You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_with_timestamp_basic_tes...

2987 lines
102 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/debug.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#if !defined(ROCKSDB_LITE)
#include "test_util/sync_point.h"
#endif
#include "test_util/testutil.h"
#include "utilities/fault_injection_env.h"
namespace ROCKSDB_NAMESPACE {
class DBBasicTestWithTimestampBase : public DBTestBase {
public:
explicit DBBasicTestWithTimestampBase(const std::string& dbname)
: DBTestBase(dbname, /*env_do_fsync=*/true) {}
protected:
static std::string Key1(uint64_t k) {
std::string ret;
PutFixed64(&ret, k);
std::reverse(ret.begin(), ret.end());
return ret;
}
static std::string KeyWithPrefix(std::string prefix, uint64_t k) {
std::string ret;
PutFixed64(&ret, k);
std::reverse(ret.begin(), ret.end());
return prefix + ret;
}
static std::vector<Slice> ConvertStrToSlice(
std::vector<std::string>& strings) {
std::vector<Slice> ret;
for (const auto& s : strings) {
ret.emplace_back(s);
}
return ret;
}
class TestComparator : public Comparator {
private:
const Comparator* cmp_without_ts_;
public:
explicit TestComparator(size_t ts_sz)
: Comparator(ts_sz), cmp_without_ts_(nullptr) {
cmp_without_ts_ = BytewiseComparator();
}
const char* Name() const override { return "TestComparator"; }
void FindShortSuccessor(std::string*) const override {}
void FindShortestSeparator(std::string*, const Slice&) const override {}
int Compare(const Slice& a, const Slice& b) const override {
int r = CompareWithoutTimestamp(a, b);
if (r != 0 || 0 == timestamp_size()) {
return r;
}
return -CompareTimestamp(
Slice(a.data() + a.size() - timestamp_size(), timestamp_size()),
Slice(b.data() + b.size() - timestamp_size(), timestamp_size()));
}
using Comparator::CompareWithoutTimestamp;
int CompareWithoutTimestamp(const Slice& a, bool a_has_ts, const Slice& b,
bool b_has_ts) const override {
if (a_has_ts) {
assert(a.size() >= timestamp_size());
}
if (b_has_ts) {
assert(b.size() >= timestamp_size());
}
Slice lhs = a_has_ts ? StripTimestampFromUserKey(a, timestamp_size()) : a;
Slice rhs = b_has_ts ? StripTimestampFromUserKey(b, timestamp_size()) : b;
return cmp_without_ts_->Compare(lhs, rhs);
}
int CompareTimestamp(const Slice& ts1, const Slice& ts2) const override {
if (!ts1.data() && !ts2.data()) {
return 0;
} else if (ts1.data() && !ts2.data()) {
return 1;
} else if (!ts1.data() && ts2.data()) {
return -1;
}
assert(ts1.size() == ts2.size());
uint64_t low1 = 0;
uint64_t low2 = 0;
uint64_t high1 = 0;
uint64_t high2 = 0;
const size_t kSize = ts1.size();
std::unique_ptr<char[]> ts1_buf(new char[kSize]);
memcpy(ts1_buf.get(), ts1.data(), ts1.size());
std::unique_ptr<char[]> ts2_buf(new char[kSize]);
memcpy(ts2_buf.get(), ts2.data(), ts2.size());
Slice ts1_copy = Slice(ts1_buf.get(), kSize);
Slice ts2_copy = Slice(ts2_buf.get(), kSize);
auto* ptr1 = const_cast<Slice*>(&ts1_copy);
auto* ptr2 = const_cast<Slice*>(&ts2_copy);
if (!GetFixed64(ptr1, &low1) || !GetFixed64(ptr1, &high1) ||
!GetFixed64(ptr2, &low2) || !GetFixed64(ptr2, &high2)) {
assert(false);
}
if (high1 < high2) {
return -1;
} else if (high1 > high2) {
return 1;
}
if (low1 < low2) {
return -1;
} else if (low1 > low2) {
return 1;
}
return 0;
}
};
std::string Timestamp(uint64_t low, uint64_t high) {
std::string ts;
PutFixed64(&ts, low);
PutFixed64(&ts, high);
return ts;
}
void CheckIterUserEntry(const Iterator* it, const Slice& expected_key,
ValueType expected_value_type,
const Slice& expected_value,
const Slice& expected_ts) const {
ASSERT_TRUE(it->Valid());
ASSERT_OK(it->status());
ASSERT_EQ(expected_key, it->key());
if (kTypeValue == expected_value_type) {
ASSERT_EQ(expected_value, it->value());
}
ASSERT_EQ(expected_ts, it->timestamp());
}
void CheckIterEntry(const Iterator* it, const Slice& expected_ukey,
SequenceNumber expected_seq, ValueType expected_val_type,
const Slice& expected_value, const Slice& expected_ts) {
ASSERT_TRUE(it->Valid());
ASSERT_OK(it->status());
std::string ukey_and_ts;
ukey_and_ts.assign(expected_ukey.data(), expected_ukey.size());
ukey_and_ts.append(expected_ts.data(), expected_ts.size());
ParsedInternalKey parsed_ikey;
ASSERT_OK(
ParseInternalKey(it->key(), &parsed_ikey, true /* log_err_key */));
ASSERT_EQ(ukey_and_ts, parsed_ikey.user_key);
ASSERT_EQ(expected_val_type, parsed_ikey.type);
ASSERT_EQ(expected_seq, parsed_ikey.sequence);
if (expected_val_type == kTypeValue) {
ASSERT_EQ(expected_value, it->value());
}
ASSERT_EQ(expected_ts, it->timestamp());
}
void CheckIterEntry(const Iterator* it, const Slice& expected_ukey,
ValueType expected_val_type, const Slice& expected_value,
const Slice& expected_ts) {
ASSERT_TRUE(it->Valid());
ASSERT_OK(it->status());
std::string ukey_and_ts;
ukey_and_ts.assign(expected_ukey.data(), expected_ukey.size());
ukey_and_ts.append(expected_ts.data(), expected_ts.size());
ParsedInternalKey parsed_ikey;
ASSERT_OK(
ParseInternalKey(it->key(), &parsed_ikey, true /* log_err_key */));
ASSERT_EQ(expected_val_type, parsed_ikey.type);
ASSERT_EQ(Slice(ukey_and_ts), parsed_ikey.user_key);
if (expected_val_type == kTypeValue) {
ASSERT_EQ(expected_value, it->value());
}
ASSERT_EQ(expected_ts, it->timestamp());
}
};
class DBBasicTestWithTimestamp : public DBBasicTestWithTimestampBase {
public:
DBBasicTestWithTimestamp()
: DBBasicTestWithTimestampBase("db_basic_test_with_timestamp") {}
};
TEST_F(DBBasicTestWithTimestamp, CompactRangeWithSpecifiedRange) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo1", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", "bar"));
ASSERT_OK(Flush());
std::string start_str = "foo";
std::string end_str = "foo2";
Slice start(start_str), end(end_str);
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &end));
Close();
}
TEST_F(DBBasicTestWithTimestamp, UpdateFullHistoryTsLow) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const std::string kKey = "test kKey";
// Test set ts_low first and flush()
int current_ts_low = 5;
std::string ts_low_str = Timestamp(current_ts_low, 0);
Slice ts_low = ts_low_str;
CompactRangeOptions comp_opts;
comp_opts.full_history_ts_low = &ts_low;
comp_opts.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(comp_opts, nullptr, nullptr));
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(db_->DefaultColumnFamily())
->cfd();
auto result_ts_low = cfd->GetFullHistoryTsLow();
ASSERT_TRUE(test_cmp.CompareTimestamp(ts_low, result_ts_low) == 0);
for (int i = 0; i < 10; i++) {
WriteOptions write_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, kKey, Key(i)));
}
ASSERT_OK(Flush());
for (int i = 0; i < 10; i++) {
ReadOptions read_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::string value;
Status status = db_->Get(read_opts, kKey, &value);
if (i < current_ts_low) {
ASSERT_TRUE(status.IsNotFound());
} else {
ASSERT_OK(status);
ASSERT_TRUE(value.compare(Key(i)) == 0);
}
}
// Test set ts_low and then trigger compaction
for (int i = 10; i < 20; i++) {
WriteOptions write_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, kKey, Key(i)));
}
ASSERT_OK(Flush());
current_ts_low = 15;
ts_low_str = Timestamp(current_ts_low, 0);
ts_low = ts_low_str;
comp_opts.full_history_ts_low = &ts_low;
ASSERT_OK(db_->CompactRange(comp_opts, nullptr, nullptr));
result_ts_low = cfd->GetFullHistoryTsLow();
ASSERT_TRUE(test_cmp.CompareTimestamp(ts_low, result_ts_low) == 0);
for (int i = 0; i < 20; i++) {
