fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
676 lines
23 KiB
676 lines
23 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional
|
|
// grant of patent rights can be found in the PATENTS file in the same
|
|
// directory.
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of
|
|
// this source code is governed by a BSD-style license that can be found
|
|
// in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
//
|
|
// InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
|
|
// the memory layout by requiring that the key storage be allocated through
|
|
// the skip list instance. For the common case of SkipList<const char*,
|
|
// Cmp> this saves 1 pointer per skip list node and gives better cache
|
|
// locality, at the expense of wasted padding from using AllocateAligned
|
|
// instead of Allocate for the keys. The unused padding will be from
|
|
// 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
|
|
// bytes, so despite the padding the space used is always less than
|
|
// SkipList<const char*, ..>.
|
|
//
|
|
// Thread safety -------------
|
|
//
|
|
// Writes via Insert require external synchronization, most likely a mutex.
|
|
// InsertConcurrently can be safely called concurrently with reads and
|
|
// with other concurrent inserts. Reads require a guarantee that the
|
|
// InlineSkipList will not be destroyed while the read is in progress.
|
|
// Apart from that, reads progress without any internal locking or
|
|
// synchronization.
|
|
//
|
|
// Invariants:
|
|
//
|
|
// (1) Allocated nodes are never deleted until the InlineSkipList is
|
|
// destroyed. This is trivially guaranteed by the code since we never
|
|
// delete any skip list nodes.
|
|
//
|
|
// (2) The contents of a Node except for the next/prev pointers are
|
|
// immutable after the Node has been linked into the InlineSkipList.
|
|
// Only Insert() modifies the list, and it is careful to initialize a
|
|
// node and use release-stores to publish the nodes in one or more lists.
|
|
//
|
|
// ... prev vs. next pointer ordering ...
|
|
//
|
|
|
|
#pragma once
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <atomic>
|
|
#include "port/port.h"
|
|
#include "util/allocator.h"
|
|
#include "util/random.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
template <class Comparator>
|
|
class InlineSkipList {
|
|
private:
|
|
struct Node;
|
|
|
|
public:
|
|
// Create a new InlineSkipList object that will use "cmp" for comparing
|
|
// keys, and will allocate memory using "*allocator". Objects allocated
|
|
// in the allocator must remain allocated for the lifetime of the
|
|
// skiplist object.
|
|
explicit InlineSkipList(Comparator cmp, Allocator* allocator,
|
|
int32_t max_height = 12,
|
|
int32_t branching_factor = 4);
|
|
|
|
// Allocates a key and a skip-list node, returning a pointer to the key
|
|
// portion of the node. This method is thread-safe if the allocator
|
|
// is thread-safe.
|
|
char* AllocateKey(size_t key_size);
|
|
|
|
// Inserts a key allocated by AllocateKey, after the actual key value
|
|
// has been filled in.
|
|
//
|
|
// REQUIRES: nothing that compares equal to key is currently in the list.
|
|
// REQUIRES: no concurrent calls to INSERT
|
|
void Insert(const char* key);
|
|
|
|
// Like Insert, but external synchronization is not required.
|
|
void InsertConcurrently(const char* key);
|
|
|
|
// Returns true iff an entry that compares equal to key is in the list.
|
|
bool Contains(const char* key) const;
|
|
|
|
// Return estimated number of entries smaller than `key`.
|
|
uint64_t EstimateCount(const char* key) const;
|
|
|
|
// Iteration over the contents of a skip list
|
|
class Iterator {
|
|
public:
|
|
// Initialize an iterator over the specified list.
|
|
// The returned iterator is not valid.
|
|
explicit Iterator(const InlineSkipList* list);
|
|
|
|
// Change the underlying skiplist used for this iterator
|
|
// This enables us not changing the iterator without deallocating
|
|
// an old one and then allocating a new one
|
|
void SetList(const InlineSkipList* list);
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
bool Valid() const;
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
const char* key() const;
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
void Next();
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
void Prev();
|
|
|
|
// Advance to the first entry with a key >= target
|
|
void Seek(const char* target);
|
|
|
|
// Retreat to the last entry with a key <= target
|
|
void SeekForPrev(const char* target);
|
|
|
|
// Position at the first entry in list.
