You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/utilities/ttl/ttl_test.cc

635 lines
20 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <memory>
#include "rocksdb/compaction_filter.h"
#include "rocksdb/utilities/db_ttl.h"
#include "util/testharness.h"
#include "util/logging.h"
#include <map>
#include <unistd.h>
namespace rocksdb {
namespace {
typedef std::map<std::string, std::string> KVMap;
enum BatchOperation {
PUT = 0,
DELETE = 1
};
}
class SpecialTimeEnv : public EnvWrapper {
public:
explicit SpecialTimeEnv(Env* base) : EnvWrapper(base) {
base->GetCurrentTime(&current_time_);
}
void Sleep(int64_t sleep_time) { current_time_ += sleep_time; }
virtual Status GetCurrentTime(int64_t* current_time) override {
*current_time = current_time_;
return Status::OK();
}
private:
int64_t current_time_;
};
class TtlTest : public testing::Test {
public:
TtlTest() {
env_.reset(new SpecialTimeEnv(Env::Default()));
dbname_ = test::TmpDir() + "/db_ttl";
options_.create_if_missing = true;
options_.env = env_.get();
// ensure that compaction is kicked in to always strip timestamp from kvs
options_.max_grandparent_overlap_factor = 0;
// compaction should take place always from level0 for determinism
options_.max_mem_compaction_level = 0;
db_ttl_ = nullptr;
DestroyDB(dbname_, Options());
}
~TtlTest() {
CloseTtl();
DestroyDB(dbname_, Options());
}
// Open database with TTL support when TTL not provided with db_ttl_ pointer
void OpenTtl() {
ASSERT_TRUE(db_ttl_ ==
nullptr); // db should be closed before opening again
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_));
}
// Open database with TTL support when TTL provided with db_ttl_ pointer
void OpenTtl(int32_t ttl) {
ASSERT_TRUE(db_ttl_ == nullptr);
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_, ttl));
}
// Open with TestFilter compaction filter
void OpenTtlWithTestCompaction(int32_t ttl) {
options_.compaction_filter_factory =
std::shared_ptr<CompactionFilterFactory>(
new TestFilterFactory(kSampleSize_, kNewValue_));
OpenTtl(ttl);
}
// Open database with TTL support in read_only mode
void OpenReadOnlyTtl(int32_t ttl) {
ASSERT_TRUE(db_ttl_ == nullptr);
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_, ttl, true));
}
void CloseTtl() {
delete db_ttl_;
db_ttl_ = nullptr;
}
// Populates and returns a kv-map
void MakeKVMap(int64_t num_entries) {
kvmap_.clear();
int digits = 1;
for (int64_t dummy = num_entries; dummy /= 10; ++digits) {
}
int digits_in_i = 1;
for (int64_t i = 0; i < num_entries; i++) {
std::string key = "key";
std::string value = "value";
if (i % 10 == 0) {
digits_in_i++;
}
for(int j = digits_in_i; j < digits; j++) {
key.append("0");
value.append("0");
}
AppendNumberTo(&key, i);
AppendNumberTo(&value, i);
kvmap_[key] = value;
}
ASSERT_EQ(static_cast<int64_t>(kvmap_.size()),
num_entries); // check all insertions done
}
// Makes a write-batch with key-vals from kvmap_ and 'Write''s it
void MakePutWriteBatch(const BatchOperation* batch_ops, int64_t num_ops) {
ASSERT_LE(num_ops, static_cast<int64_t>(kvmap_.size()));
static WriteOptions wopts;
static FlushOptions flush_opts;
WriteBatch batch;
kv_it_ = kvmap_.begin();
for (int64_t i = 0; i < num_ops && kv_it_ != kvmap_.end(); i++, ++kv_it_) {
switch (batch_ops[i]) {
case PUT:
batch.Put(kv_it_->first, kv_it_->second);
break;
case DELETE:
batch.Delete(kv_it_->first);
break;
default:
ASSERT_TRUE(false);
}
}
db_ttl_->Write(wopts, &batch);
db_ttl_->Flush(flush_opts);