ReadOptions read_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::string value;
Status status = db_->Get(read_opts, kKey, &value);
if (i < current_ts_low) {
ASSERT_TRUE(status.IsNotFound());
} else {
ASSERT_OK(status);
ASSERT_TRUE(value.compare(Key(i)) == 0);
}
}
// Test invalid compaction with range
Slice start(kKey), end(kKey);
Status s = db_->CompactRange(comp_opts, &start, &end);
ASSERT_TRUE(s.IsInvalidArgument());
s = db_->CompactRange(comp_opts, &start, nullptr);
ASSERT_TRUE(s.IsInvalidArgument());
s = db_->CompactRange(comp_opts, nullptr, &end);
ASSERT_TRUE(s.IsInvalidArgument());
// Test invalid compaction with the decreasing ts_low
ts_low_str = Timestamp(current_ts_low - 1, 0);
ts_low = ts_low_str;
comp_opts.full_history_ts_low = &ts_low;
s = db_->CompactRange(comp_opts, nullptr, nullptr);
ASSERT_TRUE(s.IsInvalidArgument());
Close();
}
TEST_F(DBBasicTestWithTimestamp, GetApproximateSizes) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
auto default_cf = db_->DefaultColumnFamily();
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(db_->Put(write_opts, Key(i), rnd.RandomString(1024)));
}
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtabtles = true;
size_approx_options.include_files = true;
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
// test multiple ranges
std::vector<Range> ranges;
std::string start_tmp = Key(10);
std::string end_tmp = Key(20);
ranges.emplace_back(Range(start_tmp, end_tmp));
ranges.emplace_back(Range(start, end));
uint64_t range_sizes[2];
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf,
ranges.data(), 2, range_sizes));
ASSERT_EQ(range_sizes[1], size);
// Zero if not including mem table
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(500);
end = Key(600);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
// Test range boundaries
ASSERT_OK(db_->Put(write_opts, Key(1000), rnd.RandomString(1024)));
// Should include start key
start = Key(1000);
end = Key(1100);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 0);
// Should exclude end key
start = Key(900);
end = Key(1000);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
Close();
}
TEST_F(DBBasicTestWithTimestamp, SimpleIterate) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<uint64_t> start_keys = {1, 0};
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
Slice write_ts = write_timestamps[i];
write_opts.timestamp = &write_ts;
for (uint64_t key = start_keys[i]; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(i));
ASSERT_OK(s);
}
}
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
// Forward iterate.
for (it->Seek(Key1(0)), key = start_keys[i]; it->Valid();
it->Next(), ++count, ++key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
size_t expected_count = kMaxKey - start_keys[i] + 1;
ASSERT_EQ(expected_count, count);
// Backward iterate.
count = 0;
for (it->SeekForPrev(Key1(kMaxKey)), key = kMaxKey; it->Valid();
it->Prev(), ++count, --key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
ASSERT_EQ(static_cast<size_t>(kMaxKey) - start_keys[i] + 1, count);
// SeekToFirst()/SeekToLast() with lower/upper bounds.
// Then iter with lower and upper bounds.
uint64_t l = 0;
uint64_t r = kMaxKey + 1;
while (l < r) {
std::string lb_str = Key1(l);
Slice lb = lb_str;
std::string ub_str = Key1(r);
Slice ub = ub_str;
read_opts.iterate_lower_bound = &lb;
read_opts.iterate_upper_bound = &ub;
it.reset(db_->NewIterator(read_opts));
for (it->SeekToFirst(), key = std::max(l, start_keys[i]), count = 0;
it->Valid(); it->Next(), ++key, ++count) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
ASSERT_EQ(r - std::max(l, start_keys[i]), count);
for (it->SeekToLast(), key = std::min(r, kMaxKey + 1), count = 0;
it->Valid(); it->Prev(), --key, ++count) {
CheckIterUserEntry(it.get(), Key1(key - 1), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
l += (kMaxKey / 100);
r -= (kMaxKey / 100);
}
}
Close();
}
class DBBasicTestWithTimestampTableOptions
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<BlockBasedTableOptions::IndexType> {
public:
explicit DBBasicTestWithTimestampTableOptions()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_table_options") {}
};
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampTableOptions,
testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey));
TEST_P(DBBasicTestWithTimestampTableOptions, GetAndMultiGet) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
options.compression = kNoCompression;
BlockBasedTableOptions bbto;
bbto.index_type = GetParam();
bbto.block_size = 100;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator cmp(kTimestampSize);
options.comparator = &cmp;
DestroyAndReopen(options);
constexpr uint64_t kNumKeys = 1024;
for (uint64_t k = 0; k < kNumKeys; ++k) {
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, Key1(k), "value" + std::to_string(k)));
}
ASSERT_OK(Flush());
{
ReadOptions read_opts;
read_opts.total_order_seek = true;
std::string ts_str = Timestamp(2, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
// verify Get()
for (it->SeekToFirst(); it->Valid(); it->Next()) {
std::string value_from_get;
std::string key_str(it->key().data(), it->key().size());
std::string timestamp;
ASSERT_OK(db_->Get(read_opts, key_str, &value_from_get, &timestamp));
ASSERT_EQ(it->value(), value_from_get);
ASSERT_EQ(Timestamp(1, 0), timestamp);
}
// verify MultiGet()
constexpr uint64_t step = 2;
static_assert(0 == (kNumKeys % step),
"kNumKeys must be a multiple of step");
for (uint64_t k = 0; k < kNumKeys; k += 2) {
std::vector<std::string> key_strs;
std::vector<Slice> keys;
for (size_t i = 0; i < step; ++i) {
key_strs.push_back(Key1(k + i));
}
for (size_t i = 0; i < step; ++i) {
keys.emplace_back(key_strs[i]);
}
std::vector<std::string> values;
std::vector<std::string> timestamps;
std::vector<Status> statuses =
db_->MultiGet(read_opts, keys, &values, &timestamps);
ASSERT_EQ(step, statuses.size());
ASSERT_EQ(step, values.size());
ASSERT_EQ(step, timestamps.size());
for (uint64_t i = 0; i < step; ++i) {
ASSERT_OK(statuses[i]);
ASSERT_EQ("value" + std::to_string(k + i), values[i]);
ASSERT_EQ(Timestamp(1, 0), timestamps[i]);
}
}
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithPrefixLessThanKey) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
options.memtable_whole_key_filtering = true;
options.memtable_prefix_bloom_size_ratio = 0.1;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo1", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", "bar"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo3", "bar"));
ASSERT_OK(Flush());
ReadOptions read_opts;
std::string read_ts = Timestamp(1, 0);
ts = read_ts;
read_opts.timestamp = &ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Seek("bbb");
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithPrefixLongerThanKey) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(20));
options.memtable_whole_key_filtering = true;
options.memtable_prefix_bloom_size_ratio = 0.1;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo1", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", "bar"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo3", "bar"));
ASSERT_OK(Flush());
ReadOptions read_opts;
std::string read_ts = Timestamp(2, 0);
ts = read_ts;
read_opts.timestamp = &ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Make sure the prefix extractor doesn't include timestamp, otherwise it
// may return invalid result.