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
void SeekToFirst();
|
|
|
|
// Position at the last entry in list.
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
void SeekToLast();
|
|
|
|
private:
|
|
const InlineSkipList* list_;
|
|
Node* node_;
|
|
// Intentionally copyable
|
|
};
|
|
|
|
private:
|
|
enum MaxPossibleHeightEnum : uint16_t { kMaxPossibleHeight = 32 };
|
|
|
|
const uint16_t kMaxHeight_;
|
|
const uint16_t kBranching_;
|
|
const uint32_t kScaledInverseBranching_;
|
|
|
|
// Immutable after construction
|
|
Comparator const compare_;
|
|
Allocator* const allocator_; // Allocator used for allocations of nodes
|
|
|
|
Node* const head_;
|
|
|
|
// Modified only by Insert(). Read racily by readers, but stale
|
|
// values are ok.
|
|
std::atomic<int> max_height_; // Height of the entire list
|
|
|
|
// Used for optimizing sequential insert patterns. Tricky. prev_height_
|
|
// of zero means prev_ is undefined. Otherwise: prev_[i] for i up
|
|
// to max_height_ - 1 (inclusive) is the predecessor of prev_[0], and
|
|
// prev_height_ is the height of prev_[0]. prev_[0] can only be equal
|
|
// to head when max_height_ and prev_height_ are both 1.
|
|
Node** prev_;
|
|
std::atomic<int32_t> prev_height_;
|
|
|
|
inline int GetMaxHeight() const {
|
|
return max_height_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
int RandomHeight();
|
|
|
|
Node* AllocateNode(size_t key_size, int height);
|
|
|
|
bool Equal(const char* a, const char* b) const {
|
|
return (compare_(a, b) == 0);
|
|
}
|
|
|
|
bool LessThan(const char* a, const char* b) const {
|
|
return (compare_(a, b) < 0);
|
|
}
|
|
|
|
// Return true if key is greater than the data stored in "n". Null n
|
|
// is considered infinite.
|
|
bool KeyIsAfterNode(const char* key, Node* n) const;
|
|
|
|
// Returns the earliest node with a key >= key.
|
|
// Return nullptr if there is no such node.
|
|
Node* FindGreaterOrEqual(const char* key) const;
|
|
|
|
// Return the latest node with a key < key.
|
|
// Return head_ if there is no such node.
|
|
// Fills prev[level] with pointer to previous node at "level" for every
|
|
// level in [0..max_height_-1], if prev is non-null.
|
|
Node* FindLessThan(const char* key, Node** prev = nullptr) const;
|
|
|
|
// Return the last node in the list.
|
|
// Return head_ if list is empty.
|
|
Node* FindLast() const;
|
|
|
|
// Traverses a single level of the list, setting *out_prev to the last
|
|
// node before the key and *out_next to the first node after. Assumes
|
|
// that the key is not present in the skip list. On entry, before should
|
|
// point to a node that is before the key, and after should point to
|
|
// a node that is after the key. after should be nullptr if a good after
|
|
// node isn't conveniently available.
|
|
void FindLevelSplice(const char* key, Node* before, Node* after, int level,
|
|
Node** out_prev, Node** out_next);
|
|
|
|
// No copying allowed
|
|
InlineSkipList(const InlineSkipList&);
|
|
InlineSkipList& operator=(const InlineSkipList&);
|
|
};
|
|
|
|
// Implementation details follow
|
|
|
|
// The Node data type is more of a pointer into custom-managed memory than
|
|
// a traditional C++ struct. The key is stored in the bytes immediately
|
|
// after the struct, and the next_ pointers for nodes with height > 1 are
|
|
// stored immediately _before_ the struct. This avoids the need to include
|
|
// any pointer or sizing data, which reduces per-node memory overheads.
