->smallest;
|
|
covering_the_whole_range = false;
|
|
inputs.resize(i + 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(output_path_id < static_cast<uint32_t>(ioptions_.db_paths.size()));
|
|
Compaction* c = new Compaction(
|
|
vstorage->num_levels(), input_level, output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level),
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(input_level),
|
|
output_path_id,
|
|
GetCompressionType(ioptions_, output_level, vstorage->base_level()));
|
|
|
|
c->inputs_[0].files = inputs;
|
|
if (ExpandWhileOverlapping(cf_name, vstorage, c) == false) {
|
|
delete c;
|
|
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
|
|
"[%s] Could not compact due to expansion failure.\n", cf_name.c_str());
|
|
return nullptr;
|
|
}
|
|
|
|
SetupOtherInputs(cf_name, mutable_cf_options, vstorage, c);
|
|
|
|
if (covering_the_whole_range) {
|
|
*compaction_end = nullptr;
|
|
}
|
|
|
|
// These files that are to be manaully compacted do not trample
|
|
// upon other files because manual compactions are processed when
|
|
// the system has a max of 1 background compaction thread.
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// Is this compaction creating a file at the bottommost level
|
|
c->SetupBottomMostLevel(
|
|
vstorage, true, ioptions_.compaction_style == kCompactionStyleUniversal);
|
|
|
|
c->is_manual_compaction_ = true;
|
|
c->mutable_cf_options_ = mutable_cf_options;
|
|
|
|
return c;
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
namespace {
|
|
// Test whether two files have overlapping key-ranges.
|
|
bool HaveOverlappingKeyRanges(
|
|
const Comparator* c,
|
|
const SstFileMetaData& a, const SstFileMetaData& b) {
|
|
if (c->Compare(a.smallestkey, b.smallestkey) >= 0) {
|
|
if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
|
|
// b.smallestkey <= a.smallestkey <= b.largestkey
|
|
return true;
|
|
}
|
|
} else if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
|
|
// a.smallestkey < b.smallestkey <= a.largestkey
|
|
return true;
|
|
}
|
|
if (c->Compare(a.largestkey, b.largestkey) <= 0) {
|
|
if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
|
|
// b.smallestkey <= a.largestkey <= b.largestkey
|
|
return true;
|
|
}
|
|
} else if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
|
|
// a.smallestkey <= b.largestkey < a.largestkey
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
} // namespace
|
|
|
|
Status CompactionPicker::SanitizeCompactionInputFilesForAllLevels(
|
|
std::unordered_set<uint64_t>* input_files,
|
|
const ColumnFamilyMetaData& cf_meta,
|
|
const int output_level) const {
|
|
auto& levels = cf_meta.levels;
|
|
auto comparator = icmp_->user_comparator();
|
|
|
|
// TODO(yhchiang): If there is any input files of L1 or up and there
|
|
// is at least one L0 files. All L0 files older than the L0 file needs
|
|
// to be included. Otherwise, it is a false conditoin
|
|
|
|
// TODO(yhchiang): add is_adjustable to CompactionOptions
|
|
|
|
// the smallest and largest key of the current compaction input
|
|
std::string smallestkey;
|
|
std::string largestkey;
|
|
// a flag for initializing smallest and largest key
|
|
bool is_first = false;
|
|
const int kNotFound = -1;
|
|
|
|
// For each level, it does the following things:
|
|
// 1. Find the first and the last compaction input files
|
|
// in the current level.
|
|
// 2. Include all files between the first and the last
|
|
// compaction input files.
|
|
// 3. Update the compaction key-range.
|
|
// 4. For all remaining levels, include files that have
|
|
// overlapping key-range with the compaction key-range.
|
|
for (int l = 0; l <= output_level; ++l) {
|
|
auto& current_files = levels[l].files;
|
|
int first_included = static_cast<int>(current_files.size());
|
|
int last_included = kNotFound;
|
|
|
|
// identify the first and the last compaction input files
|
|
// in the current level.
|
|
for (size_t f = 0; f < current_files.size(); ++f) {
|
|
if (input_files->find(TableFileNameToNumber(current_files[f].name)) !=
|
|
input_files->end()) {
|
|
first_included = std::min(first_included, static_cast<int>(f));
|
|
last_included = std::max(last_included, static_cast<int>(f));
|
|
if (is_first == false) {
|
|
smallestkey = current_files[f].smallestkey;
|
|
largestkey = current_files[f].largestkey;
|
|
is_first = true;
|
|
}
|
|
}
|
|
}
|
|
if (last_included == kNotFound) {
|
|
continue;
|
|
}
|
|
|
|
if (l != 0) {
|
|
// expend the compaction input of the current level if it
|
|
// has overlapping key-range with other non-compaction input
|
|
// files in the same level.