}
// Puts num_entries starting from start_pos_map from kvmap_ into the database
void PutValues(int64_t start_pos_map, int64_t num_entries, bool flush = true,
ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
ASSERT_LE(start_pos_map + num_entries, static_cast<int64_t>(kvmap_.size()));
static WriteOptions wopts;
static FlushOptions flush_opts;
kv_it_ = kvmap_.begin();
advance(kv_it_, start_pos_map);
for (int64_t i = 0; kv_it_ != kvmap_.end() && i < num_entries;
i++, ++kv_it_) {
ASSERT_OK(cf == nullptr
? db_ttl_->Put(wopts, kv_it_->first, kv_it_->second)
: db_ttl_->Put(wopts, cf, kv_it_->first, kv_it_->second));
}
// Put a mock kv at the end because CompactionFilter doesn't delete last key
ASSERT_OK(cf == nullptr ? db_ttl_->Put(wopts, "keymock", "valuemock")
: db_ttl_->Put(wopts, cf, "keymock", "valuemock"));
if (flush) {
if (cf == nullptr) {
db_ttl_->Flush(flush_opts);
} else {
db_ttl_->Flush(flush_opts, cf);
}
}
}
// Runs a manual compaction
void ManualCompact(ColumnFamilyHandle* cf = nullptr) {
if (cf == nullptr) {
db_ttl_->CompactRange(CompactRangeOptions(), nullptr, nullptr);
} else {
db_ttl_->CompactRange(CompactRangeOptions(), cf, nullptr, nullptr);
}
}
// checks the whole kvmap_ to return correct values using KeyMayExist
void SimpleKeyMayExistCheck() {
static ReadOptions ropts;
bool value_found;
std::string val;
for(auto &kv : kvmap_) {
bool ret = db_ttl_->KeyMayExist(ropts, kv.first, &val, &value_found);
if (ret == false || value_found == false) {
fprintf(stderr, "KeyMayExist could not find key=%s in the database but"
" should have\n", kv.first.c_str());
ASSERT_TRUE(false);
} else if (val.compare(kv.second) != 0) {
fprintf(stderr, " value for key=%s present in database is %s but"
" should be %s\n", kv.first.c_str(), val.c_str(),
kv.second.c_str());
ASSERT_TRUE(false);
}
}
}
// checks the whole kvmap_ to return correct values using MultiGet
void SimpleMultiGetTest() {
static ReadOptions ropts;
std::vector<Slice> keys;
std::vector<std::string> values;
for (auto& kv : kvmap_) {
keys.emplace_back(kv.first);
}
auto statuses = db_ttl_->MultiGet(ropts, keys, &values);
size_t i = 0;
for (auto& kv : kvmap_) {
ASSERT_OK(statuses[i]);
ASSERT_EQ(values[i], kv.second);
++i;
}
}
// Sleeps for slp_tim then runs a manual compaction
// Checks span starting from st_pos from kvmap_ in the db and
// Gets should return true if check is true and false otherwise
// Also checks that value that we got is the same as inserted; and =kNewValue
// if test_compaction_change is true
void SleepCompactCheck(int slp_tim, int64_t st_pos, int64_t span,
bool check = true, bool test_compaction_change = false,
ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
env_->Sleep(slp_tim);
ManualCompact(cf);
static ReadOptions ropts;
kv_it_ = kvmap_.begin();
advance(kv_it_, st_pos);
std::string v;
for (int64_t i = 0; kv_it_ != kvmap_.end() && i < span; i++, ++kv_it_) {
Status s = (cf == nullptr) ? db_ttl_->Get(ropts, kv_it_->first, &v)
: db_ttl_->Get(ropts, cf, kv_it_->first, &v);
if (s.ok() != check) {
fprintf(stderr, "key=%s ", kv_it_->first.c_str());
if (!s.ok()) {
fprintf(stderr, "is absent from db but was expected to be present\n");
} else {
fprintf(stderr, "is present in db but was expected to be absent\n");
}
ASSERT_TRUE(false);
} else if (s.ok()) {
if (test_compaction_change && v.compare(kNewValue_) != 0) {
fprintf(stderr, " value for key=%s present in database is %s but "