|
|
template <class Comparator>
|
|
struct InlineSkipList<Comparator>::Node {
|
|
// Stores the height of the node in the memory location normally used for
|
|
// next_[0]. This is used for passing data from AllocateKey to Insert.
|
|
void StashHeight(const int height) {
|
|
assert(sizeof(int) <= sizeof(next_[0]));
|
|
memcpy(&next_[0], &height, sizeof(int));
|
|
}
|
|
|
|
// Retrieves the value passed to StashHeight. Undefined after a call
|
|
// to SetNext or NoBarrier_SetNext.
|
|
int UnstashHeight() const {
|
|
int rv;
|
|
memcpy(&rv, &next_[0], sizeof(int));
|
|
return rv;
|
|
}
|
|
|
|
const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
|
|
|
|
// Accessors/mutators for links. Wrapped in methods so we can add
|
|
// the appropriate barriers as necessary, and perform the necessary
|
|
// addressing trickery for storing links below the Node in memory.
|
|
Node* Next(int n) {
|
|
assert(n >= 0);
|
|
// Use an 'acquire load' so that we observe a fully initialized
|
|
// version of the returned Node.
|
|
return (next_[-n].load(std::memory_order_acquire));
|
|
}
|
|
|
|
void SetNext(int n, Node* x) {
|
|
assert(n >= 0);
|
|
// Use a 'release store' so that anybody who reads through this
|
|
// pointer observes a fully initialized version of the inserted node.
|
|
next_[-n].store(x, std::memory_order_release);
|
|
}
|
|
|
|
bool CASNext(int n, Node* expected, Node* x) {
|
|
assert(n >= 0);
|
|
return next_[-n].compare_exchange_strong(expected, x);
|
|
}
|
|
|
|
// No-barrier variants that can be safely used in a few locations.
|
|
Node* NoBarrier_Next(int n) {
|
|
assert(n >= 0);
|
|
return next_[-n].load(std::memory_order_relaxed);
|
|
}
|
|
|
|
void NoBarrier_SetNext(int n, Node* x) {
|
|
assert(n >= 0);
|
|
next_[-n].store(x, std::memory_order_relaxed);
|
|
}
|
|
|
|
private:
|
|
// next_[0] is the lowest level link (level 0). Higher levels are
|
|
// stored _earlier_, so level 1 is at next_[-1].
|
|
std::atomic<Node*> next_[1];
|
|
};
|
|
|
|
template <class Comparator>
|
|
inline InlineSkipList<Comparator>::Iterator::Iterator(
|
|
const InlineSkipList* list) {
|
|
SetList(list);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SetList(
|
|
const InlineSkipList* list) {
|
|
list_ = list;
|
|
node_ = nullptr;
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
|
|
return node_ != nullptr;
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline const char* InlineSkipList<Comparator>::Iterator::key() const {
|
|
assert(Valid());
|
|
return node_->Key();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Next() {
|
|
assert(Valid());
|
|
node_ = node_->Next(0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Prev() {
|
|
// Instead of using explicit "prev" links, we just search for the
|
|
// last node that falls before key.
