fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
18 KiB
440 lines
18 KiB
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
#include "db/compaction_iterator.h"
|
|
#include "table/internal_iterator.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
CompactionIterator::CompactionIterator(
|
|
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
|
|
SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
|
|
SequenceNumber earliest_write_conflict_snapshot, Env* env,
|
|
bool expect_valid_internal_key, const Compaction* compaction,
|
|
const CompactionFilter* compaction_filter, LogBuffer* log_buffer)
|
|
: input_(input),
|
|
cmp_(cmp),
|
|
merge_helper_(merge_helper),
|
|
snapshots_(snapshots),
|
|
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
|
|
env_(env),
|
|
expect_valid_internal_key_(expect_valid_internal_key),
|
|
compaction_(compaction),
|
|
compaction_filter_(compaction_filter),
|
|
log_buffer_(log_buffer),
|
|
merge_out_iter_(merge_helper_) {
|
|
assert(compaction_filter_ == nullptr || compaction_ != nullptr);
|
|
bottommost_level_ =
|
|
compaction_ == nullptr ? false : compaction_->bottommost_level();
|
|
if (compaction_ != nullptr) {
|
|
level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
|
|
}
|
|
|
|
if (snapshots_->size() == 0) {
|
|
// optimize for fast path if there are no snapshots
|
|
visible_at_tip_ = last_sequence;
|
|
earliest_snapshot_ = visible_at_tip_;
|
|
latest_snapshot_ = 0;
|
|
} else {
|
|
visible_at_tip_ = 0;
|
|
earliest_snapshot_ = snapshots_->at(0);
|
|
latest_snapshot_ = snapshots_->back();
|
|
}
|
|
if (compaction_filter_ != nullptr && compaction_filter_->IgnoreSnapshots()) {
|
|
ignore_snapshots_ = true;
|
|
} else {
|
|
ignore_snapshots_ = false;
|
|
}
|
|
}
|
|
|
|
void CompactionIterator::ResetRecordCounts() {
|
|
iter_stats_.num_record_drop_user = 0;
|
|
iter_stats_.num_record_drop_hidden = 0;
|
|
iter_stats_.num_record_drop_obsolete = 0;
|
|
}
|
|
|
|
void CompactionIterator::SeekToFirst() {
|
|
NextFromInput();
|
|
PrepareOutput();
|
|
}
|
|
|
|
void CompactionIterator::Next() {
|
|
// If there is a merge output, return it before continuing to process the
|
|
// input.
|
|
if (merge_out_iter_.Valid()) {
|
|
merge_out_iter_.Next();
|
|
|
|
// Check if we returned all records of the merge output.
|
|
if (merge_out_iter_.Valid()) {
|
|
key_ = merge_out_iter_.key();
|
|
value_ = merge_out_iter_.value();
|
|
bool valid_key __attribute__((__unused__)) =
|
|
ParseInternalKey(key_, &ikey_);
|
|
// MergeUntil stops when it encounters a corrupt key and does not
|
|
// include them in the result, so we expect the keys here to be valid.
|
|
assert(valid_key);
|
|
// Keep current_key_ in sync.
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
valid_ = true;
|
|
} else {
|
|
// MergeHelper moves the iterator to the first record after the merged
|
|
// records, so even though we reached the end of the merge output, we do
|
|
// not want to advance the iterator.
|
|
NextFromInput();
|
|
}
|
|
} else {
|
|
// Only advance the input iterator if there is no merge output and the
|
|
// iterator is not already at the next record.
|
|
if (!at_next_) {
|
|
input_->Next();
|
|
}
|
|
NextFromInput();
|
|
}
|
|
|
|
if (valid_) {
|
|
// Record that we've ouputted a record for the current key.
|
|
has_outputted_key_ = true;
|
|
}
|
|
|
|
PrepareOutput();
|
|
}
|
|
|
|
void CompactionIterator::NextFromInput() {
|
|
at_next_ = false;
|
|
valid_ = false;
|
|
|
|
while (!valid_ && input_->Valid()) {
|
|
key_ = input_->key();
|
|
value_ = input_->value();
|
|
iter_stats_.num_input_records++;
|
|
|
|
if (!ParseInternalKey(key_, &ikey_)) {
|
|
// If `expect_valid_internal_key_` is false, return the corrupted key
|
|
// and let the caller decide what to do with it.
|
|
// TODO(noetzli): We should have a more elegant solution for this.
