fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
6.7 KiB
192 lines
6.7 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
|
|
#include "rocksdb/slice.h"
|
|
|
|
#include "port/port.h"
|
|
#include "util/hash.h"
|
|
|
|
#include <atomic>
|
|
#include <memory>
|
|
|
|
namespace rocksdb {
|
|
|
|
class Slice;
|
|
class Allocator;
|
|
class Logger;
|
|
|
|
// A Bloom filter intended only to be used in memory, never serialized in a way
|
|
// that could lead to schema incompatibility. Supports opt-in lock-free
|
|
// concurrent access.
|
|
//
|
|
// This implementation is also intended for applications generally preferring
|
|
// speed vs. maximum accuracy: roughly 0.9x BF op latency for 1.1x FP rate.
|
|
// For 1% FP rate, that means that the latency of a look-up triggered by an FP
|
|
// should be less than roughly 100x the cost of a Bloom filter op.
|
|
//
|
|
// For simplicity and performance, the current implementation requires
|
|
// num_probes to be a multiple of two and <= 10.
|
|
//
|
|
class DynamicBloom {
|
|
public:
|
|
// allocator: pass allocator to bloom filter, hence trace the usage of memory
|
|
// total_bits: fixed total bits for the bloom
|
|
// num_probes: number of hash probes for a single key
|
|
// hash_func: customized hash function
|
|
// huge_page_tlb_size: if >0, try to allocate bloom bytes from huge page TLB
|
|
// within this page size. Need to reserve huge pages for
|
|
// it to be allocated, like:
|
|
// sysctl -w vm.nr_hugepages=20
|
|
// See linux doc Documentation/vm/hugetlbpage.txt
|
|
explicit DynamicBloom(Allocator* allocator,
|
|
uint32_t total_bits,
|
|
uint32_t num_probes = 6,
|
|
size_t huge_page_tlb_size = 0,
|
|
Logger* logger = nullptr);
|
|
|
|
~DynamicBloom() {}
|
|
|
|
// Assuming single threaded access to this function.
|
|
void Add(const Slice& key);
|
|
|
|
// Like Add, but may be called concurrent with other functions.
|
|
void AddConcurrently(const Slice& key);
|
|
|
|
// Assuming single threaded access to this function.
|
|
void AddHash(uint32_t hash);
|
|
|
|
// Like AddHash, but may be called concurrent with other functions.
|
|
void AddHashConcurrently(uint32_t hash);
|
|
|
|
// Multithreaded access to this function is OK
|
|
bool MayContain(const Slice& key) const;
|
|
|
|
// Multithreaded access to this function is OK
|
|
bool MayContainHash(uint32_t hash) const;
|
|
|
|
void Prefetch(uint32_t h);
|
|
|
|
private:
|
|
// Length of the structure, in 64-bit words. For this structure, "word"
|
|
// will always refer to 64-bit words.
|
|
uint32_t kLen;
|
|
// We make the k probes in pairs, two for each 64-bit read/write. Thus,
|
|
// this stores k/2, the number of words to double-probe.
|
|
const uint32_t kNumDoubleProbes;
|
|
|
|
std::atomic<uint64_t>* data_;
|
|
|
|
// or_func(ptr, mask) should effect *ptr |= mask with the appropriate
|
|
// concurrency safety, working with bytes.
|
|
template <typename OrFunc>
|
|
void AddHash(uint32_t hash, const OrFunc& or_func);
|
|
};
|
|
|
|
inline void DynamicBloom::Add(const Slice& key) { AddHash(BloomHash(key)); }
|
|
|
|
inline void DynamicBloom::AddConcurrently(const Slice& key) {
|
|
AddHashConcurrently(BloomHash(key));
|
|
}
|
|
|
|
inline void DynamicBloom::AddHash(uint32_t hash) {
|
|
AddHash(hash, [](std::atomic<uint64_t>* ptr, uint64_t mask) {
|
|
ptr->store(ptr->load(std::memory_order_relaxed) | mask,
|
|
std::memory_order_relaxed);
|
|
});
|
|
}
|
|
|
|
inline void DynamicBloom::AddHashConcurrently(uint32_t hash) {
|
|
AddHash(hash, [](std::atomic<uint64_t>* ptr, uint64_t mask) {
|
|
// Happens-before between AddHash and MaybeContains is handled by
|
|
// access to versions_->LastSequence(), so all we have to do here is
|
|
// avoid races (so we don't give the compiler a license to mess up
|
|
// our code) and not lose bits. std::memory_order_relaxed is enough
|
|
// for that.