|
|
assert(Valid());
|
|
node_ = list_->FindLessThan(node_->Key());
|
|
if (node_ == list_->head_) {
|
|
node_ = nullptr;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
|
|
node_ = list_->FindGreaterOrEqual(target);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekForPrev(
|
|
const char* target) {
|
|
Seek(target);
|
|
if (!Valid()) {
|
|
SeekToLast();
|
|
}
|
|
while (Valid() && list_->LessThan(target, key())) {
|
|
Prev();
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
|
|
node_ = list_->head_->Next(0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
|
|
node_ = list_->FindLast();
|
|
if (node_ == list_->head_) {
|
|
node_ = nullptr;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
int InlineSkipList<Comparator>::RandomHeight() {
|
|
auto rnd = Random::GetTLSInstance();
|
|
|
|
// Increase height with probability 1 in kBranching
|
|
int height = 1;
|
|
while (height < kMaxHeight_ && height < kMaxPossibleHeight &&
|
|
rnd->Next() < kScaledInverseBranching_) {
|
|
height++;
|
|
}
|
|
assert(height > 0);
|
|
assert(height <= kMaxHeight_);
|
|
assert(height <= kMaxPossibleHeight);
|
|
return height;
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
|
|
Node* n) const {
|
|
// nullptr n is considered infinite
|
|
return (n != nullptr) && (compare_(n->Key(), key) < 0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
|
|
// Note: It looks like we could reduce duplication by implementing
|
|
// this function as FindLessThan(key)->Next(0), but we wouldn't be able
|
|
// to exit early on equality and the result wouldn't even be correct.
|
|
// A concurrent insert might occur after FindLessThan(key) but before
|
|
// we get a chance to call Next(0).
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
Node* last_bigger = nullptr;
|
|
while (true) {
|
|
Node* next = x->Next(level);
|
|
// Make sure the lists are sorted
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
|
|
// Make sure we haven't overshot during our search
|
|
assert(x == head_ || KeyIsAfterNode(key, x));
|
|
int cmp = (next == nullptr || next == last_bigger)
|
|
? 1
|
|
: compare_(next->Key(), key);
|
|
if (cmp == 0 || (cmp > 0 && level == 0)) {
|
|
return next;
|
|
} else if (cmp < 0) {
|
|
// Keep searching in this list
|
|
x = next;
|
|
} else {
|
|
// Switch to next list, reuse compare_() result
|
|
last_bigger = next;
|
|
level--;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
// KeyIsAfter(key, last_not_after) is definitely false
|
|
Node* last_not_after = nullptr;
|
|
while (true) {
|
|
Node* next = x->Next(level);
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
|
|
assert(x == head_ || KeyIsAfterNode(key, x));
|
|
if (next != last_not_after && KeyIsAfterNode(key, next)) {
|
|
// Keep searching in this list
|
|
x = next;
|
|
} else {
|
|
if (prev != nullptr) {
|
|
prev[level] = x;
|
|
}
|
|
if (level == 0) {
|
|
return x;
|
|
} else {
|
|
// Switch to next list, reuse KeyIUsAfterNode() result
|
|
last_not_after = next;
|
|
level--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindLast() const {
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
while (true) {
|
|
Node* next = x->Next(level);
|
|
if (next == nullptr) {
|
|
if (level == 0) {
|
|
return x;
|
|
} else {
|
|
// Switch to next list
|
|
level--;
|
|
}
|
|
} else {
|
|
x = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
uint64_t InlineSkipList<Comparator>::EstimateCount(const char* key) const {
|
|
uint64_t count = 0;
|
|
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
while (true) {
|
|
assert(x == head_ || compare_(x->Key(), key) < 0);
|
|
Node* next = x->Next(level);
|
|
if (next == nullptr || compare_(next->Key(), key) >= 0) {
|
|
if (level == 0) {
|
|
return count;
|
|
} else {
|
|
// Switch to next list
|
|
count *= kBranching_;
|
|
level--;
|
|
}
|
|
} else {
|
|
x = next;
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
|
|
Allocator* allocator,
|
|
int32_t max_height,
|
|
int32_t branching_factor)
|
|
: kMaxHeight_(max_height),
|
|
kBranching_(branching_factor),
|
|
kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
|
|
compare_(cmp),
|
|
allocator_(allocator),
|
|
head_(AllocateNode(0, max_height)),
|
|
max_height_(1),
|
|
prev_height_(1) {
|
|
assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
|
|
assert(branching_factor > 1 &&
|
|
kBranching_ == static_cast<uint32_t>(branching_factor));
|
|
assert(kScaledInverseBranching_ > 0);
|
|
// Allocate the prev_ Node* array, directly from the passed-in allocator.