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithBound) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo1", "bar1"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", "bar2"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (int i = 3; i < 9; ++i) {
ASSERT_OK(db_->Put(write_opts, "foo" + std::to_string(i),
"bar" + std::to_string(i)));
}
ASSERT_OK(Flush());
ReadOptions read_opts;
std::string read_ts = Timestamp(2, 0);
ts = read_ts;
read_opts.timestamp = &ts;
std::string up_bound = "foo5"; // exclusive
Slice up_bound_slice = up_bound;
std::string lo_bound = "foo2"; // inclusive
Slice lo_bound_slice = lo_bound;
read_opts.iterate_upper_bound = &up_bound_slice;
read_opts.iterate_lower_bound = &lo_bound_slice;
read_opts.auto_prefix_mode = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Make sure the prefix extractor doesn't include timestamp, otherwise it
// may return invalid result.
iter->Seek("foo");
CheckIterUserEntry(iter.get(), lo_bound, kTypeValue, "bar2",
Timestamp(1, 0));
iter->SeekToFirst();
CheckIterUserEntry(iter.get(), lo_bound, kTypeValue, "bar2",
Timestamp(1, 0));
iter->SeekForPrev("g");
CheckIterUserEntry(iter.get(), "foo4", kTypeValue, "bar4", Timestamp(1, 0));
iter->SeekToLast();
CheckIterUserEntry(iter.get(), "foo4", kTypeValue, "bar4", Timestamp(1, 0));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ChangeIterationDirection) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
const std::vector<std::string> timestamps = {Timestamp(1, 1), Timestamp(0, 2),
Timestamp(4, 3)};
const std::vector<std::tuple<std::string, std::string>> kvs = {
std::make_tuple("aa", "value1"), std::make_tuple("ab", "value2")};
for (const auto& ts : timestamps) {
WriteBatch wb(0, 0, kTimestampSize);
for (const auto& kv : kvs) {
const std::string& key = std::get<0>(kv);
const std::string& value = std::get<1>(kv);
ASSERT_OK(wb.Put(key, value));
}
ASSERT_OK(wb.AssignTimestamp(ts));
ASSERT_OK(db_->Write(WriteOptions(), &wb));
}
std::string read_ts_str = Timestamp(5, 3);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->SeekToFirst();
ASSERT_TRUE(it->Valid());
it->Prev();
ASSERT_FALSE(it->Valid());
it->SeekToLast();
ASSERT_TRUE(it->Valid());
uint64_t prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
ASSERT_EQ(0, prev_reseek_count);
it->Next();
ASSERT_FALSE(it->Valid());
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it->Seek(std::get<0>(kvs[0]));
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
it->Prev();
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
ASSERT_EQ(1, prev_reseek_count);
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it->SeekForPrev(std::get<0>(kvs[1]));
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
it->Prev();
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it.reset();
Close();
}
TEST_F(DBBasicTestWithTimestamp, SimpleForwardIterateLowerTsBound) {
constexpr int kNumKeysPerFile = 128;
constexpr uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
const std::vector<std::string> read_timestamps_lb = {Timestamp(1, 0),
Timestamp(1, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
Slice write_ts = write_timestamps[i];
write_opts.timestamp = &write_ts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(i));
ASSERT_OK(s);
}
}
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
Slice read_ts_lb = read_timestamps_lb[i];
read_opts.timestamp = &read_ts;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
for (it->Seek(Key1(0)), key = 0; it->Valid(); it->Next(), ++count, ++key) {
CheckIterEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
if (i > 0) {
it->Next();
CheckIterEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i - 1),
write_timestamps[i - 1]);
}
}
size_t expected_count = kMaxKey + 1;
ASSERT_EQ(expected_count, count);
}
// Delete all keys@ts=5 and check iteration result with start ts set
{
std::string write_timestamp = Timestamp(5, 0);
WriteOptions write_opts;
Slice write_ts = write_timestamp;
write_opts.timestamp = &write_ts;
for (uint64_t key = 0; key < kMaxKey + 1; ++key) {
Status s = db_->Delete(write_opts, Key1(key));
ASSERT_OK(s);
}
std::string read_timestamp = Timestamp(6, 0);
ReadOptions read_opts;
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
std::string read_timestamp_lb = Timestamp(2, 0);
Slice read_ts_lb = read_timestamp_lb;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
for (it->Seek(Key1(0)), key = 0; it->Valid(); it->Next(), ++count, ++key) {
CheckIterEntry(it.get(), Key1(key), kTypeDeletionWithTimestamp, Slice(),
write_ts);
// Skip key@ts=3 and land on tombstone key@ts=5
it->Next();
}
ASSERT_EQ(kMaxKey + 1, count);
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ForwardIterateStartSeqnum) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 0xffffffffffffffff;
const uint64_t kMinKey = kMaxKey - 1023;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
// Need to disable compaction to bottommost level when sequence number will be
// zeroed out, causing the verification of sequence number to fail in this
// test.
options.disable_auto_compactions = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
std::vector<SequenceNumber> start_seqs;
const int kNumTimestamps = 4;
std::vector<std::string> write_ts_list;
for (int t = 0; t != kNumTimestamps; ++t) {
write_ts_list.push_back(Timestamp(2 * t, /*do not care*/ 17));
}
WriteOptions write_opts;
for (size_t i = 0; i != write_ts_list.size(); ++i) {
Slice write_ts = write_ts_list[i];
write_opts.timestamp = &write_ts;
for (uint64_t k = kMaxKey; k >= kMinKey; --k) {
Status s;
if (k % 2) {
s = db_->Put(write_opts, Key1(k), "value" + std::to_string(i));
} else {
s = db_->Delete(write_opts, Key1(k));
}
ASSERT_OK(s);
}
start_seqs.push_back(db_->GetLatestSequenceNumber());
}
std::vector<std::string> read_ts_list;
for (int t = 0; t != kNumTimestamps - 1; ++t) {
read_ts_list.push_back(Timestamp(2 * t + 3, /*do not care*/ 17));
}
ReadOptions read_opts;
// Scan with only read_opts.iter_start_seqnum set.
for (size_t i = 0; i != read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
read_opts.timestamp = &read_ts;
read_opts.iter_start_seqnum = start_seqs[i] + 1;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
SequenceNumber expected_seq = start_seqs[i] + (kMaxKey - kMinKey) + 1;
uint64_t key = kMinKey;
for (iter->Seek(Key1(kMinKey)); iter->Valid(); iter->Next()) {
CheckIterEntry(
iter.get(), Key1(key), expected_seq,
(key % 2) ? kTypeValue : kTypeDeletionWithTimestamp,
(key % 2) ? "value" + std::to_string(i + 1) : std::string(),
write_ts_list[i + 1]);
++key;
--expected_seq;
}
}
// Scan with both read_opts.iter_start_seqnum and read_opts.iter_start_ts set.
