You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/comparator_db_test.cc

660 lines
18 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <array>
#include <map>
#include <string>
#include "memtable/stl_wrappers.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/hash.h"
#include "util/kv_map.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
using std::unique_ptr;
namespace rocksdb {
namespace {
static const Comparator* kTestComparator = nullptr;
class KVIter : public Iterator {
public:
explicit KVIter(const stl_wrappers::KVMap* map)
: map_(map), iter_(map_->end()) {}
bool Valid() const override { return iter_ != map_->end(); }
void SeekToFirst() override { iter_ = map_->begin(); }
void SeekToLast() override {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
void Seek(const Slice& k) override {
iter_ = map_->lower_bound(k.ToString());
}
void SeekForPrev(const Slice& k) override {
iter_ = map_->upper_bound(k.ToString());
Prev();
}
void Next() override { ++iter_; }
void Prev() override {
if (iter_ == map_->begin()) {
iter_ = map_->end();
return;
}
--iter_;
}
Slice key() const override { return iter_->first; }
Slice value() const override { return iter_->second; }
Status status() const override { return Status::OK(); }
private:
const stl_wrappers::KVMap* const map_;
stl_wrappers::KVMap::const_iterator iter_;
};
void AssertItersEqual(Iterator* iter1, Iterator* iter2) {
ASSERT_EQ(iter1->Valid(), iter2->Valid());
if (iter1->Valid()) {
ASSERT_EQ(iter1->key().ToString(), iter2->key().ToString());
ASSERT_EQ(iter1->value().ToString(), iter2->value().ToString());
}
}
// Measuring operations on DB (expect to be empty).
// source_strings are candidate keys
void DoRandomIteraratorTest(DB* db, std::vector<std::string> source_strings,
Random* rnd, int num_writes, int num_iter_ops,
int num_trigger_flush) {
stl_wrappers::KVMap map((stl_wrappers::LessOfComparator(kTestComparator)));
for (int i = 0; i < num_writes; i++) {
if (num_trigger_flush > 0 && i != 0 && i % num_trigger_flush == 0) {
db->Flush(FlushOptions());
}
int type = rnd->Uniform(2);
int index = rnd->Uniform(static_cast<int>(source_strings.size()));
auto& key = source_strings[index];
switch (type) {
case 0:
// put
map[key] = key;
ASSERT_OK(db->Put(WriteOptions(), key, key));
break;
case 1:
// delete
if (map.find(key) != map.end()) {
map.erase(key);
}
ASSERT_OK(db->Delete(WriteOptions(), key));
break;
default:
assert(false);
}
}
std::unique_ptr<Iterator> iter(db->NewIterator(ReadOptions()));
std::unique_ptr<Iterator> result_iter(new KVIter(&map));
bool is_valid = false;
for (int i = 0; i < num_iter_ops; i++) {
// Random walk and make sure iter and result_iter returns the
// same key and value
int type = rnd->Uniform(6);
ASSERT_OK(iter->status());
switch (type) {
case 0:
// Seek to First
iter->SeekToFirst();
result_iter->SeekToFirst();
break;
case 1:
// Seek to last
iter->SeekToLast();
result_iter->SeekToLast();
break;
case 2: {
// Seek to random key
auto key_idx = rnd->Uniform(static_cast<int>(source_strings.size()));
auto key = source_strings[key_idx];
iter->Seek(key);
result_iter->Seek(key);
break;
}
case 3:
// Next
if (is_valid) {
iter->Next();
result_iter->Next();
} else {
continue;
}
break;
case 4:
// Prev
if (is_valid) {
iter->Prev();
result_iter->Prev();
} else {
continue;
}
break;
default: {
assert(type == 5);
auto key_idx = rnd->Uniform(static_cast<int>(source_strings.size()));
auto key = source_strings[key_idx];
std::string result;
auto status = db->Get(ReadOptions(), key, &result);
if (map.find(key) == map.end()) {
ASSERT_TRUE(status.IsNotFound());
} else {