|
|
// prev_ does not need to be freed, as its life cycle is tied up with
|
|
// the allocator as a whole.
|
|
prev_ = reinterpret_cast<Node**>(
|
|
allocator_->AllocateAligned(sizeof(Node*) * kMaxHeight_));
|
|
for (int i = 0; i < kMaxHeight_; i++) {
|
|
head_->SetNext(i, nullptr);
|
|
prev_[i] = head_;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
|
|
return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
|
|
auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
|
|
|
|
// prefix is space for the height - 1 pointers that we store before
|
|
// the Node instance (next_[-(height - 1) .. -1]). Node starts at
|
|
// raw + prefix, and holds the bottom-mode (level 0) skip list pointer
|
|
// next_[0]. key_size is the bytes for the key, which comes just after
|
|
// the Node.
|
|
char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
|
|
Node* x = reinterpret_cast<Node*>(raw + prefix);
|
|
|
|
// Once we've linked the node into the skip list we don't actually need
|
|
// to know its height, because we can implicitly use the fact that we
|
|
// traversed into a node at level h to known that h is a valid level
|
|
// for that node. We need to convey the height to the Insert step,
|
|
// however, so that it can perform the proper links. Since we're not
|
|
// using the pointers at the moment, StashHeight temporarily borrow
|
|
// storage from next_[0] for that purpose.
|
|
x->StashHeight(height);
|
|
return x;
|
|
}
|
|
|
|
template <class Comparator>
|
|
void InlineSkipList<Comparator>::Insert(const char* key) {
|
|
// InsertConcurrently often can't maintain the prev_ invariants, so
|
|
// it just sets prev_height_ to zero, letting us know that we should
|
|
// ignore it. A relaxed load suffices here because write thread
|
|
// synchronization separates Insert calls from InsertConcurrently calls.
|
|
auto prev_height = prev_height_.load(std::memory_order_relaxed);
|
|
|
|
// fast path for sequential insertion
|
|
if (prev_height > 0 && !KeyIsAfterNode(key, prev_[0]->NoBarrier_Next(0)) &&
|
|
(prev_[0] == head_ || KeyIsAfterNode(key, prev_[0]))) {
|
|
assert(prev_[0] != head_ || (prev_height == 1 && GetMaxHeight() == 1));
|
|
|
|
// Outside of this method prev_[1..max_height_] is the predecessor
|
|
// of prev_[0], and prev_height_ refers to prev_[0]. Inside Insert
|
|
// prev_[0..max_height - 1] is the predecessor of key. Switch from
|
|
// the external state to the internal
|
|
for (int i = 1; i < prev_height; i++) {
|
|
prev_[i] = prev_[0];
|
|
}
|
|
} else {
|
|
// TODO(opt): we could use a NoBarrier predecessor search as an
|
|
// optimization for architectures where memory_order_acquire needs
|
|
// a synchronization instruction. Doesn't matter on x86
|
|
FindLessThan(key, prev_);
|
|
}
|
|
|
|
// Our data structure does not allow duplicate insertion
|
|
assert(prev_[0]->Next(0) == nullptr || !Equal(key, prev_[0]->Next(0)->Key()));
|
|
|
|
// Find the Node that we placed before the key in AllocateKey
|
|
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
|
|
int height = x->UnstashHeight();
|
|
assert(height >= 1 && height <= kMaxHeight_);
|
|
|
|
if (height > GetMaxHeight()) {
|
|
for (int i = GetMaxHeight(); i < height; i++) {
|
|
prev_[i] = head_;
|
|
}
|
|
|
|
// It is ok to mutate max_height_ without any synchronization
|
|
// with concurrent readers. A concurrent reader that observes
|
|
// the new value of max_height_ will see either the old value of
|
|
// new level pointers from head_ (nullptr), or a new value set in
|
|
// the loop below. In the former case the reader will
|
|
// immediately drop to the next level since nullptr sorts after all
|
|
// keys. In the latter case the reader will use the new node.