std::vector<std::string> read_ts_lb_list;
for (int t = 0; t < kNumTimestamps - 1; ++t) {
read_ts_lb_list.push_back(Timestamp(2 * t, /*do not care*/ 17));
}
for (size_t i = 0; i < read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
Slice read_ts_lb = read_ts_lb_list[i];
read_opts.timestamp = &read_ts;
read_opts.iter_start_ts = &read_ts_lb;
read_opts.iter_start_seqnum = start_seqs[i] + 1;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
uint64_t key = kMinKey;
SequenceNumber expected_seq = start_seqs[i] + (kMaxKey - kMinKey) + 1;
for (it->Seek(Key1(kMinKey)); it->Valid(); it->Next()) {
CheckIterEntry(it.get(), Key1(key), expected_seq,
(key % 2) ? kTypeValue : kTypeDeletionWithTimestamp,
"value" + std::to_string(i + 1), write_ts_list[i + 1]);
++key;
--expected_seq;
}
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToTargetTimestamp) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Insert kNumKeys
WriteOptions write_opts;
Status s;
for (size_t i = 0; i != kNumKeys; ++i) {
std::string ts_str = Timestamp(static_cast<uint64_t>(i + 1), 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
s = db_->Put(write_opts, "foo", "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToFirst();
CheckIterUserEntry(iter.get(), "foo", kTypeValue, "value0", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
ts_str = Timestamp(kNumKeys, 0);
ts = ts_str;
read_opts.timestamp = &ts;
iter.reset(db_->NewIterator(read_opts));
iter->SeekToLast();
CheckIterUserEntry(iter.get(), "foo", kTypeValue,
"value" + std::to_string(kNumKeys - 1), ts_str);
ASSERT_EQ(
2, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToNextUserKey) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write kNumKeys + 1 keys
WriteOptions write_opts;
Status s;
for (size_t i = 0; i != kNumKeys; ++i) {
std::string ts_str = Timestamp(static_cast<uint64_t>(i + 1), 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
s = db_->Put(write_opts, "a", "value" + std::to_string(i));
ASSERT_OK(s);
}
{
std::string ts_str = Timestamp(static_cast<uint64_t>(kNumKeys + 1), 0);
WriteBatch batch(0, 0, kTimestampSize);
ASSERT_OK(batch.Put("a", "new_value"));
ASSERT_OK(batch.Put("b", "new_value"));
s = batch.AssignTimestamp(ts_str);
ASSERT_OK(s);
s = db_->Write(write_opts, &batch);
ASSERT_OK(s);
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(static_cast<uint64_t>(kNumKeys + 1), 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->Seek("a");
iter->Next();
CheckIterUserEntry(iter.get(), "b", kTypeValue, "new_value", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToUserKeyBeforeSavedKey) {
Options options = GetDefaultOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts_str = Timestamp(static_cast<uint64_t>(i + 1), 0);
Slice ts = ts_str;
WriteOptions write_opts;
write_opts.timestamp = &ts;
Status s = db_->Put(write_opts, "b", "value" + std::to_string(i));
ASSERT_OK(s);
}
{
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
WriteOptions write_opts;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "a", "value"));
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToLast();
iter->Prev();
CheckIterUserEntry(iter.get(), "a", kTypeValue, "value", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetWithFastLocalBloom) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo", "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ReadOptions read_opts;
read_opts.timestamp = &ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetWithPrefix) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(5));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo", "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ReadOptions read_opts;
read_opts.timestamp = &ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetWithMemBloomFilter) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(5));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo", "bar"));
// Read with MultiGet
ts_str = Timestamp(2, 0);
ts = ts_str;
ReadOptions read_opts;
read_opts.timestamp = &ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetRangeFiltering) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
// random data
for (int i = 0; i < 3; i++) {
auto key = ToString(i * 10);
auto value = ToString(i * 10);
Slice key_slice = key;
Slice value_slice = value;
ASSERT_OK(db_->Put(write_opts, key_slice, value_slice));
ASSERT_OK(Flush());
}
// Make num_levels to 2 to do key range filtering of sst files
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo", "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ts_str = Timestamp(2, 0);
ts = ts_str;
ReadOptions read_opts;
read_opts.timestamp = &ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetPrefixFilter) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(5));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo", "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ts_str = Timestamp(2, 0);
ts = ts_str;
ReadOptions read_opts;
read_opts.timestamp = &ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<std::string> values(batch_size);
std::vector<std::string> timestamps(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
std::vector<ColumnFamilyHandle*> cfhs(keys.size(), cfh);
std::vector<Status> statuses =
db_->MultiGet(read_opts, cfhs, keys, &values, &timestamps);
ASSERT_OK(statuses[0]);
Close();
}
TEST_F(DBBasicTestWithTimestamp, MaxKeysSkippedDuringNext) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
constexpr size_t max_skippable_internal_keys = 2;
const size_t kNumKeys = max_skippable_internal_keys + 2;
WriteOptions write_opts;
Status s;
{
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "a", "value"));
}
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts_str = Timestamp(static_cast<uint64_t>(i + 1), 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
s = db_->Put(write_opts, "b", "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
read_opts.max_skippable_internal_keys = max_skippable_internal_keys;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToFirst();
iter->Next();
ASSERT_TRUE(iter->status().IsIncomplete());
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, MaxKeysSkippedDuringPrev) {
Options options = GetDefaultOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
constexpr size_t max_skippable_internal_keys = 2;
const size_t kNumKeys = max_skippable_internal_keys + 2;
WriteOptions write_opts;
Status s;
{
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "b", "value"));
}
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts_str = Timestamp(static_cast<uint64_t>(i + 1), 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
s = db_->Put(write_opts, "a", "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
read_opts.max_skippable_internal_keys = max_skippable_internal_keys;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToLast();
iter->Prev();
ASSERT_TRUE(iter->status().IsIncomplete());
}
Close();
}
// Create two L0, and compact them to a new L1. In this test, L1 is L_bottom.
// Two L0s:
// f1 f2
// <a, 1, kTypeValue> <a, 3, kTypeDeletionWithTimestamp>...<b, 2, kTypeValue>
// Since f2.smallest < f1.largest < f2.largest
// f1 and f2 will be the inputs of a real compaction instead of trivial move.
TEST_F(DBBasicTestWithTimestamp, CompactDeletionWithTimestampMarkerToBottom) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.num_levels = 2;
options.level0_file_num_compaction_trigger = 2;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "a", "value0"));
ASSERT_OK(Flush());
ts_str = Timestamp(2, 0);
ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "b", "value0"));
ts_str = Timestamp(3, 0);
ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Delete(write_opts, "a"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ReadOptions read_opts;
ts_str = Timestamp(1, 0);
ts = ts_str;
read_opts.timestamp = &ts;
std::string value;
Status s = db_->Get(read_opts, "a", &value);
ASSERT_OK(s);
ASSERT_EQ("value0", value);
ts_str = Timestamp(3, 0);
ts = ts_str;
read_opts.timestamp = &ts;
s = db_->Get(read_opts, "a", &value);
ASSERT_TRUE(s.IsNotFound());
// Time-travel to the past before deletion
ts_str = Timestamp(2, 0);
ts = ts_str;
read_opts.timestamp = &ts;
s = db_->Get(read_opts, "a", &value);
ASSERT_OK(s);
ASSERT_EQ("value0", value);
Close();
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DBBasicTestWithTimestampFilterPrefixSettings
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const FilterPolicy>, bool, bool,
std::shared_ptr<const SliceTransform>, bool, double,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTimestampFilterPrefixSettings()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_filter_prefix") {}
};
TEST_P(DBBasicTestWithTimestampFilterPrefixSettings, GetAndMultiGet) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = std::get<1>(GetParam());
bbto.cache_index_and_filter_blocks = std::get<2>(GetParam());
bbto.index_type = std::get<6>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.prefix_extractor = std::get<3>(GetParam());
options.memtable_whole_key_filtering = std::get<4>(GetParam());
options.memtable_prefix_bloom_size_ratio = std::get<5>(GetParam());
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const int kMaxKey = 1000;
// Write any value
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
int idx = 0;