" should be %s\n", kv_it_->first.c_str(), v.c_str(),
kNewValue_.c_str());
ASSERT_TRUE(false);
} else if (!test_compaction_change && v.compare(kv_it_->second) !=0) {
fprintf(stderr, " value for key=%s present in database is %s but "
" should be %s\n", kv_it_->first.c_str(), v.c_str(),
kv_it_->second.c_str());
ASSERT_TRUE(false);
}
}
}
}
// Similar as SleepCompactCheck but uses TtlIterator to read from db
void SleepCompactCheckIter(int slp, int st_pos, int64_t span,
bool check = true) {
ASSERT_TRUE(db_ttl_);
env_->Sleep(slp);
ManualCompact();
static ReadOptions ropts;
Iterator *dbiter = db_ttl_->NewIterator(ropts);
kv_it_ = kvmap_.begin();
advance(kv_it_, st_pos);
dbiter->Seek(kv_it_->first);
if (!check) {
if (dbiter->Valid()) {
ASSERT_NE(dbiter->value().compare(kv_it_->second), 0);
}
} else { // dbiter should have found out kvmap_[st_pos]
for (int64_t i = st_pos; kv_it_ != kvmap_.end() && i < st_pos + span;
i++, ++kv_it_) {
ASSERT_TRUE(dbiter->Valid());
ASSERT_EQ(dbiter->value().compare(kv_it_->second), 0);
dbiter->Next();
}
}
delete dbiter;
}
class TestFilter : public CompactionFilter {
public:
TestFilter(const int64_t kSampleSize, const std::string& kNewValue)
: kSampleSize_(kSampleSize),
kNewValue_(kNewValue) {
}
// Works on keys of the form "key<number>"
// Drops key if number at the end of key is in [0, kSampleSize_/3),
// Keeps key if it is in [kSampleSize_/3, 2*kSampleSize_/3),
// Change value if it is in [2*kSampleSize_/3, kSampleSize_)
// Eg. kSampleSize_=6. Drop:key0-1...Keep:key2-3...Change:key4-5...
virtual bool Filter(int level, const Slice& key,
const Slice& value, std::string* new_value,
bool* value_changed) const override {
assert(new_value != nullptr);
std::string search_str = "0123456789";
std::string key_string = key.ToString();
size_t pos = key_string.find_first_of(search_str);
int num_key_end;
if (pos != std::string::npos) {
auto key_substr = key_string.substr(pos, key.size() - pos);
#ifndef CYGWIN
num_key_end = std::stoi(key_substr);
#else
num_key_end = std::strtol(key_substr.c_str(), 0, 10);
#endif
} else {
return false; // Keep keys not matching the format "key<NUMBER>"
}
int64_t partition = kSampleSize_ / 3;
if (num_key_end < partition) {
return true;
} else if (num_key_end < partition * 2) {
return false;
} else {
*new_value = kNewValue_;
*value_changed = true;
return false;
}
}
virtual const char* Name() const override {
return "TestFilter";
}
private:
const int64_t kSampleSize_;
const std::string kNewValue_;
};
class TestFilterFactory : public CompactionFilterFactory {
public:
TestFilterFactory(const int64_t kSampleSize, const std::string& kNewValue)
: kSampleSize_(kSampleSize),
kNewValue_(kNewValue) {
}
virtual std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
return std::unique_ptr<CompactionFilter>(
new TestFilter(kSampleSize_, kNewValue_));
}
virtual const char* Name() const override {
return "TestFilterFactory";
}
private:
const int64_t kSampleSize_;
const std::string kNewValue_;
};
// Choose carefully so that Put, Gets & Compaction complete in 1 second buffer
const int64_t kSampleSize_ = 100;
std::string dbname_;
DBWithTTL* db_ttl_;
unique_ptr<SpecialTimeEnv> env_;
private:
Options options_;
KVMap kvmap_;
KVMap::iterator kv_it_;
const std::string kNewValue_ = "new_value";
unique_ptr<CompactionFilter> test_comp_filter_;
}; // class TtlTest
// If TTL is non positive or not provided, the behaviour is TTL = infinity
// This test opens the db 3 times with such default behavior and inserts a