|
|
if ((mask & ptr->load(std::memory_order_relaxed)) != mask) {
|
|
ptr->fetch_or(mask, std::memory_order_relaxed);
|
|
}
|
|
});
|
|
}
|
|
|
|
inline bool DynamicBloom::MayContain(const Slice& key) const {
|
|
return (MayContainHash(BloomHash(key)));
|
|
}
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(push)
|
|
// local variable is initialized but not referenced
|
|
#pragma warning(disable : 4189)
|
|
#endif
|
|
inline void DynamicBloom::Prefetch(uint32_t h32) {
|
|
size_t a = fastrange32(kLen, h32);
|
|
PREFETCH(data_ + a, 0, 3);
|
|
}
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
// Speed hacks in this implementation:
|
|
// * Uses fastrange instead of %
|
|
// * Minimum logic to determine first (and all) probed memory addresses.
|
|
// (Uses constant bit-xor offsets from the starting probe address.)
|
|
// * (Major) Two probes per 64-bit memory fetch/write.
|
|
// Code simplification / optimization: only allow even number of probes.
|
|
// * Very fast and effective (murmur-like) hash expansion/re-mixing. (At
|
|
// least on recent CPUs, integer multiplication is very cheap. Each 64-bit
|
|
// remix provides five pairs of bit addresses within a uint64_t.)
|
|
// Code simplification / optimization: only allow up to 10 probes, from a
|
|
// single 64-bit remix.
|
|
//
|
|
// The FP rate penalty for this implementation, vs. standard Bloom filter, is
|
|
// roughly 1.12x on top of the 1.15x penalty for a 512-bit cache-local Bloom.
|
|
// This implementation does not explicitly use the cache line size, but is
|
|
// effectively cache-local (up to 16 probes) because of the bit-xor offsetting.
|
|
//
|
|
// NB: could easily be upgraded to support a 64-bit hash and
|
|
// total_bits > 2^32 (512MB). (The latter is a bad idea without the former,
|
|
// because of false positives.)
|
|
|
|
inline bool DynamicBloom::MayContainHash(uint32_t h32) const {
|
|
size_t a = fastrange32(kLen, h32);
|
|
PREFETCH(data_ + a, 0, 3);
|
|
// Expand/remix with 64-bit golden ratio
|
|
uint64_t h = 0x9e3779b97f4a7c13ULL * h32;
|
|
for (unsigned i = 0;; ++i) {
|
|
// Two bit probes per uint64_t probe
|
|
uint64_t mask = ((uint64_t)1 << (h & 63))
|
|
| ((uint64_t)1 << ((h >> 6) & 63));
|
|
uint64_t val = data_[a ^ i].load(std::memory_order_relaxed);
|
|
if (i + 1 >= kNumDoubleProbes) {
|
|
return (val & mask) == mask;
|
|
} else if ((val & mask) != mask) {
|
|
return false;
|
|
}
|
|
h = (h >> 12) | (h << 52);
|
|
}
|
|
}
|
|
|
|
template <typename OrFunc>
|
|
inline void DynamicBloom::AddHash(uint32_t h32, const OrFunc& or_func) {
|
|
size_t a = fastrange32(kLen, h32);
|
|
PREFETCH(data_ + a, 0, 3);
|
|
// Expand/remix with 64-bit golden ratio
|
|
uint64_t h = 0x9e3779b97f4a7c13ULL * h32;
|
|
for (unsigned i = 0;; ++i) {
|
|
// Two bit probes per uint64_t probe
|
|
uint64_t mask = ((uint64_t)1 << (h & 63))
|
|
| ((uint64_t)1 << ((h >> 6) & 63));
|
|
or_func(&data_[a ^ i], mask);
|
|
if (i + 1 >= kNumDoubleProbes) {
|
|
return;
|
|
}
|
|
h = (h >> 12) | (h << 52);
|
|
}
|
|
}
|
|
|
|
} // rocksdb
|
|
|