|
|
while (first_included > 0) {
|
|
if (comparator->Compare(
|
|
current_files[first_included - 1].largestkey,
|
|
current_files[first_included].smallestkey) < 0) {
|
|
break;
|
|
}
|
|
first_included--;
|
|
}
|
|
|
|
while (last_included < static_cast<int>(current_files.size()) - 1) {
|
|
if (comparator->Compare(
|
|
current_files[last_included + 1].smallestkey,
|
|
current_files[last_included].largestkey) > 0) {
|
|
break;
|
|
}
|
|
last_included++;
|
|
}
|
|
}
|
|
|
|
// include all files between the first and the last compaction input files.
|
|
for (int f = first_included; f <= last_included; ++f) {
|
|
if (current_files[f].being_compacted) {
|
|
return Status::Aborted(
|
|
"Necessary compaction input file " + current_files[f].name +
|
|
" is currently being compacted.");
|
|
}
|
|
input_files->insert(
|
|
TableFileNameToNumber(current_files[f].name));
|
|
}
|
|
|
|
// update smallest and largest key
|
|
if (l == 0) {
|
|
for (int f = first_included; f <= last_included; ++f) {
|
|
if (comparator->Compare(
|
|
smallestkey, current_files[f].smallestkey) > 0) {
|
|
smallestkey = current_files[f].smallestkey;
|
|
}
|
|
if (comparator->Compare(
|
|
largestkey, current_files[f].largestkey) < 0) {
|
|
largestkey = current_files[f].largestkey;
|
|
}
|
|
}
|
|
} else {
|
|
if (comparator->Compare(
|
|
smallestkey, current_files[first_included].smallestkey) > 0) {
|
|
smallestkey = current_files[first_included].smallestkey;
|
|
}
|
|
if (comparator->Compare(
|
|
largestkey, current_files[last_included].largestkey) < 0) {
|
|
largestkey = current_files[last_included].largestkey;
|
|
}
|
|
}
|
|
|
|
SstFileMetaData aggregated_file_meta;
|
|
aggregated_file_meta.smallestkey = smallestkey;
|
|
aggregated_file_meta.largestkey = largestkey;
|
|
|
|
// For all lower levels, include all overlapping files.
|
|
for (int m = l + 1; m <= output_level; ++m) {
|
|
for (auto& next_lv_file : levels[m].files) {
|
|
if (HaveOverlappingKeyRanges(
|
|
comparator, aggregated_file_meta, next_lv_file)) {
|
|
if (next_lv_file.being_compacted) {
|
|
return Status::Aborted(
|
|
"File " + next_lv_file.name +
|
|
" that has overlapping key range with one of the compaction "
|
|
" input file is currently being compacted.");
|
|
}
|
|
input_files->insert(
|
|
TableFileNameToNumber(next_lv_file.name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
Status CompactionPicker::SanitizeCompactionInputFiles(
|
|
std::unordered_set<uint64_t>* input_files,
|
|
const ColumnFamilyMetaData& cf_meta,
|
|
const int output_level) const {
|
|
assert(static_cast<int>(cf_meta.levels.size()) - 1 ==
|
|
cf_meta.levels[cf_meta.levels.size() - 1].level);
|
|
if (output_level >= static_cast<int>(cf_meta.levels.size())) {
|
|
return Status::InvalidArgument(
|
|
"Output level for column family " + cf_meta.name +
|
|
" must between [0, " +
|
|
ToString(cf_meta.levels[cf_meta.levels.size() - 1].level) +
|
|
"].");
|
|
}
|
|
|
|
if (output_level > MaxOutputLevel()) {
|
|
return Status::InvalidArgument(
|
|
"Exceed the maximum output level defined by "
|
|
"the current compaction algorithm --- " +
|
|
ToString(MaxOutputLevel()));
|
|
}
|
|
|
|
if (output_level < 0) {
|
|
return Status::InvalidArgument(
|
|
"Output level cannot be negative.");
|
|
}
|
|
|
|
if (input_files->size() == 0) {
|
|
return Status::InvalidArgument(
|
|
"A compaction must contain at least one file.");
|
|
}
|
|
|
|
Status s = SanitizeCompactionInputFilesForAllLevels(
|
|
input_files, cf_meta, output_level);
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
// for all input files, check whether the file number matches
|
|
// any currently-existing files.
|
|
for (auto file_num : *input_files) {
|
|
bool found = false;
|
|
for (auto level_meta : cf_meta.levels) {
|
|
for (auto file_meta : level_meta.files) {
|
|
if (file_num == TableFileNameToNumber(file_meta.name)) {
|
|
if (file_meta.being_compacted) {
|
|
return Status::Aborted(
|
|
"Specified compaction input file " +
|
|
MakeTableFileName("", file_num) +
|
|
" is already being compacted.");
|
|
}
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
return Status::InvalidArgument(
|
|
"Specified compaction input file " +
|
|
MakeTableFileName("", file_num) +
|
|
" does not exist in column family " + cf_meta.name + ".");
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
bool LevelCompactionPicker::NeedsCompaction(const VersionStorageInfo* vstorage)
|
|
const {
|
|
for (int i = 0; i <= vstorage->MaxInputLevel(); i++) {
|
|
if (vstorage->CompactionScore(i) >= 1) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Compaction* LevelCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
Compaction* c = nullptr;
|
|
int level = -1;
|
|
|
|
// Find the compactions by size on all levels.