// bunch of kvs each time. All kvs should accumulate in the db till the end
// Partitions the sample-size provided into 3 sets over boundary1 and boundary2
TEST_F(TtlTest, NoEffect) {
MakeKVMap(kSampleSize_);
int64_t boundary1 = kSampleSize_ / 3;
int64_t boundary2 = 2 * boundary1;
OpenTtl();
PutValues(0, boundary1); //T=0: Set1 never deleted
SleepCompactCheck(1, 0, boundary1); //T=1: Set1 still there
CloseTtl();
OpenTtl(0);
PutValues(boundary1, boundary2 - boundary1); //T=1: Set2 never deleted
SleepCompactCheck(1, 0, boundary2); //T=2: Sets1 & 2 still there
CloseTtl();
OpenTtl(-1);
PutValues(boundary2, kSampleSize_ - boundary2); //T=3: Set3 never deleted
SleepCompactCheck(1, 0, kSampleSize_, true); //T=4: Sets 1,2,3 still there
CloseTtl();
}
// Puts a set of values and checks its presence using Get during ttl
TEST_F(TtlTest, PresentDuringTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(2); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize_, true); // T=1:Set1 should still be there
CloseTtl();
}
// Puts a set of values and checks its absence using Get after ttl
TEST_F(TtlTest, AbsentAfterTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(2, 0, kSampleSize_, false); // T=2:Set1 should not be there
CloseTtl();
}
// Resets the timestamp of a set of kvs by updating them and checks that they
// are not deleted according to the old timestamp
TEST_F(TtlTest, ResetTimestamp) {
MakeKVMap(kSampleSize_);
OpenTtl(3);
PutValues(0, kSampleSize_); // T=0: Insert Set1. Delete at t=3
env_->Sleep(2); // T=2
PutValues(0, kSampleSize_); // T=2: Insert Set1. Delete at t=5
SleepCompactCheck(2, 0, kSampleSize_); // T=4: Set1 should still be there
CloseTtl();
}
// Similar to PresentDuringTTL but uses Iterator
TEST_F(TtlTest, IterPresentDuringTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(2);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
SleepCompactCheckIter(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl();
}
// Similar to AbsentAfterTTL but uses Iterator
TEST_F(TtlTest, IterAbsentAfterTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
SleepCompactCheckIter(2, 0, kSampleSize_, false); // T=2: Should not be there
CloseTtl();
}
// Checks presence while opening the same db more than once with the same ttl
// Note: The second open will open the same db
TEST_F(TtlTest, MultiOpenSamePresent) {
MakeKVMap(kSampleSize_);
OpenTtl(2);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
CloseTtl();
OpenTtl(2); // T=0. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl();
}
// Checks absence while opening the same db more than once with the same ttl
// Note: The second open will open the same db
TEST_F(TtlTest, MultiOpenSameAbsent) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl();
OpenTtl(1); // T=0.Delete at t=1
SleepCompactCheck(2, 0, kSampleSize_, false); // T=2: Set should not be there
CloseTtl();
}
// Checks presence while opening the same db more than once with bigger ttl
TEST_F(TtlTest, MultiOpenDifferent) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl();
OpenTtl(3); // T=0: Set deleted at t=3
SleepCompactCheck(2, 0, kSampleSize_); // T=2: Set should be there
CloseTtl();
}
// Checks presence during ttl in read_only mode
TEST_F(TtlTest, ReadOnlyPresentForever) {
MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db normally
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
CloseTtl();
OpenReadOnlyTtl(1);
