fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
201 lines
7.0 KiB
201 lines
7.0 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "util/hash.h"
|
|
|
|
#include <string>
|
|
|
|
#include "port/lang.h"
|
|
#include "util/coding.h"
|
|
#include "util/hash128.h"
|
|
#include "util/math128.h"
|
|
#include "util/xxhash.h"
|
|
#include "util/xxph3.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
uint64_t (*kGetSliceNPHash64UnseededFnPtr)(const Slice&) = &GetSliceHash64;
|
|
|
|
uint32_t Hash(const char* data, size_t n, uint32_t seed) {
|
|
// MurmurHash1 - fast but mediocre quality
|
|
// https://github.com/aappleby/smhasher/wiki/MurmurHash1
|
|
//
|
|
const uint32_t m = 0xc6a4a793;
|
|
const uint32_t r = 24;
|
|
const char* limit = data + n;
|
|
uint32_t h = static_cast<uint32_t>(seed ^ (n * m));
|
|
|
|
// Pick up four bytes at a time
|
|
while (data + 4 <= limit) {
|
|
uint32_t w = DecodeFixed32(data);
|
|
data += 4;
|
|
h += w;
|
|
h *= m;
|
|
h ^= (h >> 16);
|
|
}
|
|
|
|
// Pick up remaining bytes
|
|
switch (limit - data) {
|
|
// Note: The original hash implementation used data[i] << shift, which
|
|
// promotes the char to int and then performs the shift. If the char is
|
|
// negative, the shift is undefined behavior in C++. The hash algorithm is
|
|
// part of the format definition, so we cannot change it; to obtain the same
|
|
// behavior in a legal way we just cast to uint32_t, which will do
|
|
// sign-extension. To guarantee compatibility with architectures where chars
|
|
// are unsigned we first cast the char to int8_t.
|
|
case 3:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[2])) << 16;
|
|
FALLTHROUGH_INTENDED;
|
|
case 2:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[1])) << 8;
|
|
FALLTHROUGH_INTENDED;
|
|
case 1:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[0]));
|
|
h *= m;
|
|
h ^= (h >> r);
|
|
break;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
// We are standardizing on a preview release of XXH3, because that's
|
|
// the best available at time of standardizing.
|
|
//
|
|
// In testing (mostly Intel Skylake), this hash function is much more
|
|
// thorough than Hash32 and is almost universally faster. Hash() only
|
|
// seems faster when passing runtime-sized keys of the same small size
|
|
// (less than about 24 bytes) thousands of times in a row; this seems
|
|
// to allow the branch predictor to work some magic. XXH3's speed is
|
|
// much less dependent on branch prediction.
|
|
//
|
|
// Hashing with a prefix extractor is potentially a common case of
|
|
// hashing objects of small, predictable size. We could consider
|
|
// bundling hash functions specialized for particular lengths with
|
|
// the prefix extractors.
|
|
uint64_t Hash64(const char* data, size_t n, uint64_t seed) {
|
|
return XXPH3_64bits_withSeed(data, n, seed);
|
|
}
|
|
|
|
uint64_t Hash64(const char* data, size_t n) {
|
|
// Same as seed = 0
|
|
return XXPH3_64bits(data, n);
|
|
}
|
|
|
|
uint64_t GetSlicePartsNPHash64(const SliceParts& data, uint64_t seed) {
|
|
// TODO(ajkr): use XXH3 streaming APIs to avoid the copy/allocation.