for (; idx < kMaxKey / 4; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), "bar"));
}
ASSERT_OK(Flush());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (; idx < kMaxKey / 2; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), "bar"));
}
ASSERT_OK(Flush());
for (; idx < kMaxKey; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), "bar"));
}
// Read with MultiGet
ReadOptions read_opts;
read_opts.timestamp = &ts;
ReadOptions read_opts_total_order;
read_opts_total_order.timestamp = &ts;
read_opts_total_order.total_order_seek = true;
for (idx = 0; idx < kMaxKey; idx++) {
size_t batch_size = 4;
std::vector<std::string> keys_str(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
keys_str[0] = Key1(idx);
keys_str[1] = KeyWithPrefix("foo", idx);
keys_str[2] = Key1(kMaxKey + idx);
keys_str[3] = KeyWithPrefix("foo", kMaxKey + idx);
auto keys = ConvertStrToSlice(keys_str);
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
for (int i = 0; i < 2; i++) {
ASSERT_OK(statuses[i]);
}
for (int i = 2; i < 4; i++) {
ASSERT_TRUE(statuses[i].IsNotFound());
}
for (int i = 0; i < 2; i++) {
std::string value;
ASSERT_OK(db_->Get(read_opts, keys[i], &value));
std::unique_ptr<Iterator> it1(db_->NewIterator(read_opts));
ASSERT_NE(nullptr, it1);
ASSERT_OK(it1->status());
// TODO(zjay) Fix seek with prefix
// it1->Seek(keys[i]);
// ASSERT_TRUE(it1->Valid());
}
for (int i = 2; i < 4; i++) {
std::string value;
Status s = db_->Get(read_opts, keys[i], &value);
ASSERT_TRUE(s.IsNotFound());
}
}
Close();
}
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampFilterPrefixSettings,
::testing::Combine(
::testing::Values(
std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(NewBloomFilterPolicy(10, true)),
std::shared_ptr<const FilterPolicy>(NewBloomFilterPolicy(10,
false))),
::testing::Bool(), ::testing::Bool(),
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(1)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(4)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Bool(), ::testing::Values(0, 0.1),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DataVisibilityTest : public DBBasicTestWithTimestampBase {
public:
DataVisibilityTest() : DBBasicTestWithTimestampBase("data_visibility_test") {
// Initialize test data
for (int i = 0; i < kTestDataSize; i++) {
test_data_[i].key = "key" + ToString(i);
test_data_[i].value = "value" + ToString(i);
test_data_[i].timestamp = Timestamp(i, 0);
test_data_[i].ts = i;
test_data_[i].seq_num = kMaxSequenceNumber;
}
}
protected:
struct TestData {
std::string key;
std::string value;
int ts;
std::string timestamp;
SequenceNumber seq_num;
};
constexpr static int kTestDataSize = 3;
TestData test_data_[kTestDataSize];
void PutTestData(int index, ColumnFamilyHandle* cfh = nullptr) {
ASSERT_LE(index, kTestDataSize);
WriteOptions write_opts;
Slice ts_slice = test_data_[index].timestamp;
write_opts.timestamp = &ts_slice;
if (cfh == nullptr) {
ASSERT_OK(
db_->Put(write_opts, test_data_[index].key, test_data_[index].value));
const Snapshot* snap = db_->GetSnapshot();
test_data_[index].seq_num = snap->GetSequenceNumber();
if (index > 0) {
ASSERT_GT(test_data_[index].seq_num, test_data_[index - 1].seq_num);
}
db_->ReleaseSnapshot(snap);
} else {
ASSERT_OK(db_->Put(write_opts, cfh, test_data_[index].key,
test_data_[index].value));
}
}
void AssertVisibility(int ts, SequenceNumber seq,
std::vector<Status> statuses) {
ASSERT_EQ(kTestDataSize, statuses.size());
for (int i = 0; i < kTestDataSize; i++) {
if (test_data_[i].seq_num <= seq && test_data_[i].ts <= ts) {
ASSERT_OK(statuses[i]);
} else {
ASSERT_TRUE(statuses[i].IsNotFound());
}
}
}
std::vector<Slice> GetKeys() {
std::vector<Slice> ret(kTestDataSize);
for (int i = 0; i < kTestDataSize; i++) {
ret[i] = test_data_[i].key;
}
return ret;
}
void VerifyDefaultCF(int ts, const Snapshot* snap = nullptr) {
ReadOptions read_opts;
std::string read_ts = Timestamp(ts, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
read_opts.snapshot = snap;
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
std::vector<ColumnFamilyHandle*> cfs(kTestDataSize, cfh);
SequenceNumber seq =
snap ? snap->GetSequenceNumber() : kMaxSequenceNumber - 1;
// There're several MultiGet interfaces with not exactly the same
// implementations, query data with all of them.
auto keys = GetKeys();
std::vector<std::string> values;
auto s1 = db_->MultiGet(read_opts, cfs, keys, &values);
AssertVisibility(ts, seq, s1);
auto s2 = db_->MultiGet(read_opts, keys, &values);
AssertVisibility(ts, seq, s2);
std::vector<std::string> timestamps;
auto s3 = db_->MultiGet(read_opts, cfs, keys, &values, &timestamps);
AssertVisibility(ts, seq, s3);
auto s4 = db_->MultiGet(read_opts, keys, &values, &timestamps);
AssertVisibility(ts, seq, s4);
std::vector<PinnableSlice> values_ps5(kTestDataSize);
std::vector<Status> s5(kTestDataSize);
db_->MultiGet(read_opts, cfh, kTestDataSize, keys.data(), values_ps5.data(),
s5.data());
AssertVisibility(ts, seq, s5);
std::vector<PinnableSlice> values_ps6(kTestDataSize);
std::vector<Status> s6(kTestDataSize);
std::vector<std::string> timestamps_array(kTestDataSize);
db_->MultiGet(read_opts, cfh, kTestDataSize, keys.data(), values_ps6.data(),
timestamps_array.data(), s6.data());
AssertVisibility(ts, seq, s6);
std::vector<PinnableSlice> values_ps7(kTestDataSize);
std::vector<Status> s7(kTestDataSize);
db_->MultiGet(read_opts, kTestDataSize, cfs.data(), keys.data(),
values_ps7.data(), s7.data());
AssertVisibility(ts, seq, s7);
std::vector<PinnableSlice> values_ps8(kTestDataSize);
std::vector<Status> s8(kTestDataSize);
db_->MultiGet(read_opts, kTestDataSize, cfs.data(), keys.data(),
values_ps8.data(), timestamps_array.data(), s8.data());
AssertVisibility(ts, seq, s8);
}
void VerifyDefaultCF(const Snapshot* snap = nullptr) {
for (int i = 0; i <= kTestDataSize; i++) {
VerifyDefaultCF(i, snap);
}
}
};
constexpr int DataVisibilityTest::kTestDataSize;
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// GetImpl(ts,seq)
// It is OK to return <k, t1, s1> if ts>=t1 AND seq>=s1. If ts>=1t1 but seq<s1,
// the key should not be returned.
TEST_F(DataVisibilityTest, PointLookupWithoutSnapshot1) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::GetImpl:3",
"DataVisibilityTest::PointLookupWithoutSnapshot1:BeforePut"},
{"DataVisibilityTest::PointLookupWithoutSnapshot1:AfterPut",
"DBImpl::GetImpl:4"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts_str = Timestamp(1, 0);
Slice write_ts = write_ts_str;
WriteOptions write_opts;
write_opts.timestamp = &write_ts;
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithoutSnapshot1:BeforePut");
Status s = db_->Put(write_opts, "foo", "value");
ASSERT_OK(s);
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithoutSnapshot1:AfterPut");
});
ReadOptions read_opts;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// Flush
// GetImpl(ts,seq)
// It is OK to return <k, t1, s1> if ts>=t1 AND seq>=s1. If ts>=t1 but seq<s1,
// the key should not be returned.
TEST_F(DataVisibilityTest, PointLookupWithoutSnapshot2) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::GetImpl:3",
"DataVisibilityTest::PointLookupWithoutSnapshot2:BeforePut"},
{"DataVisibilityTest::PointLookupWithoutSnapshot2:AfterPut",
"DBImpl::GetImpl:4"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts_str = Timestamp(1, 0);
Slice write_ts = write_ts_str;
WriteOptions write_opts;
write_opts.timestamp = &write_ts;
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithoutSnapshot2:BeforePut");
Status s = db_->Put(write_opts, "foo", "value");
ASSERT_OK(s);
ASSERT_OK(Flush());
write_ts_str = Timestamp(2, 0);
write_ts = write_ts_str;
write_opts.timestamp = &write_ts;
s = db_->Put(write_opts, "bar", "value");
ASSERT_OK(s);
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithoutSnapshot2:AfterPut");
});
ReadOptions read_opts;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100
// seq'=11
// write finishes
// GetImpl(ts,seq)
// Since application specifies both timestamp and snapshot, application expects
// to see data that visible in BOTH timestamp and sequence number. Therefore,
// <k, t1, s1> can be returned only if t1<=ts AND s1<=seq.
TEST_F(DataVisibilityTest, PointLookupWithSnapshot1) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::PointLookupWithSnapshot1:AfterTakingSnap",
"DataVisibilityTest::PointLookupWithSnapshot1:BeforePut"},
{"DataVisibilityTest::PointLookupWithSnapshot1:AfterPut",
"DBImpl::GetImpl:1"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts_str = Timestamp(1, 0);
Slice write_ts = write_ts_str;
WriteOptions write_opts;
write_opts.timestamp = &write_ts;
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot1:BeforePut");
Status s = db_->Put(write_opts, "foo", "value");
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot1:AfterPut");
ASSERT_OK(s);
});
ReadOptions read_opts;
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithSnapshot1:AfterTakingSnap");
read_opts.snapshot = snap;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100
// seq'=11
// write finishes
// Flush
// GetImpl(ts,seq)
// Since application specifies both timestamp and snapshot, application expects
// to see data that visible in BOTH timestamp and sequence number. Therefore,
// <k, t1, s1> can be returned only if t1<=ts AND s1<=seq.
