You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/compaction_iterator.cc

339 lines
13 KiB

// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#include "db/compaction_iterator.h"
#include "table/internal_iterator.h"
namespace rocksdb {
CompactionIterator::CompactionIterator(
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
Env* env, bool expect_valid_internal_key, Compaction* compaction,
const CompactionFilter* compaction_filter, LogBuffer* log_buffer)
: input_(input),
cmp_(cmp),
merge_helper_(merge_helper),
snapshots_(snapshots),
env_(env),
expect_valid_internal_key_(expect_valid_internal_key),
compaction_(compaction),
compaction_filter_(compaction_filter),
log_buffer_(log_buffer),
merge_out_iter_(merge_helper_) {
assert(compaction_filter_ == nullptr || compaction_ != nullptr);
bottommost_level_ =
compaction_ == nullptr ? false : compaction_->bottommost_level();
if (compaction_ != nullptr) {
level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
}
if (snapshots_->size() == 0) {
// optimize for fast path if there are no snapshots
visible_at_tip_ = last_sequence;
earliest_snapshot_ = visible_at_tip_;
latest_snapshot_ = 0;
} else {
visible_at_tip_ = 0;
earliest_snapshot_ = snapshots_->at(0);
latest_snapshot_ = snapshots_->back();
}
}
void CompactionIterator::ResetRecordCounts() {
iter_stats_.num_record_drop_user = 0;
iter_stats_.num_record_drop_hidden = 0;
iter_stats_.num_record_drop_obsolete = 0;
}
void CompactionIterator::SeekToFirst() {
NextFromInput();
PrepareOutput();
}
void CompactionIterator::Next() {
// If there is a merge output, return it before continuing to process the
// input.
if (merge_out_iter_.Valid()) {
merge_out_iter_.Next();
// Check if we returned all records of the merge output.
if (merge_out_iter_.Valid()) {
key_ = merge_out_iter_.key();
value_ = merge_out_iter_.value();
bool valid_key __attribute__((__unused__)) =
ParseInternalKey(key_, &ikey_);
// MergeUntil stops when it encounters a corrupt key and does not
// include them in the result, so we expect the keys here to be valid.
assert(valid_key);
// Keep current_key_ in sync.
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
key_ = current_key_.GetKey();
ikey_.user_key = current_key_.GetUserKey();
valid_ = true;
} else {
// MergeHelper moves the iterator to the first record after the merged
// records, so even though we reached the end of the merge output, we do
// not want to advance the iterator.
NextFromInput();
}
} else {
// Only advance the input iterator if there is no merge output and the
// iterator is not already at the next record.
if (!at_next_) {
input_->Next();
}
NextFromInput();
}
PrepareOutput();
}
void CompactionIterator::NextFromInput() {
at_next_ = false;
valid_ = false;
while (!valid_ && input_->Valid()) {
key_ = input_->key();
value_ = input_->value();
iter_stats_.num_input_records++;
if (!ParseInternalKey(key_, &ikey_)) {
// If `expect_valid_internal_key_` is false, return the corrupted key
// and let the caller decide what to do with it.
// TODO(noetzli): We should have a more elegant solution for this.
if (expect_valid_internal_key_) {
assert(!"Corrupted internal key not expected.");
status_ = Status::Corruption("Corrupted internal key not expected.");
break;
}
key_ = current_key_.SetKey(key_);
has_current_user_key_ = false;
current_user_key_sequence_ = kMaxSequenceNumber;
current_user_key_snapshot_ = 0;
iter_stats_.num_input_corrupt_records++;
valid_ = true;
break;
}
// Update input statistics
if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion) {
iter_stats_.num_input_deletion_records++;
}
iter_stats_.total_input_raw_key_bytes += key_.size();
iter_stats_.total_input_raw_value_bytes += value_.size();
// Check whether the user key changed. After this if statement current_key_
// is a copy of the current input key (maybe converted to a delete by the
// compaction filter). ikey_.user_key is pointing to the copy.
if (!has_current_user_key_ ||
!cmp_->Equal(ikey_.user_key, current_user_key_)) {
// First occurrence of this user key
key_ = current_key_.SetKey(key_, &ikey_);
current_user_key_ = ikey_.user_key;
has_current_user_key_ = true;
current_user_key_sequence_ = kMaxSequenceNumber;
current_user_key_snapshot_ = 0;
// apply the compaction filter to the first occurrence of the user key
if (compaction_filter_ != nullptr && ikey_.type == kTypeValue &&
(visible_at_tip_ || ikey_.sequence > latest_snapshot_)) {
// If the user has specified a compaction filter and the sequence
// number is greater than any external snapshot, then invoke the
// filter. If the return value of the compaction filter is true,
// replace the entry with a deletion marker.
bool value_changed = false;
bool to_delete = false;
compaction_filter_value_.clear();
{
StopWatchNano timer(env_, true);
to_delete = compaction_filter_->Filter(
compaction_->level(), ikey_.user_key, value_,
&compaction_filter_value_, &value_changed);
iter_stats_.total_filter_time +=
env_ != nullptr ? timer.ElapsedNanos() : 0;
}
if (to_delete) {
// convert the current key to a delete
ikey_.type = kTypeDeletion;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
// no value associated with delete
value_.clear();
iter_stats_.num_record_drop_user++;
} else if (value_changed) {
value_ = compaction_filter_value_;
}
}
} else {
// Update the current key to reflect the new sequence number/type without
// copying the user key.
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
key_ = current_key_.GetKey();
ikey_.user_key = current_key_.GetUserKey();
}
// If there are no snapshots, then this kv affect visibility at tip.