|
|
if (expect_valid_internal_key_) {
|
|
assert(!"Corrupted internal key not expected.");
|
|
status_ = Status::Corruption("Corrupted internal key not expected.");
|
|
break;
|
|
}
|
|
key_ = current_key_.SetKey(key_);
|
|
has_current_user_key_ = false;
|
|
current_user_key_sequence_ = kMaxSequenceNumber;
|
|
current_user_key_snapshot_ = 0;
|
|
iter_stats_.num_input_corrupt_records++;
|
|
valid_ = true;
|
|
break;
|
|
}
|
|
|
|
// Update input statistics
|
|
if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion) {
|
|
iter_stats_.num_input_deletion_records++;
|
|
}
|
|
iter_stats_.total_input_raw_key_bytes += key_.size();
|
|
iter_stats_.total_input_raw_value_bytes += value_.size();
|
|
|
|
// Check whether the user key changed. After this if statement current_key_
|
|
// is a copy of the current input key (maybe converted to a delete by the
|
|
// compaction filter). ikey_.user_key is pointing to the copy.
|
|
if (!has_current_user_key_ ||
|
|
!cmp_->Equal(ikey_.user_key, current_user_key_)) {
|
|
// First occurrence of this user key
|
|
key_ = current_key_.SetKey(key_, &ikey_);
|
|
current_user_key_ = ikey_.user_key;
|
|
has_current_user_key_ = true;
|
|
has_outputted_key_ = false;
|
|
current_user_key_sequence_ = kMaxSequenceNumber;
|
|
current_user_key_snapshot_ = 0;
|
|
|
|
// apply the compaction filter to the first occurrence of the user key
|
|
if (compaction_filter_ != nullptr && ikey_.type == kTypeValue &&
|
|
(visible_at_tip_ || ikey_.sequence > latest_snapshot_ ||
|
|
ignore_snapshots_)) {
|
|
// If the user has specified a compaction filter and the sequence
|
|
// number is greater than any external snapshot, then invoke the
|
|
// filter. If the return value of the compaction filter is true,
|
|
// replace the entry with a deletion marker.
|
|
bool value_changed = false;
|
|
bool to_delete = false;
|
|
compaction_filter_value_.clear();
|
|
{
|
|
StopWatchNano timer(env_, true);
|
|
to_delete = compaction_filter_->Filter(
|
|
compaction_->level(), ikey_.user_key, value_,
|
|
&compaction_filter_value_, &value_changed);
|
|
iter_stats_.total_filter_time +=
|
|
env_ != nullptr ? timer.ElapsedNanos() : 0;
|
|
}
|
|
if (to_delete) {
|
|
// convert the current key to a delete
|
|
ikey_.type = kTypeDeletion;
|
|
current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
|
|
// no value associated with delete
|
|
value_.clear();
|
|
iter_stats_.num_record_drop_user++;
|
|
} else if (value_changed) {
|
|
value_ = compaction_filter_value_;
|
|
}
|
|
}
|
|
} else {
|
|
// Update the current key to reflect the new sequence number/type without
|
|
// copying the user key.
|
|
// TODO(rven): Compaction filter does not process keys in this path
|
|
// Need to have the compaction filter process multiple versions
|
|
// if we have versions on both sides of a snapshot
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
}
|
|
|
|
// If there are no snapshots, then this kv affect visibility at tip.
|
|
// Otherwise, search though all existing snapshots to find the earliest
|
|
// snapshot that is affected by this kv.
|
|
SequenceNumber last_sequence __attribute__((__unused__)) =
|
|
current_user_key_sequence_;
|
|
current_user_key_sequence_ = ikey_.sequence;
|
|
SequenceNumber last_snapshot = current_user_key_snapshot_;
|
|
SequenceNumber prev_snapshot = 0; // 0 means no previous snapshot
|
|
current_user_key_snapshot_ =
|
|
visible_at_tip_ ? visible_at_tip_ : findEarliestVisibleSnapshot(
|
|
ikey_.sequence, &prev_snapshot);
|
|
|
|
if (clear_and_output_next_key_) {
|
|
// In the previous iteration we encountered a single delete that we could
|
|
// not compact out. We will keep this Put, but can drop it's data.
|
|
// (See Optimization 3, below.)
|
|
assert(ikey_.type == kTypeValue);
|
|
assert(current_user_key_snapshot_ == last_snapshot);
|
|
|
|
value_.clear();
|
|
valid_ = true;
|
|
clear_and_output_next_key_ = false;
|
|
} else if (ikey_.type == kTypeSingleDeletion) {
|
|
// We can compact out a SingleDelete if:
|
|
// 1) We encounter the corresponding PUT -OR- we know that this key
|
|
// doesn't appear past this output level
|
|
// =AND=
|
|
// 2) We've already returned a record in this snapshot -OR-
|
|
// there are no earlier earliest_write_conflict_snapshot.
|
|
//
|
|
// Rule 1 is needed for SingleDelete correctness. Rule 2 is needed to
|
|
// allow Transactions to do write-conflict checking (if we compacted away
|
|
// all keys, then we wouldn't know that a write happened in this
|
|
// snapshot). If there is no earlier snapshot, then we know that there
|
|
// are no active transactions that need to know about any writes.
