fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
7.5 KiB
195 lines
7.5 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
//
|
|
|
|
#ifdef GFLAGS
|
|
#include "db_stress_tool/db_stress_common.h"
|
|
#include <cmath>
|
|
|
|
rocksdb::DbStressEnvWrapper* FLAGS_env = nullptr;
|
|
enum rocksdb::CompressionType FLAGS_compression_type_e =
|
|
rocksdb::kSnappyCompression;
|
|
enum rocksdb::ChecksumType FLAGS_checksum_type_e = rocksdb::kCRC32c;
|
|
enum RepFactory FLAGS_rep_factory = kSkipList;
|
|
std::vector<double> sum_probs(100001);
|
|
int64_t zipf_sum_size = 100000;
|
|
|
|
namespace rocksdb {
|
|
|
|
// Zipfian distribution is generated based on a pre-calculated array.
|
|
// It should be used before start the stress test.
|
|
// First, the probability distribution function (PDF) of this Zipfian follows
|
|
// power low. P(x) = 1/(x^alpha).
|
|
// So we calculate the PDF when x is from 0 to zipf_sum_size in first for loop
|
|
// and add the PDF value togetger as c. So we get the total probability in c.
|
|
// Next, we calculate inverse CDF of Zipfian and store the value of each in
|
|
// an array (sum_probs). The rank is from 0 to zipf_sum_size. For example, for
|
|
// integer k, its Zipfian CDF value is sum_probs[k].
|
|
// Third, when we need to get an integer whose probability follows Zipfian
|
|
// distribution, we use a rand_seed [0,1] which follows uniform distribution
|
|
// as a seed and search it in the sum_probs via binary search. When we find
|
|
// the closest sum_probs[i] of rand_seed, i is the integer that in
|
|
// [0, zipf_sum_size] following Zipfian distribution with parameter alpha.
|
|
// Finally, we can scale i to [0, max_key] scale.
|
|
// In order to avoid that hot keys are close to each other and skew towards 0,
|
|
// we use Rando64 to shuffle it.
|
|
void InitializeHotKeyGenerator(double alpha) {
|
|
double c = 0;
|
|
for (int64_t i = 1; i <= zipf_sum_size; i++) {
|
|
c = c + (1.0 / std::pow(static_cast<double>(i), alpha));
|
|
}
|
|
c = 1.0 / c;
|
|
|
|
sum_probs[0] = 0;
|
|
for (int64_t i = 1; i <= zipf_sum_size; i++) {
|
|
sum_probs[i] =
|
|
sum_probs[i - 1] + c / std::pow(static_cast<double>(i), alpha);
|
|
}
|
|
}
|
|
|
|
// Generate one key that follows the Zipfian distribution. The skewness
|
|
// is decided by the parameter alpha. Input is the rand_seed [0,1] and
|
|
// the max of the key to be generated. If we directly return tmp_zipf_seed,
|
|
// the closer to 0, the higher probability will be. To randomly distribute
|
|
// the hot keys in [0, max_key], we use Random64 to shuffle it.