TEST_F(DataVisibilityTest, PointLookupWithSnapshot2) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::PointLookupWithSnapshot2:AfterTakingSnap",
"DataVisibilityTest::PointLookupWithSnapshot2:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts_str = Timestamp(1, 0);
Slice write_ts = write_ts_str;
WriteOptions write_opts;
write_opts.timestamp = &write_ts;
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot2:BeforePut");
Status s = db_->Put(write_opts, "foo", "value1");
ASSERT_OK(s);
ASSERT_OK(Flush());
write_ts_str = Timestamp(2, 0);
write_ts = write_ts_str;
write_opts.timestamp = &write_ts;
s = db_->Put(write_opts, "bar", "value2");
ASSERT_OK(s);
});
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithSnapshot2:AfterTakingSnap");
writer_thread.join();
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.snapshot = snap;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
ASSERT_TRUE(s.IsNotFound());
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// scan(ts,seq)
// <k, t1, s1> can be seen in scan as long as ts>=t1 AND seq>=s1. If ts>=t1 but
// seq<s1, then the key should not be returned.
TEST_F(DataVisibilityTest, RangeScanWithoutSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::NewIterator:3",
"DataVisibilityTest::RangeScanWithoutSnapshot:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::RangeScanWithoutSnapshot:BeforePut");
for (int i = 0; i < 3; ++i) {
std::string write_ts_str = Timestamp(i + 1, 0);
Slice write_ts = write_ts_str;
write_opts.timestamp = &write_ts;
Status s = db_->Put(write_opts, "key" + std::to_string(i),
"value" + std::to_string(i));
ASSERT_OK(s);
}
});
std::string read_ts_str = Timestamp(10, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.total_order_seek = true;
read_opts.timestamp = &read_ts;
Iterator* it = db_->NewIterator(read_opts);
ASSERT_NE(nullptr, it);
writer_thread.join();
it->SeekToFirst();
ASSERT_FALSE(it->Valid());
delete it;
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100 seq'=11
// write finishes
// scan(ts,seq)
// <k, t1, s1> can be seen by the scan only if t1<=ts AND s1<=seq. If t1<=ts
// but s1>seq, then the key should not be returned.
TEST_F(DataVisibilityTest, RangeScanWithSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::RangeScanWithSnapshot:AfterTakingSnapshot",
"DataVisibilityTest::RangeScanWithSnapshot:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::RangeScanWithSnapshot:BeforePut");
for (int i = 0; i < 3; ++i) {
std::string write_ts_str = Timestamp(i + 1, 0);
Slice write_ts = write_ts_str;
write_opts.timestamp = &write_ts;
Status s = db_->Put(write_opts, "key" + std::to_string(i),
"value" + std::to_string(i));
ASSERT_OK(s);
}
});
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::RangeScanWithSnapshot:AfterTakingSnapshot");
writer_thread.join();
std::string read_ts_str = Timestamp(10, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.snapshot = snap;
read_opts.total_order_seek = true;
read_opts.timestamp = &read_ts;
Iterator* it = db_->NewIterator(read_opts);
ASSERT_NE(nullptr, it);
it->Seek("key0");
ASSERT_FALSE(it->Valid());
delete it;
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies both timestamp and snapshot.
// Query each combination and make sure for MultiGet key <k, t1, s1>, only
// return keys that ts>=t1 AND seq>=s1.
TEST_F(DataVisibilityTest, MultiGetWithTimestamp) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const Snapshot* snap0 = db_->GetSnapshot();
PutTestData(0);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
const Snapshot* snap1 = db_->GetSnapshot();
PutTestData(1);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
ASSERT_OK(Flush());
const Snapshot* snap2 = db_->GetSnapshot();
PutTestData(2);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
VerifyDefaultCF(snap2);
db_->ReleaseSnapshot(snap0);
db_->ReleaseSnapshot(snap1);
db_->ReleaseSnapshot(snap2);
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=0, 1
// ts=3
// seq=10
// seq'=11, 12
// write finishes
// MultiGet(ts,seq)
// For MultiGet <k, t1, s1>, only return keys that ts>=t1 AND seq>=s1.
TEST_F(DataVisibilityTest, MultiGetWithoutSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::MultiGet:AfterGetSeqNum1",
"DataVisibilityTest::MultiGetWithoutSnapshot:BeforePut"},
{"DataVisibilityTest::MultiGetWithoutSnapshot:AfterPut",
"DBImpl::MultiGet:AfterGetSeqNum2"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
TEST_SYNC_POINT("DataVisibilityTest::MultiGetWithoutSnapshot:BeforePut");
PutTestData(0);
PutTestData(1);
TEST_SYNC_POINT("DataVisibilityTest::MultiGetWithoutSnapshot:AfterPut");
});
ReadOptions read_opts;
std::string read_ts = Timestamp(kTestDataSize, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
auto keys = GetKeys();
std::vector<std::string> values;
auto ss = db_->MultiGet(read_opts, keys, &values);
writer_thread.join();
for (auto s : ss) {
ASSERT_TRUE(s.IsNotFound());
}
VerifyDefaultCF();
Close();
}
TEST_F(DataVisibilityTest, MultiGetCrossCF) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
CreateAndReopenWithCF({"second"}, options);
ColumnFamilyHandle* second_cf = handles_[1];
const Snapshot* snap0 = db_->GetSnapshot();
PutTestData(0);
PutTestData(0, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
const Snapshot* snap1 = db_->GetSnapshot();
PutTestData(1);
PutTestData(1, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
ASSERT_OK(Flush());
const Snapshot* snap2 = db_->GetSnapshot();
PutTestData(2);
PutTestData(2, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
VerifyDefaultCF(snap2);
ReadOptions read_opts;
std::string read_ts = Timestamp(kTestDataSize, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
read_opts.snapshot = snap1;
auto keys = GetKeys();
auto keys2 = GetKeys();
keys.insert(keys.end(), keys2.begin(), keys2.end());
std::vector<ColumnFamilyHandle*> cfs(kTestDataSize,
db_->DefaultColumnFamily());
std::vector<ColumnFamilyHandle*> cfs2(kTestDataSize, second_cf);
cfs.insert(cfs.end(), cfs2.begin(), cfs2.end());
std::vector<std::string> values;
auto ss = db_->MultiGet(read_opts, cfs, keys, &values);
for (int i = 0; i < 2 * kTestDataSize; i++) {
if (i % 3 == 0) {
// only the first key for each column family should be returned
ASSERT_OK(ss[i]);
} else {
ASSERT_TRUE(ss[i].IsNotFound());
}
}
db_->ReleaseSnapshot(snap0);
db_->ReleaseSnapshot(snap1);
db_->ReleaseSnapshot(snap2);
Close();
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DBBasicTestWithTimestampCompressionSettings
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const FilterPolicy>, CompressionType,
uint32_t, uint32_t>> {
public:
DBBasicTestWithTimestampCompressionSettings()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_compression") {}
};
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutAndGet) {
const int kNumKeysPerFile = 1024;
const size_t kNumTimestamps = 4;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
options.target_file_size_base = 1 << 26; // 64MB
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice write_ts = write_ts_list.back();
WriteOptions wopts;
wopts.timestamp = &write_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
for (size_t j = 0; j != (kNumKeysPerFile - 1) / kNumTimestamps; ++j) {
ASSERT_OK(Put(cf, Key1(j),
"value_" + std::to_string(j) + "_" + std::to_string(i),
wopts));
}
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
for (size_t j = 0; j != (kNumKeysPerFile - 1) / kNumTimestamps; ++j) {
std::string value;
ASSERT_OK(db_->Get(ropts, cfh, Key1(j), &value));
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i),
value);
}
}
}
};
verify_db_func();
Close();
}
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutDeleteGet) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
const int kNumKeysPerFile = 1024;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
options.target_file_size_base = 1 << 26; // 64MB
DestroyAndReopen(options);
const size_t kNumL0Files =
static_cast<size_t>(Options().level0_file_num_compaction_trigger);
{
// Generate enough L0 files with ts=1 to trigger compaction to L1
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
WriteOptions wopts;
wopts.timestamp = &ts;
for (size_t i = 0; i != kNumL0Files; ++i) {
for (int j = 0; j != kNumKeysPerFile; ++j) {
ASSERT_OK(db_->Put(wopts, Key1(j), "value" + std::to_string(i)));
}
ASSERT_OK(db_->Flush(FlushOptions()));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Generate another L0 at ts=3
ts_str = Timestamp(3, 0);
ts = ts_str;
wopts.timestamp = &ts;
for (int i = 0; i != kNumKeysPerFile; ++i) {
std::string key_str = Key1(i);
Slice key(key_str);
if ((i % 3) == 0) {
ASSERT_OK(db_->Delete(wopts, key));
} else {
ASSERT_OK(db_->Put(wopts, key, "new_value"));
}
}
ASSERT_OK(db_->Flush(FlushOptions()));
// Populate memtable at ts=5
ts_str = Timestamp(5, 0);
ts = ts_str;
wopts.timestamp = &ts;
for (int i = 0; i != kNumKeysPerFile; ++i) {
std::string key_str = Key1(i);
Slice key(key_str);
if ((i % 3) == 1) {
ASSERT_OK(db_->Delete(wopts, key));
} else if ((i % 3) == 2) {
ASSERT_OK(db_->Put(wopts, key, "new_value_2"));
}
}
}
{
std::string ts_str = Timestamp(6, 0);
Slice ts = ts_str;
ReadOptions ropts;
ropts.timestamp = &ts;
for (uint64_t i = 0; i != static_cast<uint64_t>(kNumKeysPerFile); ++i) {
std::string value;
Status s = db_->Get(ropts, Key1(i), &value);
if ((i % 3) == 2) {
ASSERT_OK(s);
ASSERT_EQ("new_value_2", value);
} else {
ASSERT_TRUE(s.IsNotFound());
}
}
}
}
#ifndef ROCKSDB_LITE
// A class which remembers the name of each flushed file.