|
|
for (int i = 0; i < NumberLevels() - 1; i++) {
|
|
double score = vstorage->CompactionScore(i);
|
|
level = vstorage->CompactionScoreLevel(i);
|
|
assert(i == 0 || score <= vstorage->CompactionScore(i - 1));
|
|
if ((score >= 1)) {
|
|
c = PickCompactionBySize(mutable_cf_options, vstorage, level, score);
|
|
if (c == nullptr ||
|
|
ExpandWhileOverlapping(cf_name, vstorage, c) == false) {
|
|
delete c;
|
|
c = nullptr;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Two level 0 compaction won't run at the same time, so don't need to worry
|
|
// about files on level 0 being compacted.
|
|
if (level == 0) {
|
|
assert(compactions_in_progress_[0].empty());
|
|
InternalKey smallest, largest;
|
|
GetRange(c->inputs_[0].files, &smallest, &largest);
|
|
// Note that the next call will discard the file we placed in
|
|
// c->inputs_[0] earlier and replace it with an overlapping set
|
|
// which will include the picked file.
|
|
c->inputs_[0].clear();
|
|
vstorage->GetOverlappingInputs(0, &smallest, &largest,
|
|
&c->inputs_[0].files);
|
|
|
|
// If we include more L0 files in the same compaction run it can
|
|
// cause the 'smallest' and 'largest' key to get extended to a
|
|
// larger range. So, re-invoke GetRange to get the new key range
|
|
GetRange(c->inputs_[0].files, &smallest, &largest);
|
|
if (RangeInCompaction(vstorage, &smallest, &largest, c->output_level(),
|
|
&c->parent_index_)) {
|
|
delete c;
|
|
return nullptr;
|
|
}
|
|
assert(!c->inputs_[0].empty());
|
|
}
|
|
|
|
// Setup input files from output level
|
|
SetupOtherInputs(cf_name, mutable_cf_options, vstorage, c);
|
|
|
|
// mark all the files that are being compacted
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// Is this compaction creating a file at the bottommost level
|
|
c->SetupBottomMostLevel(vstorage, false, false);
|
|
|
|
// remember this currently undergoing compaction
|
|
compactions_in_progress_[level].insert(c);
|
|
|
|
c->mutable_cf_options_ = mutable_cf_options;
|
|
|
|
// Creating a compaction influences the compaction score because the score
|
|
// takes running compactions into account (by skipping files that are already
|
|
// being compacted). Since we just changed compaction score, we recalculate it
|
|
// here
|
|
{ // this piece of code recomputes compaction score
|
|
CompactionOptionsFIFO dummy_compaction_options_fifo;
|
|
vstorage->ComputeCompactionScore(mutable_cf_options,
|
|
dummy_compaction_options_fifo);
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Find the optimal path to place a file
|
|
* Given a level, finds the path where levels up to it will fit in levels
|
|
* up to and including this path
|
|
*/
|
|
uint32_t LevelCompactionPicker::GetPathId(
|
|
const ImmutableCFOptions& ioptions,
|
|
const MutableCFOptions& mutable_cf_options, int level) {
|
|
uint32_t p = 0;
|
|
assert(!ioptions.db_paths.empty());
|
|
|
|
// size remaining in the most recent path
|
|
uint64_t current_path_size = ioptions.db_paths[0].target_size;
|
|
|
|
uint64_t level_size;
|
|
int cur_level = 0;
|
|
|
|
level_size = mutable_cf_options.max_bytes_for_level_base;
|
|
|
|
// Last path is the fallback
|
|
while (p < ioptions.db_paths.size() - 1) {
|
|
if (level_size <= current_path_size) {
|
|
if (cur_level == level) {
|
|
// Does desired level fit in this path?
|
|
return p;
|
|
} else {
|
|
current_path_size -= level_size;
|
|
level_size *= mutable_cf_options.max_bytes_for_level_multiplier;
|
|
cur_level++;
|
|
continue;
|
|
}
|
|
}
|
|
p++;
|
|
current_path_size = ioptions.db_paths[p].target_size;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
Compaction* LevelCompactionPicker::PickCompactionBySize(
|
|
const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage,
|
|
int level, double score) {
|
|
Compaction* c = nullptr;
|
|
|
|
// level 0 files are overlapping. So we cannot pick more
|
|
// than one concurrent compactions at this level. This
|
|
// could be made better by looking at key-ranges that are
|
|
// being compacted at level 0.