|
|
//
|
|
// Optimization 3:
|
|
// If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT
|
|
// true, then we must output a SingleDelete. In this case, we will decide
|
|
// to also output the PUT. While we are compacting less by outputting the
|
|
// PUT now, hopefully this will lead to better compaction in the future
|
|
// when Rule 2 is later true (Ie, We are hoping we can later compact out
|
|
// both the SingleDelete and the Put, while we couldn't if we only
|
|
// outputted the SingleDelete now).
|
|
// In this case, we can save space by removing the PUT's value as it will
|
|
// never be read.
|
|
//
|
|
// Deletes and Merges are not supported on the same key that has a
|
|
// SingleDelete as it is not possible to correctly do any partial
|
|
// compaction of such a combination of operations. The result of mixing
|
|
// those operations for a given key is documented as being undefined. So
|
|
// we can choose how to handle such a combinations of operations. We will
|
|
// try to compact out as much as we can in these cases.
|
|
|
|
// The easiest way to process a SingleDelete during iteration is to peek
|
|
// ahead at the next key.
|
|
ParsedInternalKey next_ikey;
|
|
input_->Next();
|
|
|
|
// Check whether the next key exists, is not corrupt, and is the same key
|
|
// as the single delete.
|
|
if (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) &&
|
|
cmp_->Equal(ikey_.user_key, next_ikey.user_key)) {
|
|
// Check whether the next key belongs to the same snapshot as the
|
|
// SingleDelete.
|
|
if (prev_snapshot == 0 || next_ikey.sequence > prev_snapshot) {
|
|
if (next_ikey.type == kTypeSingleDeletion) {
|
|
// We encountered two SingleDeletes in a row. This could be due to
|
|
// unexpected user input.
|
|
// Skip the first SingleDelete and let the next iteration decide how
|
|
// to handle the second SingleDelete
|
|
|
|
// First SingleDelete has been skipped since we already called
|
|
// input_->Next().
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
} else if ((ikey_.sequence <= earliest_write_conflict_snapshot_) ||
|
|
has_outputted_key_) {
|
|
// Found a matching value, we can drop the single delete and the
|
|
// value. It is safe to drop both records since we've already
|
|
// outputted a key in this snapshot, or there is no earlier
|
|
// snapshot (Rule 2 above).
|
|
|
|
// Note: it doesn't matter whether the second key is a Put or if it
|
|
// is an unexpected Merge or Delete. We will compact it out
|
|
// either way.
|
|
++iter_stats_.num_record_drop_hidden;
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
// Already called input_->Next() once. Call it a second time to
|
|
// skip past the second key.
|
|
input_->Next();
|
|
} else {
|
|
// Found a matching value, but we cannot drop both keys since
|
|
// there is an earlier snapshot and we need to leave behind a record
|
|
// to know that a write happened in this snapshot (Rule 2 above).
|
|
// Clear the value and output the SingleDelete. (The value will be
|
|
// outputted on the next iteration.)
|
|
++iter_stats_.num_record_drop_hidden;
|
|
|
|
// Setting valid_ to true will output the current SingleDelete
|
|
valid_ = true;
|
|
|
|
// Set up the Put to be outputted in the next iteration.
|
|
// (Optimization 3).
|
|
clear_and_output_next_key_ = true;
|
|
}
|
|
} else {
|
|
// We hit the next snapshot without hitting a put, so the iterator
|
|
// returns the single delete.
|
|
valid_ = true;
|
|
}
|
|
} else {
|
|
// We are at the end of the input, could not parse the next key, or hit
|
|
// the next key. The iterator returns the single delete if the key
|
|
// possibly exists beyond the current output level. We set
|
|
// has_current_user_key to false so that if the iterator is at the next
|
|
// key, we do not compare it again against the previous key at the next
|
|
// iteration. If the next key is corrupt, we return before the
|
|
// comparison, so the value of has_current_user_key does not matter.
|
|
has_current_user_key_ = false;
|
|
if (compaction_ != nullptr && ikey_.sequence <= earliest_snapshot_ &&
|
|
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
|
|
&level_ptrs_)) {
|
|
// Key doesn't exist outside of this range.
|
|
// Can compact out this SingleDelete.