class FlushedFileCollector : public EventListener {
public:
FlushedFileCollector() {}
~FlushedFileCollector() override {}
void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override {
InstrumentedMutexLock lock(&mutex_);
flushed_files_.push_back(info.file_path);
}
std::vector<std::string> GetFlushedFiles() {
std::vector<std::string> result;
{
InstrumentedMutexLock lock(&mutex_);
result = flushed_files_;
}
return result;
}
void ClearFlushedFiles() {
InstrumentedMutexLock lock(&mutex_);
flushed_files_.clear();
}
private:
std::vector<std::string> flushed_files_;
InstrumentedMutex mutex_;
};
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutAndGetWithCompaction) {
const int kNumKeysPerFile = 1024;
const size_t kNumTimestamps = 2;
const size_t kNumKeysPerTimestamp = (kNumKeysPerFile - 1) / kNumTimestamps;
const size_t kSplitPosBase = kNumKeysPerTimestamp / 2;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
FlushedFileCollector* collector = new FlushedFileCollector();
options.listeners.emplace_back(collector);
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
const auto& verify_records_func = [&](size_t i, size_t begin, size_t end,
ColumnFamilyHandle* cfh) {
std::string value;
std::string timestamp;
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp =
std::string(write_ts_list[i].data(), write_ts_list[i].size());
for (size_t j = begin; j <= end; ++j) {
ASSERT_OK(db_->Get(ropts, cfh, Key1(j), &value, &timestamp));
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i), value);
ASSERT_EQ(expected_timestamp, timestamp);
}
};
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice write_ts = write_ts_list.back();
WriteOptions wopts;
wopts.timestamp = &write_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
size_t memtable_get_start = 0;
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
ASSERT_OK(Put(cf, Key1(j),
"value_" + std::to_string(j) + "_" + std::to_string(i),
wopts));
if (j == kSplitPosBase + i || j == kNumKeysPerTimestamp - 1) {
verify_records_func(i, memtable_get_start, j, handles_[cf]);
memtable_get_start = j + 1;
// flush all keys with the same timestamp to two sst files, split at
// incremental positions such that lowerlevel[1].smallest.userkey ==
// higherlevel[0].largest.userkey
ASSERT_OK(Flush(cf));
// compact files (2 at each level) to a lower level such that all
// keys with the same timestamp is at one level, with newer versions
// at higher levels.
CompactionOptions compact_opt;
compact_opt.compression = kNoCompression;
ASSERT_OK(db_->CompactFiles(compact_opt, handles_[cf],
collector->GetFlushedFiles(),
static_cast<int>(kNumTimestamps - i)));
collector->ClearFlushedFiles();
}
}
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp(write_ts_list[i].data(),
write_ts_list[i].size());
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
verify_records_func(i, 0, kNumKeysPerTimestamp - 1, cfh);
}
}
};
verify_db_func();
Close();
}
TEST_F(DBBasicTestWithTimestamp, BatchWriteAndMultiGet) {
const int kNumKeysPerFile = 8192;
const size_t kNumTimestamps = 2;
const size_t kNumKeysPerTimestamp = (kNumKeysPerFile - 1) / kNumTimestamps;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
options.memtable_prefix_bloom_size_ratio = 0.1;
options.memtable_whole_key_filtering = true;
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(
10 /*bits_per_key*/, false /*use_block_based_builder*/));
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
const auto& verify_records_func = [&](size_t i, ColumnFamilyHandle* cfh) {
std::vector<Slice> keys;
std::vector<std::string> key_vals;
std::vector<std::string> values;
std::vector<std::string> timestamps;
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
key_vals.push_back(Key1(j));
}
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
keys.push_back(key_vals[j]);
}
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp(write_ts_list[i].data(),
write_ts_list[i].size());
std::vector<ColumnFamilyHandle*> cfhs(keys.size(), cfh);
std::vector<Status> statuses =
db_->MultiGet(ropts, cfhs, keys, &values, &timestamps);
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
ASSERT_OK(statuses[j]);
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i),
values[j]);
ASSERT_EQ(expected_timestamp, timestamps[j]);
}
};
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice& write_ts = write_ts_list.back();
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
WriteOptions wopts;
WriteBatch batch(0, 0, ts_sz);
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
ASSERT_OK(
batch.Put(handles_[cf], Key1(j),
"value_" + std::to_string(j) + "_" + std::to_string(i)));
}
ASSERT_OK(batch.AssignTimestamp(write_ts));
ASSERT_OK(db_->Write(wopts, &batch));
verify_records_func(i, handles_[cf]);
ASSERT_OK(Flush(cf));
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
verify_records_func(i, cfh);
}
}
};
verify_db_func();
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetNoReturnTs) {
Options options = CurrentOptions();
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
write_opts.timestamp = &ts;
ASSERT_OK(db_->Put(write_opts, "foo", "value"));
ASSERT_OK(db_->Put(write_opts, "bar", "value"));
ASSERT_OK(db_->Put(write_opts, "fooxxxxxxxxxxxxxxxx", "value"));
ASSERT_OK(db_->Put(write_opts, "barxxxxxxxxxxxxxxxx", "value"));
ColumnFamilyHandle* cfh = dbfull()->DefaultColumnFamily();
ts_str = Timestamp(2, 0);
ts = ts_str;
ReadOptions read_opts;
read_opts.timestamp = &ts;
{
ColumnFamilyHandle* column_families[] = {cfh, cfh};
Slice keys[] = {"foo", "bar"};
PinnableSlice values[] = {PinnableSlice(), PinnableSlice()};
Status statuses[] = {Status::OK(), Status::OK()};
dbfull()->MultiGet(read_opts, /*num_keys=*/2, &column_families[0], &keys[0],
&values[0], &statuses[0], /*sorted_input=*/false);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
}
{
ColumnFamilyHandle* column_families[] = {cfh, cfh, cfh, cfh};
// Make user keys longer than configured timestamp size (16 bytes) to
// verify RocksDB does not use the trailing bytes 'x' as timestamp.