|
|
if (level == 0 && compactions_in_progress_[level].size() == 1) {
|
|
return nullptr;
|
|
}
|
|
|
|
assert(level >= 0);
|
|
int output_level;
|
|
if (level == 0) {
|
|
output_level = vstorage->base_level();
|
|
} else {
|
|
output_level = level + 1;
|
|
}
|
|
assert(output_level < NumberLevels());
|
|
|
|
c = new Compaction(
|
|
vstorage->num_levels(), level, output_level,
|
|
mutable_cf_options.MaxFileSizeForLevel(output_level),
|
|
mutable_cf_options.MaxGrandParentOverlapBytes(level),
|
|
GetPathId(ioptions_, mutable_cf_options, output_level),
|
|
GetCompressionType(ioptions_, output_level, vstorage->base_level()));
|
|
c->score_ = score;
|
|
|
|
// Pick the largest file in this level that is not already
|
|
// being compacted
|
|
const std::vector<int>& file_size = vstorage->FilesBySize(level);
|
|
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(level);
|
|
|
|
// record the first file that is not yet compacted
|
|
int nextIndex = -1;
|
|
|
|
for (unsigned int i = vstorage->NextCompactionIndex(level);
|
|
i < file_size.size(); i++) {
|
|
int index = file_size[i];
|
|
FileMetaData* f = level_files[index];
|
|
|
|
assert((i == file_size.size() - 1) ||
|
|
(i >= VersionStorageInfo::kNumberFilesToSort - 1) ||
|
|
(f->compensated_file_size >=
|
|
level_files[file_size[i + 1]]->compensated_file_size));
|
|
|
|
// do not pick a file to compact if it is being compacted
|
|
// from n-1 level.
|
|
if (f->being_compacted) {
|
|
continue;
|
|
}
|
|
|
|
// remember the startIndex for the next call to PickCompaction
|
|
if (nextIndex == -1) {
|
|
nextIndex = i;
|
|
}
|
|
|
|
// Do not pick this file if its parents at level+1 are being compacted.
|
|
// Maybe we can avoid redoing this work in SetupOtherInputs
|
|
int parent_index = -1;
|
|
if (RangeInCompaction(vstorage, &f->smallest, &f->largest,
|
|
c->output_level(), &parent_index)) {
|
|
continue;
|
|
}
|
|
c->inputs_[0].files.push_back(f);
|
|
c->base_index_ = index;
|
|
c->parent_index_ = parent_index;
|
|
break;
|
|
}
|
|
|
|
if (c->inputs_[0].empty()) {
|
|
delete c;
|
|
c = nullptr;
|
|
}
|
|
|
|
// store where to start the iteration in the next call to PickCompaction
|
|
vstorage->SetNextCompactionIndex(level, nextIndex);
|
|
|
|
return c;
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
bool UniversalCompactionPicker::NeedsCompaction(
|
|
const VersionStorageInfo* vstorage) const {
|
|
const int kLevel0 = 0;
|
|
return vstorage->CompactionScore(kLevel0) >= 1;
|
|
}
|
|
|
|
// Universal style of compaction. Pick files that are contiguous in
|
|
// time-range to compact.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
const int kLevel0 = 0;
|
|
double score = vstorage->CompactionScore(kLevel0);
|
|
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(kLevel0);
|
|
|
|
if ((level_files.size() <
|
|
(unsigned int)mutable_cf_options.level0_file_num_compaction_trigger)) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: nothing to do\n", cf_name.c_str());
|
|
return nullptr;
|
|
}
|
|
VersionStorageInfo::FileSummaryStorage tmp;
|
|
LogToBuffer(log_buffer, 3072, "[%s] Universal: candidate files(%zu): %s\n",
|
|
cf_name.c_str(), level_files.size(),
|
|
vstorage->LevelFileSummary(&tmp, kLevel0));
|
|
|
|
// Check for size amplification first.
|
|
Compaction* c;
|
|
if ((c = PickCompactionUniversalSizeAmp(cf_name, mutable_cf_options, vstorage,
|
|
score, log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: compacting for size amp\n",
|
|
cf_name.c_str());
|
|
} else {
|
|
// Size amplification is within limits. Try reducing read
|
|
// amplification while maintaining file size ratios.
|
|
unsigned int ratio = ioptions_.compaction_options_universal.size_ratio;
|
|
|
|
if ((c = PickCompactionUniversalReadAmp(cf_name, mutable_cf_options,
|
|
vstorage, score, ratio, UINT_MAX,
|
|
log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer, "[%s] Universal: compacting for size ratio\n",
|
|
cf_name.c_str());
|
|
} else {
|
|
// Size amplification and file size ratios are within configured limits.
|
|
// If max read amplification is exceeding configured limits, then force
|
|
// compaction without looking at filesize ratios and try to reduce
|
|
// the number of files to fewer than level0_file_num_compaction_trigger.