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
} else {
|
|
// Output SingleDelete
|
|
valid_ = true;
|
|
}
|
|
}
|
|
|
|
if (valid_) {
|
|
at_next_ = true;
|
|
}
|
|
} else if (last_snapshot == current_user_key_snapshot_) {
|
|
// If the earliest snapshot is which this key is visible in
|
|
// is the same as the visibility of a previous instance of the
|
|
// same key, then this kv is not visible in any snapshot.
|
|
// Hidden by an newer entry for same user key
|
|
// TODO: why not > ?
|
|
//
|
|
// Note: Dropping this key will not affect TransactionDB write-conflict
|
|
// checking since there has already been a record returned for this key
|
|
// in this snapshot.
|
|
assert(last_sequence >= current_user_key_sequence_);
|
|
++iter_stats_.num_record_drop_hidden; // (A)
|
|
input_->Next();
|
|
} else if (compaction_ != nullptr && ikey_.type == kTypeDeletion &&
|
|
ikey_.sequence <= earliest_snapshot_ &&
|
|
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
|
|
&level_ptrs_)) {
|
|
// TODO(noetzli): This is the only place where we use compaction_
|
|
// (besides the constructor). We should probably get rid of this
|
|
// dependency and find a way to do similar filtering during flushes.
|
|
//
|
|
// For this user key:
|
|
// (1) there is no data in higher levels
|
|
// (2) data in lower levels will have larger sequence numbers
|
|
// (3) data in layers that are being compacted here and have
|
|
// smaller sequence numbers will be dropped in the next
|
|
// few iterations of this loop (by rule (A) above).
|
|
// Therefore this deletion marker is obsolete and can be dropped.
|
|
//
|
|
// Note: Dropping this Delete will not affect TransactionDB
|
|
// write-conflict checking since it is earlier than any snapshot.
|
|
++iter_stats_.num_record_drop_obsolete;
|
|
input_->Next();
|
|
} else if (ikey_.type == kTypeMerge) {
|
|
if (!merge_helper_->HasOperator()) {
|
|
LogToBuffer(log_buffer_, "Options::merge_operator is null.");
|
|
status_ = Status::InvalidArgument(
|
|
"merge_operator is not properly initialized.");
|
|
return;
|
|
}
|
|
|
|
// We know the merge type entry is not hidden, otherwise we would
|
|
// have hit (A)
|
|
// We encapsulate the merge related state machine in a different
|
|
// object to minimize change to the existing flow.
|
|
merge_helper_->MergeUntil(input_, prev_snapshot, bottommost_level_);
|
|
merge_out_iter_.SeekToFirst();
|
|
|
|
if (merge_out_iter_.Valid()) {
|
|
// NOTE: key, value, and ikey_ refer to old entries.
|
|
// These will be correctly set below.
|
|
key_ = merge_out_iter_.key();
|
|
value_ = merge_out_iter_.value();
|
|
bool valid_key __attribute__((__unused__)) =
|
|
ParseInternalKey(key_, &ikey_);
|
|
// MergeUntil stops when it encounters a corrupt key and does not
|
|
// include them in the result, so we expect the keys here to valid.
|
|
assert(valid_key);
|
|
// Keep current_key_ in sync.
|
|
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
|
|
key_ = current_key_.GetKey();
|
|
ikey_.user_key = current_key_.GetUserKey();
|
|
valid_ = true;
|
|
} else {
|
|
// all merge operands were filtered out. reset the user key, since the
|
|
// batch consumed by the merge operator should not shadow any keys
|
|
// coming after the merges
|
|
has_current_user_key_ = false;
|
|
}
|
|
} else {
|
|
valid_ = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompactionIterator::PrepareOutput() {
|
|
// Zeroing out the sequence number leads to better compression.
|
|
// If this is the bottommost level (no files in lower levels)
|
|
// and the earliest snapshot is larger than this seqno
|
|
// and the userkey differs from the last userkey in compaction
|
|
// then we can squash the seqno to zero.
|
|
|
|
// This is safe for TransactionDB write-conflict checking since transactions
|
|
// only care about sequence number larger than any active snapshots.
|
|
if (bottommost_level_ && valid_ && ikey_.sequence < earliest_snapshot_ &&
|
|
ikey_.type != kTypeMerge &&
|
|
!cmp_->Equal(compaction_->GetLargestUserKey(), ikey_.user_key)) {
|
|
assert(ikey_.type != kTypeDeletion && ikey_.type != kTypeSingleDeletion);
|
|
ikey_.sequence = 0;
|
|
current_key_.UpdateInternalKey(0, ikey_.type);
|
|
}
|
|
}
|
|
|
|
inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
|
|
SequenceNumber in, SequenceNumber* prev_snapshot) {
|
|
assert(snapshots_->size());
|
|
SequenceNumber prev __attribute__((unused)) = 0;
|
|
for (const auto cur : *snapshots_) {
|
|
assert(prev <= cur);
|
|
if (cur >= in) {
|
|
*prev_snapshot = prev;
|
|
return cur;
|
|
}
|
|
prev = cur;
|
|
assert(prev);
|
|
}
|
|
*prev_snapshot = prev;
|
|
return kMaxSequenceNumber;
|
|
}
|
|
|
|
} // namespace rocksdb
|
|
|