// Otherwise, search though all existing snapshots to find the earliest
// snapshot that is affected by this kv.
SequenceNumber last_sequence __attribute__((__unused__)) =
current_user_key_sequence_;
current_user_key_sequence_ = ikey_.sequence;
SequenceNumber last_snapshot = current_user_key_snapshot_;
SequenceNumber prev_snapshot = 0; // 0 means no previous snapshot
current_user_key_snapshot_ =
visible_at_tip_ ? visible_at_tip_ : findEarliestVisibleSnapshot(
ikey_.sequence, &prev_snapshot);
if (ikey_.type == kTypeSingleDeletion) {
ParsedInternalKey next_ikey;
input_->Next();
// Check whether the current key is valid, not corrupt and the same
// as the single delete.
if (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) &&
cmp_->Equal(ikey_.user_key, next_ikey.user_key)) {
// Mixing single deletes and merges is not supported. Consecutive
// single deletes are not valid.
if (next_ikey.type != kTypeValue) {
assert(false);
status_ =
Status::InvalidArgument("Put expected after single delete.");
break;
}
// Check whether the current key belongs to the same snapshot as the
// single delete.
if (prev_snapshot == 0 || next_ikey.sequence > prev_snapshot) {
// Found the matching value, we can drop the single delete and the
// value.
++iter_stats_.num_record_drop_hidden;
++iter_stats_.num_record_drop_obsolete;
input_->Next();
} else {
// We hit the next snapshot without hitting a put, so the iterator
// returns the single delete.
valid_ = true;
}
} else {
// We are at the end of the input, could not parse the next key, or hit
// the next key. The iterator returns the single delete if the key
// possibly exists beyond the current output level. We set
// has_current_user_key to false so that if the iterator is at the next
// key, we do not compare it again against the previous key at the next
// iteration. If the next key is corrupt, we return before the
// comparison, so the value of has_current_user_key does not matter.
has_current_user_key_ = false;
if (compaction_ != nullptr &&
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
&level_ptrs_)) {
++iter_stats_.num_record_drop_obsolete;
} else {
valid_ = true;
}
}
if (valid_) {
at_next_ = true;
}
} else if (last_snapshot == current_user_key_snapshot_) {
// If the earliest snapshot is which this key is visible in
// is the same as the visibility of a previous instance of the
// same key, then this kv is not visible in any snapshot.
// Hidden by an newer entry for same user key
// TODO: why not > ?
assert(last_sequence >= current_user_key_sequence_);
++iter_stats_.num_record_drop_hidden; // (A)
input_->Next();
} else if (compaction_ != nullptr && ikey_.type == kTypeDeletion &&
ikey_.sequence <= earliest_snapshot_ &&
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
&level_ptrs_)) {
// TODO(noetzli): This is the only place where we use compaction_
// (besides the constructor). We should probably get rid of this
// dependency and find a way to do similar filtering during flushes.
//
// For this user key:
// (1) there is no data in higher levels
// (2) data in lower levels will have larger sequence numbers
// (3) data in layers that are being compacted here and have
// smaller sequence numbers will be dropped in the next
// few iterations of this loop (by rule (A) above).
// Therefore this deletion marker is obsolete and can be dropped.
++iter_stats_.num_record_drop_obsolete;
input_->Next();
} else if (ikey_.type == kTypeMerge) {
if (!merge_helper_->HasOperator()) {
LogToBuffer(log_buffer_, "Options::merge_operator is null.");
status_ = Status::InvalidArgument(
"merge_operator is not properly initialized.");
return;
}
// We know the merge type entry is not hidden, otherwise we would
// have hit (A)
// We encapsulate the merge related state machine in a different
// object to minimize change to the existing flow.
merge_helper_->MergeUntil(input_, prev_snapshot, bottommost_level_);
merge_out_iter_.SeekToFirst();
if (merge_out_iter_.Valid()) {
// NOTE: key, value, and ikey_ refer to old entries.
// These will be correctly set below.
key_ = merge_out_iter_.key();
value_ = merge_out_iter_.value();
bool valid_key __attribute__((__unused__)) =
ParseInternalKey(key_, &ikey_);
// MergeUntil stops when it encounters a corrupt key and does not
// include them in the result, so we expect the keys here to valid.
assert(valid_key);
// Keep current_key_ in sync.
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
key_ = current_key_.GetKey();
ikey_.user_key = current_key_.GetUserKey();
valid_ = true;
} else {
// all merge operands were filtered out. reset the user key, since the
// batch consumed by the merge operator should not shadow any keys
// coming after the merges
has_current_user_key_ = false;
}
} else {
valid_ = true;
}
}
}
void CompactionIterator::PrepareOutput() {
// Zeroing out the sequence number leads to better compression.
// If this is the bottommost level (no files in lower levels)
// and the earliest snapshot is larger than this seqno
// then we can squash the seqno to zero.
if (bottommost_level_ && valid_ && ikey_.sequence < earliest_snapshot_ &&
ikey_.type != kTypeMerge) {
assert(ikey_.type != kTypeDeletion && ikey_.type != kTypeSingleDeletion);
ikey_.sequence = 0;
current_key_.UpdateInternalKey(0, ikey_.type);
}
}
inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
SequenceNumber in, SequenceNumber* prev_snapshot) {
assert(snapshots_->size());
SequenceNumber prev __attribute__((unused)) = 0;
for (const auto cur : *snapshots_) {
assert(prev <= cur);
if (cur >= in) {
*prev_snapshot = prev;
return cur;
}
prev = cur;
assert(prev);
}
*prev_snapshot = prev;
return kMaxSequenceNumber;
}
} // namespace rocksdb