|
|
unsigned int num_files =
|
|
static_cast<unsigned int>(level_files.size()) -
|
|
mutable_cf_options.level0_file_num_compaction_trigger;
|
|
if ((c = PickCompactionUniversalReadAmp(
|
|
cf_name, mutable_cf_options, vstorage, score, UINT_MAX,
|
|
num_files, log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer,
|
|
"[%s] Universal: compacting for file num -- %u\n",
|
|
cf_name.c_str(), num_files);
|
|
}
|
|
}
|
|
}
|
|
if (c == nullptr) {
|
|
return nullptr;
|
|
}
|
|
assert(c->inputs_[kLevel0].size() > 1);
|
|
|
|
// validate that all the chosen files are non overlapping in time
|
|
FileMetaData* newerfile __attribute__((unused)) = nullptr;
|
|
for (unsigned int i = 0; i < c->inputs_[kLevel0].size(); i++) {
|
|
FileMetaData* f = c->inputs_[kLevel0][i];
|
|
assert (f->smallest_seqno <= f->largest_seqno);
|
|
assert(newerfile == nullptr ||
|
|
newerfile->smallest_seqno > f->largest_seqno);
|
|
newerfile = f;
|
|
}
|
|
|
|
// Is the earliest file part of this compaction?
|
|
FileMetaData* last_file = level_files.back();
|
|
c->bottommost_level_ = c->inputs_[kLevel0].files.back() == last_file;
|
|
|
|
// update statistics
|
|
MeasureTime(ioptions_.statistics,
|
|
NUM_FILES_IN_SINGLE_COMPACTION, c->inputs_[kLevel0].size());
|
|
|
|
// mark all the files that are being compacted
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// remember this currently undergoing compaction
|
|
compactions_in_progress_[kLevel0].insert(c);
|
|
|
|
// Record whether this compaction includes all sst files.
|
|
// For now, it is only relevant in universal compaction mode.
|
|
c->is_full_compaction_ = (c->inputs_[kLevel0].size() == level_files.size());
|
|
|
|
c->mutable_cf_options_ = mutable_cf_options;
|
|
return c;
|
|
}
|
|
|
|
uint32_t UniversalCompactionPicker::GetPathId(
|
|
const ImmutableCFOptions& ioptions, uint64_t file_size) {
|
|
// Two conditions need to be satisfied:
|
|
// (1) the target path needs to be able to hold the file's size
|
|
// (2) Total size left in this and previous paths need to be not
|
|
// smaller than expected future file size before this new file is
|
|
// compacted, which is estimated based on size_ratio.
|
|
// For example, if now we are compacting files of size (1, 1, 2, 4, 8),
|
|
// we will make sure the target file, probably with size of 16, will be
|
|
// placed in a path so that eventually when new files are generated and
|
|
// compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or
|
|
// before the path we chose.
|
|
//
|
|
// TODO(sdong): now the case of multiple column families is not
|
|
// considered in this algorithm. So the target size can be violated in
|
|
// that case. We need to improve it.
|
|
uint64_t accumulated_size = 0;
|
|
uint64_t future_size = file_size *
|
|
(100 - ioptions.compaction_options_universal.size_ratio) / 100;
|
|
uint32_t p = 0;
|
|
assert(!ioptions.db_paths.empty());
|
|
for (; p < ioptions.db_paths.size() - 1; p++) {
|
|
uint64_t target_size = ioptions.db_paths[p].target_size;
|
|
if (target_size > file_size &&
|
|
accumulated_size + (target_size - file_size) > future_size) {
|
|
return p;
|
|
}
|
|
accumulated_size += target_size;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
//
|
|
// Consider compaction files based on their size differences with
|
|
// the next file in time order.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalReadAmp(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, double score, unsigned int ratio,
|
|
unsigned int max_number_of_files_to_compact, LogBuffer* log_buffer) {
|
|
const int kLevel0 = 0;
|
|
|
|
unsigned int min_merge_width =
|
|
ioptions_.compaction_options_universal.min_merge_width;
|
|
unsigned int max_merge_width =
|
|
ioptions_.compaction_options_universal.max_merge_width;
|
|
|
|
// The files are sorted from newest first to oldest last.
|
|
const auto& files = vstorage->LevelFiles(kLevel0);
|
|
|
|
FileMetaData* f = nullptr;
|
|
bool done = false;
|
|
int start_index = 0;
|
|
unsigned int candidate_count = 0;
|
|
|
|
unsigned int max_files_to_compact = std::min(max_merge_width,
|
|
max_number_of_files_to_compact);
|
|
min_merge_width = std::max(min_merge_width, 2U);
|
|
|
|
// Considers a candidate file only if it is smaller than the
|
|
// total size accumulated so far.