SleepCompactCheck(2, 0, kSampleSize_); // T=2:Set1 should still be there
CloseTtl();
}
// Checks whether WriteBatch works well with TTL
// Puts all kvs in kvmap_ in a batch and writes first, then deletes first half
TEST_F(TtlTest, WriteBatchTest) {
MakeKVMap(kSampleSize_);
BatchOperation batch_ops[kSampleSize_];
for (int i = 0; i < kSampleSize_; i++) {
batch_ops[i] = PUT;
}
OpenTtl(2);
MakePutWriteBatch(batch_ops, kSampleSize_);
for (int i = 0; i < kSampleSize_ / 2; i++) {
batch_ops[i] = DELETE;
}
MakePutWriteBatch(batch_ops, kSampleSize_ / 2);
SleepCompactCheck(0, 0, kSampleSize_ / 2, false);
SleepCompactCheck(0, kSampleSize_ / 2, kSampleSize_ - kSampleSize_ / 2);
CloseTtl();
}
// Checks user's compaction filter for correctness with TTL logic
TEST_F(TtlTest, CompactionFilter) {
MakeKVMap(kSampleSize_);
OpenTtlWithTestCompaction(1);
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
// T=2: TTL logic takes precedence over TestFilter:-Set1 should not be there
SleepCompactCheck(2, 0, kSampleSize_, false);
CloseTtl();
OpenTtlWithTestCompaction(3);
PutValues(0, kSampleSize_); // T=0:Insert Set1.
int64_t partition = kSampleSize_ / 3;
SleepCompactCheck(1, 0, partition, false); // Part dropped
SleepCompactCheck(0, partition, partition); // Part kept
SleepCompactCheck(0, 2 * partition, partition, true, true); // Part changed
CloseTtl();
}
// Insert some key-values which KeyMayExist should be able to get and check that
// values returned are fine
TEST_F(TtlTest, KeyMayExist) {
MakeKVMap(kSampleSize_);
OpenTtl();
PutValues(0, kSampleSize_, false);
SimpleKeyMayExistCheck();
CloseTtl();
}
TEST_F(TtlTest, MultiGetTest) {
MakeKVMap(kSampleSize_);
OpenTtl();
PutValues(0, kSampleSize_, false);
SimpleMultiGetTest();
CloseTtl();
}
TEST_F(TtlTest, ColumnFamiliesTest) {
DB* db;
Options options;
options.create_if_missing = true;
options.env = env_.get();
DB::Open(options, dbname_, &db);
ColumnFamilyHandle* handle;
ASSERT_OK(db->CreateColumnFamily(ColumnFamilyOptions(options),
"ttl_column_family", &handle));
delete handle;
delete db;
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(ColumnFamilyDescriptor(
kDefaultColumnFamilyName, ColumnFamilyOptions(options)));
column_families.push_back(ColumnFamilyDescriptor(
"ttl_column_family", ColumnFamilyOptions(options)));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DBWithTTL::Open(DBOptions(options), dbname_, column_families,
&handles, &db_ttl_, {3, 5}, false));
ASSERT_EQ(handles.size(), 2U);
ColumnFamilyHandle* new_handle;
ASSERT_OK(db_ttl_->CreateColumnFamilyWithTtl(options, "ttl_column_family_2",
&new_handle, 2));
handles.push_back(new_handle);
MakeKVMap(kSampleSize_);
PutValues(0, kSampleSize_, false, handles[0]);
PutValues(0, kSampleSize_, false, handles[1]);
PutValues(0, kSampleSize_, false, handles[2]);
// everything should be there after 1 second
SleepCompactCheck(1, 0, kSampleSize_, true, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[2]);
// only column family 1 should be alive after 4 seconds
SleepCompactCheck(3, 0, kSampleSize_, false, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[2]);
// nothing should be there after 6 seconds
SleepCompactCheck(2, 0, kSampleSize_, false, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[2]);
for (auto h : handles) {
delete h;
}
delete db_ttl_;
db_ttl_ = nullptr;
}
} // namespace rocksdb
// A black-box test for the ttl wrapper around rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}