|
|
size_t concat_len = 0;
|
|
for (int i = 0; i < data.num_parts; ++i) {
|
|
concat_len += data.parts[i].size();
|
|
}
|
|
std::string concat_data;
|
|
concat_data.reserve(concat_len);
|
|
for (int i = 0; i < data.num_parts; ++i) {
|
|
concat_data.append(data.parts[i].data(), data.parts[i].size());
|
|
}
|
|
assert(concat_data.size() == concat_len);
|
|
return NPHash64(concat_data.data(), concat_len, seed);
|
|
}
|
|
|
|
Unsigned128 Hash128(const char* data, size_t n, uint64_t seed) {
|
|
auto h = XXH3_128bits_withSeed(data, n, seed);
|
|
return (Unsigned128{h.high64} << 64) | (h.low64);
|
|
}
|
|
|
|
Unsigned128 Hash128(const char* data, size_t n) {
|
|
// Same as seed = 0
|
|
auto h = XXH3_128bits(data, n);
|
|
return (Unsigned128{h.high64} << 64) | (h.low64);
|
|
}
|
|
|
|
void Hash2x64(const char* data, size_t n, uint64_t* high64, uint64_t* low64) {
|
|
// Same as seed = 0
|
|
auto h = XXH3_128bits(data, n);
|
|
*high64 = h.high64;
|
|
*low64 = h.low64;
|
|
}
|
|
|
|
void Hash2x64(const char* data, size_t n, uint64_t seed, uint64_t* high64,
|
|
uint64_t* low64) {
|
|
auto h = XXH3_128bits_withSeed(data, n, seed);
|
|
*high64 = h.high64;
|
|
*low64 = h.low64;
|
|
}
|
|
|
|
namespace {
|
|
|
|
inline uint64_t XXH3_avalanche(uint64_t h64) {
|
|
h64 ^= h64 >> 37;
|
|
h64 *= 0x165667919E3779F9U;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
inline uint64_t XXH3_unavalanche(uint64_t h64) {
|
|
h64 ^= h64 >> 32;
|
|
h64 *= 0x8da8ee41d6df849U; // inverse of 0x165667919E3779F9U
|
|
h64 ^= h64 >> 37;
|
|
return h64;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
// Adapted from XXH3_len_9to16_128b
|
|
const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
|
|
const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
|
|
Unsigned128 tmp128 =
|
|
Multiply64to128(in_low64 ^ in_high64 ^ bitflipl, 0x9E3779B185EBCA87U);
|
|
uint64_t lo = Lower64of128(tmp128);
|
|
uint64_t hi = Upper64of128(tmp128);
|
|
lo += 0x3c0000000000000U; // (len - 1) << 54
|
|
in_high64 ^= bitfliph;
|
|
hi += in_high64 + (Lower32of64(in_high64) * uint64_t{0x85EBCA76});
|
|
lo ^= EndianSwapValue(hi);
|
|
tmp128 = Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU);
|
|
lo = Lower64of128(tmp128);
|
|
hi = Upper64of128(tmp128) + (hi * 0xC2B2AE3D27D4EB4FU);
|
|
*out_low64 = XXH3_avalanche(lo);
|
|
*out_high64 = XXH3_avalanche(hi);
|
|
}
|
|
|
|
void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
// Inverted above (also consulting XXH3_len_9to16_128b)
|
|
const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
|
|
const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
|
|
uint64_t lo = XXH3_unavalanche(in_low64);
|
|
uint64_t hi = XXH3_unavalanche(in_high64);
|
|
lo *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
|
|
hi -= Upper64of128(Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU));
|
|
hi *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
|
|
lo ^= EndianSwapValue(hi);
|
|
lo -= 0x3c0000000000000U;
|
|
lo *= 0x887493432badb37U; // inverse of 0x9E3779B185EBCA87U
|
|
hi -= Upper64of128(Multiply64to128(lo, 0x9E3779B185EBCA87U));
|
|
uint32_t tmp32 = Lower32of64(hi) * 0xb6c92f47; // inverse of 0x85EBCA77
|
|
hi -= tmp32;
|
|
hi = (hi & 0xFFFFFFFF00000000U) -
|
|
((tmp32 * uint64_t{0x85EBCA76}) & 0xFFFFFFFF00000000U) + tmp32;
|
|
hi ^= bitfliph;
|
|
lo ^= hi ^ bitflipl;
|
|
*out_high64 = hi;
|
|
*out_low64 = lo;
|
|
}
|
|
|
|
void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
BijectiveHash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
|
|
}
|
|
|
|
void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
BijectiveUnhash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|