|
|
max_height_.store(height, std::memory_order_relaxed);
|
|
}
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
// NoBarrier_SetNext() suffices since we will add a barrier when
|
|
// we publish a pointer to "x" in prev[i].
|
|
x->NoBarrier_SetNext(i, prev_[i]->NoBarrier_Next(i));
|
|
prev_[i]->SetNext(i, x);
|
|
}
|
|
prev_[0] = x;
|
|
prev_height_.store(height, std::memory_order_relaxed);
|
|
}
|
|
|
|
template <class Comparator>
|
|
void InlineSkipList<Comparator>::FindLevelSplice(const char* key, Node* before,
|
|
Node* after, int level,
|
|
Node** out_prev,
|
|
Node** out_next) {
|
|
while (true) {
|
|
Node* next = before->Next(level);
|
|
assert(before == head_ || next == nullptr ||
|
|
KeyIsAfterNode(next->Key(), before));
|
|
assert(before == head_ || KeyIsAfterNode(key, before));
|
|
if (next == after || !KeyIsAfterNode(key, next)) {
|
|
// found it
|
|
*out_prev = before;
|
|
*out_next = next;
|
|
return;
|
|
}
|
|
before = next;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
void InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
|
|
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
|
|
int height = x->UnstashHeight();
|
|
assert(height >= 1 && height <= kMaxHeight_);
|
|
|
|
// We don't have a lock-free algorithm for updating prev_, but we do have
|
|
// the option of invalidating the entire sequential-insertion cache.
|
|
// prev_'s invariant is that prev_[i] (i > 0) is the predecessor of
|
|
// prev_[0] at that level. We're only going to violate that if height
|
|
// > 1 and key lands after prev_[height - 1] but before prev_[0].
|
|
// Comparisons are pretty expensive, so an easier version is to just
|
|
// clear the cache if height > 1. We only write to prev_height_ if the
|
|
// nobody else has, to avoid invalidating the root of the skip list in
|
|
// all of the other CPU caches.
|
|
if (height > 1 && prev_height_.load(std::memory_order_relaxed) != 0) {
|
|
prev_height_.store(0, std::memory_order_relaxed);
|
|
}
|
|
|
|
int max_height = max_height_.load(std::memory_order_relaxed);
|
|
while (height > max_height) {
|
|
if (max_height_.compare_exchange_strong(max_height, height)) {
|
|
// successfully updated it
|
|
max_height = height;
|
|
break;
|
|
}
|
|
// else retry, possibly exiting the loop because somebody else
|
|
// increased it
|
|
}
|
|
assert(max_height <= kMaxPossibleHeight);
|
|
|
|
Node* prev[kMaxPossibleHeight + 1];
|
|
Node* next[kMaxPossibleHeight + 1];
|
|
prev[max_height] = head_;
|
|
next[max_height] = nullptr;
|
|
for (int i = max_height - 1; i >= 0; --i) {
|
|
FindLevelSplice(key, prev[i + 1], next[i + 1], i, &prev[i], &next[i]);
|
|
}
|
|
for (int i = 0; i < height; ++i) {
|
|
while (true) {
|
|
x->NoBarrier_SetNext(i, next[i]);
|
|
if (prev[i]->CASNext(i, next[i], x)) {
|
|
// success
|
|
break;
|
|
}
|
|
// CAS failed, we need to recompute prev and next. It is unlikely
|
|
// to be helpful to try to use a different level as we redo the
|
|
// search, because it should be unlikely that lots of nodes have
|
|
// been inserted between prev[i] and next[i]. No point in using
|
|
// next[i] as the after hint, because we know it is stale.
|
|
FindLevelSplice(key, prev[i], nullptr, i, &prev[i], &next[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::Contains(const char* key) const {
|
|
Node* x = FindGreaterOrEqual(key);
|
|
if (x != nullptr && Equal(key, x->Key())) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
} // namespace rocksdb
|
|
|