|
|
for (unsigned int loop = 0; loop < files.size(); loop++) {
|
|
|
|
candidate_count = 0;
|
|
|
|
// Skip files that are already being compacted
|
|
for (f = nullptr; loop < files.size(); loop++) {
|
|
f = files[loop];
|
|
|
|
if (!f->being_compacted) {
|
|
candidate_count = 1;
|
|
break;
|
|
}
|
|
LogToBuffer(log_buffer, "[%s] Universal: file %" PRIu64
|
|
"[%d] being compacted, skipping",
|
|
cf_name.c_str(), f->fd.GetNumber(), loop);
|
|
f = nullptr;
|
|
}
|
|
|
|
// This file is not being compacted. Consider it as the
|
|
// first candidate to be compacted.
|
|
uint64_t candidate_size = f != nullptr? f->compensated_file_size : 0;
|
|
if (f != nullptr) {
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
FormatFileNumber(f->fd.GetNumber(), f->fd.GetPathId(), file_num_buf,
|
|
sizeof(file_num_buf));
|
|
LogToBuffer(log_buffer, "[%s] Universal: Possible candidate file %s[%d].",
|
|
cf_name.c_str(), file_num_buf, loop);
|
|
}
|
|
|
|
// Check if the suceeding files need compaction.
|
|
for (unsigned int i = loop + 1;
|
|
candidate_count < max_files_to_compact && i < files.size(); i++) {
|
|
FileMetaData* suceeding_file = files[i];
|
|
if (suceeding_file->being_compacted) {
|
|
break;
|
|
}
|
|
// Pick files if the total/last candidate file size (increased by the
|
|
// specified ratio) is still larger than the next candidate file.
|
|
// candidate_size is the total size of files picked so far with the
|
|
// default kCompactionStopStyleTotalSize; with
|
|
// kCompactionStopStyleSimilarSize, it's simply the size of the last
|
|
// picked file.
|
|
double sz = candidate_size * (100.0 + ratio) / 100.0;
|
|
if (sz < static_cast<double>(suceeding_file->fd.GetFileSize())) {
|
|
break;
|
|
}
|
|
if (ioptions_.compaction_options_universal.stop_style ==
|
|
kCompactionStopStyleSimilarSize) {
|
|
// Similar-size stopping rule: also check the last picked file isn't
|
|
// far larger than the next candidate file.
|
|
sz = (suceeding_file->fd.GetFileSize() * (100.0 + ratio)) / 100.0;
|
|
if (sz < static_cast<double>(candidate_size)) {
|
|
// If the small file we've encountered begins a run of similar-size
|
|
// files, we'll pick them up on a future iteration of the outer
|
|
// loop. If it's some lonely straggler, it'll eventually get picked
|
|
// by the last-resort read amp strategy which disregards size ratios.
|
|
break;
|
|
}
|
|
candidate_size = suceeding_file->compensated_file_size;
|
|
} else { // default kCompactionStopStyleTotalSize
|
|
candidate_size += suceeding_file->compensated_file_size;
|
|
}
|
|
candidate_count++;
|
|
}
|
|
|
|
// Found a series of consecutive files that need compaction.
|
|
if (candidate_count >= (unsigned int)min_merge_width) {
|
|
start_index = loop;
|
|
done = true;
|
|
break;
|
|
} else {
|
|
for (unsigned int i = loop;
|
|
i < loop + candidate_count && i < files.size(); i++) {
|
|
FileMetaData* skipping_file = files[i];
|
|
LogToBuffer(log_buffer, "[%s] Universal: Skipping file %" PRIu64
|
|
"[%d] with size %" PRIu64
|
|
" (compensated size %" PRIu64 ") %d\n",
|
|
cf_name.c_str(), f->fd.GetNumber(), i,
|
|
skipping_file->fd.GetFileSize(),
|
|
skipping_file->compensated_file_size,
|
|
skipping_file->being_compacted);
|
|
}
|
|
}
|
|
}
|
|
if (!done || candidate_count <= 1) {
|
|
return nullptr;
|
|
}
|
|
unsigned int first_index_after = start_index + candidate_count;
|
|
// Compression is enabled if files compacted earlier already reached
|
|
// size ratio of compression.