Slice keys[] = {"fooxxxxxxxxxxxxxxxx", "barxxxxxxxxxxxxxxxx", "foo", "bar"};
PinnableSlice values[] = {PinnableSlice(), PinnableSlice(), PinnableSlice(),
PinnableSlice()};
Status statuses[] = {Status::OK(), Status::OK(), Status::OK(),
Status::OK()};
dbfull()->MultiGet(read_opts, /*num_keys=*/4, &column_families[0], &keys[0],
&values[0], &statuses[0], /*sorted_input=*/false);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
}
Close();
}
#endif // !ROCKSDB_LITE
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampCompressionSettings,
::testing::Combine(
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10, false))),
::testing::Values(kNoCompression, kZlibCompression, kLZ4Compression,
kLZ4HCCompression, kZSTD),
::testing::Values(0, 1 << 14), ::testing::Values(1, 4)));
class DBBasicTestWithTimestampPrefixSeek
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const SliceTransform>,
std::shared_ptr<const FilterPolicy>, bool,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTimestampPrefixSeek()
: DBBasicTestWithTimestampBase(
"/db_basic_test_with_timestamp_prefix_seek") {}
};
TEST_P(DBBasicTestWithTimestampPrefixSeek, IterateWithPrefix) {
const size_t kNumKeysPerFile = 128;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor = std::get<0>(GetParam());
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<1>(GetParam());
bbto.index_type = std::get<3>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
const uint64_t kMaxKey = 0xffffffffffffffff;
const uint64_t kMinKey = 0xfffffffffffff000;
const std::vector<std::string> write_ts_list = {Timestamp(3, 0xffffffff),
Timestamp(6, 0xffffffff)};
WriteOptions write_opts;
{
for (size_t i = 0; i != write_ts_list.size(); ++i) {
Slice write_ts = write_ts_list[i];
write_opts.timestamp = &write_ts;
for (uint64_t key = kMaxKey; key >= kMinKey; --key) {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(i));
ASSERT_OK(s);
}
}
}
const std::vector<std::string> read_ts_list = {Timestamp(5, 0xffffffff),
Timestamp(9, 0xffffffff)};
{
ReadOptions read_opts;
read_opts.total_order_seek = false;
read_opts.prefix_same_as_start = std::get<2>(GetParam());
fprintf(stdout, "%s %s %d\n", options.prefix_extractor->Name(),
bbto.filter_policy ? bbto.filter_policy->Name() : "null",
static_cast<int>(read_opts.prefix_same_as_start));
for (size_t i = 0; i != read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Seek to kMaxKey
iter->Seek(Key1(kMaxKey));
CheckIterUserEntry(iter.get(), Key1(kMaxKey), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
iter->Next();
ASSERT_FALSE(iter->Valid());
// Seek to kMinKey
iter->Seek(Key1(kMinKey));
CheckIterUserEntry(iter.get(), Key1(kMinKey), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
iter->Prev();
ASSERT_FALSE(iter->Valid());
}
const std::vector<uint64_t> targets = {kMinKey, kMinKey + 0x10,
kMinKey + 0x100, kMaxKey};
const SliceTransform* const pe = options.prefix_extractor.get();
ASSERT_NE(nullptr, pe);
const size_t kPrefixShift =
8 * (Key1(0).size() - pe->Transform(Key1(0)).size());
const uint64_t kPrefixMask =
~((static_cast<uint64_t>(1) << kPrefixShift) - 1);
const uint64_t kNumKeysWithinPrefix =
(static_cast<uint64_t>(1) << kPrefixShift);
for (size_t i = 0; i != read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
// Forward and backward iterate.
for (size_t j = 0; j != targets.size(); ++j) {
std::string start_key = Key1(targets[j]);
uint64_t expected_ub =
(targets[j] & kPrefixMask) - 1 + kNumKeysWithinPrefix;
uint64_t expected_key = targets[j];
size_t count = 0;
it->Seek(Key1(targets[j]));
while (it->Valid()) {
std::string saved_prev_key;
saved_prev_key.assign(it->key().data(), it->key().size());
// Out of prefix
if (!read_opts.prefix_same_as_start &&
pe->Transform(saved_prev_key) != pe->Transform(start_key)) {
break;
}
CheckIterUserEntry(it.get(), Key1(expected_key), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
++count;
++expected_key;
it->Next();
}
ASSERT_EQ(expected_ub - targets[j] + 1, count);
count = 0;
expected_key = targets[j];
it->SeekForPrev(start_key);
uint64_t expected_lb = (targets[j] & kPrefixMask);
while (it->Valid()) {
// Out of prefix
if (!read_opts.prefix_same_as_start &&
pe->Transform(it->key()) != pe->Transform(start_key)) {
break;
}
CheckIterUserEntry(it.get(), Key1(expected_key), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
++count;
--expected_key;
it->Prev();
}
ASSERT_EQ(targets[j] - std::max(expected_lb, kMinKey) + 1, count);
}
}
}
Close();
}
// TODO(yanqin): consider handling non-fixed-length prefix extractors, e.g.
// NoopTransform.
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampPrefixSeek,
::testing::Combine(
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(1)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(4)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10 /*bits_per_key*/, false)),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(20 /*bits_per_key*/,
false))),
::testing::Bool(),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
class DBBasicTestWithTsIterTombstones
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const SliceTransform>,
std::shared_ptr<const FilterPolicy>, int,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTsIterTombstones()
: DBBasicTestWithTimestampBase("/db_basic_ts_iter_tombstones") {}
};
TEST_P(DBBasicTestWithTsIterTombstones, IterWithDelete) {
constexpr size_t kNumKeysPerFile = 128;
Options options = CurrentOptions();
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor = std::get<0>(GetParam());
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<1>(GetParam());
bbto.index_type = std::get<3>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.num_levels = std::get<2>(GetParam());
DestroyAndReopen(options);
std::vector<std::string> write_ts_strs = {Timestamp(2, 0), Timestamp(4, 0)};
constexpr uint64_t kMaxKey = 0xffffffffffffffff;
constexpr uint64_t kMinKey = 0xfffffffffffff000;
// Insert kMinKey...kMaxKey
uint64_t key = kMinKey;
WriteOptions write_opts;
Slice ts = write_ts_strs[0];
write_opts.timestamp = &ts;
do {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(key));
ASSERT_OK(s);
if (kMaxKey == key) {
break;
}
++key;
} while (true);
ts = write_ts_strs[1];
write_opts.timestamp = &ts;
for (key = kMaxKey; key >= kMinKey; --key) {
Status s;
if (0 != (key % 2)) {
s = db_->Put(write_opts, Key1(key), "value1" + std::to_string(key));
} else {
s = db_->Delete(write_opts, Key1(key));
}
ASSERT_OK(s);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
{
std::string read_ts = Timestamp(4, 0);
ts = read_ts;
ReadOptions read_opts;
read_opts.total_order_seek = true;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
size_t count = 0;
key = kMinKey + 1;
for (iter->SeekToFirst(); iter->Valid(); iter->Next(), ++count, key += 2) {
ASSERT_EQ(Key1(key), iter->key());
ASSERT_EQ("value1" + std::to_string(key), iter->value());
}
ASSERT_EQ((kMaxKey - kMinKey + 1) / 2, count);
for (iter->SeekToLast(), count = 0, key = kMaxKey; iter->Valid();
key -= 2, ++count, iter->Prev()) {
ASSERT_EQ(Key1(key), iter->key());
ASSERT_EQ("value1" + std::to_string(key), iter->value());
}
ASSERT_EQ((kMaxKey - kMinKey + 1) / 2, count);
}
Close();
}
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTsIterTombstones,
::testing::Combine(
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10, false)),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(20, false))),
::testing::Values(2, 6),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
} // namespace ROCKSDB_NAMESPACE
#ifdef ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
extern "C" {
void RegisterCustomObjects(int argc, char** argv);
}
#else
void RegisterCustomObjects(int /*argc*/, char** /*argv*/) {}
#endif // !ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}