|
|
int64_t GetOneHotKeyID(double rand_seed, int64_t max_key) {
|
|
int64_t low = 1, mid, high = zipf_sum_size, zipf = 0;
|
|
while (low <= high) {
|
|
mid = std::floor((low + high) / 2);
|
|
if (sum_probs[mid] >= rand_seed && sum_probs[mid - 1] < rand_seed) {
|
|
zipf = mid;
|
|
break;
|
|
} else if (sum_probs[mid] >= rand_seed) {
|
|
high = mid - 1;
|
|
} else {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
int64_t tmp_zipf_seed = static_cast<int64_t>(
|
|
std::floor(zipf * max_key / (static_cast<double>(zipf_sum_size))));
|
|
Random64 rand_local(tmp_zipf_seed);
|
|
return rand_local.Next() % max_key;
|
|
}
|
|
|
|
void PoolSizeChangeThread(void* v) {
|
|
assert(FLAGS_compaction_thread_pool_adjust_interval > 0);
|
|
ThreadState* thread = reinterpret_cast<ThreadState*>(v);
|
|
SharedState* shared = thread->shared;
|
|
|
|
while (true) {
|
|
{
|
|
MutexLock l(shared->GetMutex());
|
|
if (shared->ShoudStopBgThread()) {
|
|
shared->SetBgThreadFinish();
|
|
shared->GetCondVar()->SignalAll();
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto thread_pool_size_base = FLAGS_max_background_compactions;
|
|
auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations;
|
|
int new_thread_pool_size =
|
|
thread_pool_size_base - thread_pool_size_var +
|
|
thread->rand.Next() % (thread_pool_size_var * 2 + 1);
|
|
if (new_thread_pool_size < 1) {
|
|
new_thread_pool_size = 1;
|
|
}
|
|
FLAGS_env->SetBackgroundThreads(new_thread_pool_size,
|
|
rocksdb::Env::Priority::LOW);
|
|
// Sleep up to 3 seconds
|
|
FLAGS_env->SleepForMicroseconds(
|
|
thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval *
|
|
1000 +
|
|
1);
|
|
}
|
|
}
|
|
|
|
void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) {
|
|
if (!FLAGS_verbose) {
|
|
return;
|
|
}
|
|
std::string tmp;
|
|
tmp.reserve(sz * 2 + 16);
|
|
char buf[4];
|
|
for (size_t i = 0; i < sz; i++) {
|
|
snprintf(buf, 4, "%X", value[i]);
|
|
tmp.append(buf);
|
|
}
|
|
fprintf(stdout, "[CF %d] %" PRIi64 " == > (%" ROCKSDB_PRIszt ") %s\n", cf,
|
|
key, sz, tmp.c_str());
|
|
}
|
|
|
|
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
|
|
// distribution. Keys are randomly scattered to [0, FLAGS_max_key]. It does
|
|
// not ensure the order of the keys being generated and the keys does not have
|
|
// the active range which is related to FLAGS_active_width.
|
|
int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) {
|
|
const double completed_ratio =
|
|
static_cast<double>(iteration) / FLAGS_ops_per_thread;
|
|
const int64_t base_key = static_cast<int64_t>(
|
|
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
|
|
int64_t rand_seed = base_key + thread->rand.Next() % FLAGS_active_width;
|
|
int64_t cur_key = rand_seed;
|
|
if (FLAGS_hot_key_alpha != 0) {
|
|
// If set the Zipfian distribution Alpha to non 0, use Zipfian
|
|
double float_rand =
|
|
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
|
|
FLAGS_max_key;
|
|
cur_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
|
|
}
|
|
return cur_key;
|
|
}
|
|
|
|
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
|
|
// distribution. Keys being generated are in random order.
|
|
// If user want to generate keys based on uniform distribution, user needs to
|
|
// set hot_key_alpha == 0. It will generate the random keys in increasing
|
|
// order in the key array (ensure key[i] >= key[i+1]) and constrained in a
|
|
// range related to FLAGS_active_width.
|
|
std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
|
|
uint64_t iteration) {
|
|
const double completed_ratio =
|
|
static_cast<double>(iteration) / FLAGS_ops_per_thread;
|
|
const int64_t base_key = static_cast<int64_t>(
|
|
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
|
|
std::vector<int64_t> keys;
|
|
keys.reserve(num_keys);
|
|
int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width;
|
|
keys.push_back(next_key);
|
|
for (int i = 1; i < num_keys; ++i) {
|
|
// Generate the key follows zipfian distribution
|
|
if (FLAGS_hot_key_alpha != 0) {
|
|
double float_rand =
|
|
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
|
|
FLAGS_max_key;
|
|
next_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
|
|
} else {
|
|
// This may result in some duplicate keys
|
|
next_key = next_key + thread->rand.Next() %
|
|
(FLAGS_active_width - (next_key - base_key));
|
|
}
|
|
keys.push_back(next_key);
|
|
}
|
|
return keys;
|
|
}
|
|
|
|
size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) {
|
|
size_t value_sz =
|
|
((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult;
|
|
assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t));
|
|
(void)max_sz;
|
|
*((uint32_t*)v) = rand;
|
|
for (size_t i = sizeof(uint32_t); i < value_sz; i++) {
|
|
v[i] = (char)(rand ^ i);
|
|
}
|
|
v[value_sz] = '\0';
|
|
return value_sz; // the size of the value set.
|
|
}
|
|
} // namespace rocksdb
|
|
#endif // GFLAGS
|
|
|