|
|
bool enable_compression = true;
|
|
int ratio_to_compress =
|
|
ioptions_.compaction_options_universal.compression_size_percent;
|
|
if (ratio_to_compress >= 0) {
|
|
uint64_t total_size = vstorage->NumLevelBytes(kLevel0);
|
|
uint64_t older_file_size = 0;
|
|
for (size_t i = files.size() - 1; i >= first_index_after; i--) {
|
|
older_file_size += files[i]->fd.GetFileSize();
|
|
if (older_file_size * 100L >= total_size * (long) ratio_to_compress) {
|
|
enable_compression = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t estimated_total_size = 0;
|
|
for (unsigned int i = 0; i < first_index_after; i++) {
|
|
estimated_total_size += files[i]->fd.GetFileSize();
|
|
}
|
|
uint32_t path_id = GetPathId(ioptions_, estimated_total_size);
|
|
|
|
Compaction* c = new Compaction(
|
|
vstorage->num_levels(), kLevel0, kLevel0,
|
|
mutable_cf_options.MaxFileSizeForLevel(kLevel0), LLONG_MAX, path_id,
|
|
GetCompressionType(ioptions_, kLevel0, 1, enable_compression));
|
|
c->score_ = score;
|
|
|
|
for (unsigned int i = start_index; i < first_index_after; i++) {
|
|
FileMetaData* picking_file = files[i];
|
|
c->inputs_[0].files.push_back(picking_file);
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
FormatFileNumber(picking_file->fd.GetNumber(), picking_file->fd.GetPathId(),
|
|
file_num_buf, sizeof(file_num_buf));
|
|
LogToBuffer(log_buffer,
|
|
"[%s] Universal: Picking file %s[%d] "
|
|
"with size %" PRIu64 " (compensated size %" PRIu64 ")\n",
|
|
cf_name.c_str(), file_num_buf, i,
|
|
picking_file->fd.GetFileSize(),
|
|
picking_file->compensated_file_size);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// Look at overall size amplification. If size amplification
|
|
// exceeeds the configured value, then do a compaction
|
|
// of the candidate files all the way upto the earliest
|
|
// base file (overrides configured values of file-size ratios,
|
|
// min_merge_width and max_merge_width).
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalSizeAmp(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, double score, LogBuffer* log_buffer) {
|
|
const int kLevel = 0;
|
|
|
|
// percentage flexibilty while reducing size amplification
|
|
uint64_t ratio = ioptions_.compaction_options_universal.
|
|
max_size_amplification_percent;
|
|
|
|
// The files are sorted from newest first to oldest last.
|
|
const auto& files = vstorage->LevelFiles(kLevel);
|
|
|
|
unsigned int candidate_count = 0;
|
|
uint64_t candidate_size = 0;
|
|
unsigned int start_index = 0;
|
|
FileMetaData* f = nullptr;
|
|
|
|
// Skip files that are already being compacted
|
|
for (unsigned int loop = 0; loop < files.size() - 1; loop++) {
|
|
f = files[loop];
|
|
if (!f->being_compacted) {
|
|
start_index = loop; // Consider this as the first candidate.
|
|
break;
|
|
}
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
FormatFileNumber(f->fd.GetNumber(), f->fd.GetPathId(), file_num_buf,
|
|
sizeof(file_num_buf));
|
|
LogToBuffer(log_buffer, "[%s] Universal: skipping file %s[%d] compacted %s",
|
|
cf_name.c_str(), file_num_buf, loop,
|
|
" cannot be a candidate to reduce size amp.\n");
|
|
f = nullptr;
|
|
}
|
|
|
|
if (f == nullptr) {
|
|
return nullptr; // no candidate files
|
|
}
|
|
|
|
char file_num_buf[kFormatFileNumberBufSize];
|
|
FormatFileNumber(f->fd.GetNumber(), f->fd.GetPathId(), file_num_buf,
|
|
sizeof(file_num_buf));
|
|
LogToBuffer(log_buffer, "[%s] Universal: First candidate file %s[%d] %s",
|
|
cf_name.c_str(), file_num_buf, start_index,
|
|
" to reduce size amp.\n");
|
|
|
|
// keep adding up all the remaining files
|
|
for (unsigned int loop = start_index; loop < files.size() - 1; loop++) {
|
|
f = files[loop];
|
|
if (f->being_compacted) {
|
|
FormatFileNumber(f->fd.GetNumber(), f->fd.GetPathId(), file_num_buf,
|
|
sizeof(file_num_buf));
|
|
LogToBuffer(
|
|
log_buffer, "[%s] Universal: Possible candidate file %s[%d] %s.",
|
|
cf_name.c_str(), file_num_buf, loop,
|
|
" is already being compacted. No size amp reduction possible.\n");
|
|
return nullptr;
|
|
}
|
|
candidate_size += f->compensated_file_size;
|
|
candidate_count++;
|
|
}
|
|
if (candidate_count == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// size of earliest file
|
|
uint64_t earliest_file_size = files.back()->fd.GetFileSize();
|
|
|
|
// size amplification = percentage of additional size
|
|
if (candidate_size * 100 < ratio * earliest_file_size) {
|
|
LogToBuffer(
|
|
log_buffer,
|
|
"[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64
|
|
"earliest-file-size %" PRIu64,
|
|
cf_name.c_str(), candidate_size, earliest_file_size);
|
|
return nullptr;
|
|
} else {
|
|
LogToBuffer(
|
|
log_buffer,
|
|
"[%s] Universal: size amp needed. newer-files-total-size %" PRIu64
|
|
"earliest-file-size %" PRIu64,
|
|
cf_name.c_str(), candidate_size, earliest_file_size);
|
|
}
|
|
assert(start_index < files.size() - 1);
|
|
|
|
// Estimate total file size
|
|
uint64_t estimated_total_size = 0;
|
|
for (unsigned int loop = start_index; loop < files.size(); loop++) {
|
|
estimated_total_size += files[loop]->fd.GetFileSize();
|
|
}
|
|
uint32_t path_id = GetPathId(ioptions_, estimated_total_size);
|
|
|
|
// create a compaction request
|
|
// We always compact all the files, so always compress.
|
|
Compaction* c =
|
|
new Compaction(vstorage->num_levels(), kLevel, kLevel,
|
|
mutable_cf_options.MaxFileSizeForLevel(kLevel), LLONG_MAX,
|
|
path_id, GetCompressionType(ioptions_, kLevel, 1));
|
|
c->score_ = score;
|
|
for (unsigned int loop = start_index; loop < files.size(); loop++) {
|
|
f = files[loop];
|
|
c->inputs_[0].files.push_back(f);
|
|
LogToBuffer(log_buffer,
|
|
"[%s] Universal: size amp picking file %" PRIu64
|
|
"[%d] "
|
|
"with size %" PRIu64 " (compensated size %" PRIu64 ")",
|
|
cf_name.c_str(), f->fd.GetNumber(), loop, f->fd.GetFileSize(),
|
|
f->compensated_file_size);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
bool FIFOCompactionPicker::NeedsCompaction(const VersionStorageInfo* vstorage)
|
|
const {
|
|
const int kLevel0 = 0;
|
|
return vstorage->CompactionScore(kLevel0) >= 1;
|
|
}
|
|
|
|
Compaction* FIFOCompactionPicker::PickCompaction(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
|
|
assert(vstorage->num_levels() == 1);
|
|
const int kLevel0 = 0;
|
|
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(kLevel0);
|
|
uint64_t total_size = 0;
|
|
for (const auto& file : level_files) {
|
|
total_size += file->fd.file_size;
|
|
}
|
|
|
|
if (total_size <= ioptions_.compaction_options_fifo.max_table_files_size ||
|
|
level_files.size() == 0) {
|
|
// total size not exceeded
|
|
LogToBuffer(log_buffer,
|
|
"[%s] FIFO compaction: nothing to do. Total size %" PRIu64
|
|
", max size %" PRIu64 "\n",
|
|
cf_name.c_str(), total_size,
|
|
ioptions_.compaction_options_fifo.max_table_files_size);
|
|
return nullptr;
|
|
}
|
|
|
|
if (compactions_in_progress_[0].size() > 0) {
|
|
LogToBuffer(log_buffer,
|
|
"[%s] FIFO compaction: Already executing compaction. No need "
|
|
"to run parallel compactions since compactions are very fast",
|
|
cf_name.c_str());
|
|
return nullptr;
|
|
}
|
|
|
|
Compaction* c = new Compaction(1, 0, 0, 0, 0, 0, kNoCompression, false,
|
|
true /* is deletion compaction */);
|
|
// delete old files (FIFO)
|
|
for (auto ritr = level_files.rbegin(); ritr != level_files.rend(); ++ritr) {
|
|
auto f = *ritr;
|
|
total_size -= f->compensated_file_size;
|
|
c->inputs_[0].files.push_back(f);
|
|
char tmp_fsize[16];
|
|
AppendHumanBytes(f->fd.GetFileSize(), tmp_fsize, sizeof(tmp_fsize));
|
|
LogToBuffer(log_buffer, "[%s] FIFO compaction: picking file %" PRIu64
|
|
" with size %s for deletion",
|
|
cf_name.c_str(), f->fd.GetNumber(), tmp_fsize);
|
|
if (total_size <= ioptions_.compaction_options_fifo.max_table_files_size) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
c->MarkFilesBeingCompacted(true);
|
|
compactions_in_progress_[0].insert(c);
|
|
c->mutable_cf_options_ = mutable_cf_options;
|
|
return c;
|
|
}
|
|
|
|
Compaction* FIFOCompactionPicker::CompactRange(
|
|
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
|
|
VersionStorageInfo* vstorage, int input_level, int output_level,
|
|
uint32_t output_path_id, const InternalKey* begin, const InternalKey* end,
|
|
InternalKey** compaction_end) {
|
|
assert(input_level == 0);
|
|
assert(output_level == 0);
|
|
*compaction_end = nullptr;
|
|
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, ioptions_.info_log);
|
|
Compaction* c =
|
|
PickCompaction(cf_name, mutable_cf_options, vstorage, &log_buffer);
|
|
if (c != nullptr) {
|
|
assert(output_path_id < static_cast<uint32_t>(ioptions_.db_paths.size()));
|
|
c->output_path_id_ = output_path_id;
|
|
}
|
|
log_buffer.FlushBufferToLog();
|
|
return c;
|
|
}
|
|
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
} // namespace rocksdb
|
|
|