ASSERT_EQ(map[key], result);
}
break;
}
}
AssertItersEqual(iter.get(), result_iter.get());
is_valid = iter->Valid();
}
}
class DoubleComparator : public Comparator {
public:
DoubleComparator() {}
const char* Name() const override { return "DoubleComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
#ifndef CYGWIN
double da = std::stod(a.ToString());
double db = std::stod(b.ToString());
#else
double da = std::strtod(a.ToString().c_str(), 0 /* endptr */);
double db = std::strtod(a.ToString().c_str(), 0 /* endptr */);
#endif
if (da == db) {
return a.compare(b);
} else if (da > db) {
return 1;
} else {
return -1;
}
}
void FindShortestSeparator(std::string* /*start*/,
const Slice& /*limit*/) const override {}
void FindShortSuccessor(std::string* /*key*/) const override {}
};
class HashComparator : public Comparator {
public:
HashComparator() {}
const char* Name() const override { return "HashComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
uint32_t ha = Hash(a.data(), a.size(), 66);
uint32_t hb = Hash(b.data(), b.size(), 66);
if (ha == hb) {
return a.compare(b);
} else if (ha > hb) {
return 1;
} else {
return -1;
}
}
void FindShortestSeparator(std::string* /*start*/,
const Slice& /*limit*/) const override {}
void FindShortSuccessor(std::string* /*key*/) const override {}
};
class TwoStrComparator : public Comparator {
public:
TwoStrComparator() {}
const char* Name() const override { return "TwoStrComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
assert(a.size() >= 2);
assert(b.size() >= 2);
size_t size_a1 = static_cast<size_t>(a[0]);
size_t size_b1 = static_cast<size_t>(b[0]);
size_t size_a2 = static_cast<size_t>(a[1]);
size_t size_b2 = static_cast<size_t>(b[1]);
assert(size_a1 + size_a2 + 2 == a.size());
assert(size_b1 + size_b2 + 2 == b.size());
Slice a1 = Slice(a.data() + 2, size_a1);
Slice b1 = Slice(b.data() + 2, size_b1);
Slice a2 = Slice(a.data() + 2 + size_a1, size_a2);
Slice b2 = Slice(b.data() + 2 + size_b1, size_b2);
if (a1 != b1) {
return a1.compare(b1);
}
return a2.compare(b2);
}
void FindShortestSeparator(std::string* /*start*/,
const Slice& /*limit*/) const override {}
void FindShortSuccessor(std::string* /*key*/) const override {}
};
} // namespace
class ComparatorDBTest
: public testing::Test,
virtual public ::testing::WithParamInterface<uint32_t> {
private:
std::string dbname_;
Env* env_;
DB* db_;
Options last_options_;
std::unique_ptr<const Comparator> comparator_guard;
public:
ComparatorDBTest() : env_(Env::Default()), db_(nullptr) {
kTestComparator = BytewiseComparator();
dbname_ = test::PerThreadDBPath("comparator_db_test");
BlockBasedTableOptions toptions;
toptions.format_version = GetParam();
last_options_.table_factory.reset(
rocksdb::NewBlockBasedTableFactory(toptions));
EXPECT_OK(DestroyDB(dbname_, last_options_));
}
~ComparatorDBTest() override {
delete db_;
EXPECT_OK(DestroyDB(dbname_, last_options_));
kTestComparator = BytewiseComparator();
}
DB* GetDB() { return db_; }
void SetOwnedComparator(const Comparator* cmp, bool owner = true) {
if (owner) {
comparator_guard.reset(cmp);
} else {
comparator_guard.reset();
}
kTestComparator = cmp;
last_options_.comparator = cmp;
}
// Return the current option configuration.
Options* GetOptions() { return &last_options_; }
void DestroyAndReopen() {
// Destroy using last options
Destroy();
ASSERT_OK(TryReopen());
}
void Destroy() {
delete db_;
db_ = nullptr;
ASSERT_OK(DestroyDB(dbname_, last_options_));
}
Status TryReopen() {
delete db_;
db_ = nullptr;
last_options_.create_if_missing = true;
return DB::Open(last_options_, dbname_, &db_);
}
};
INSTANTIATE_TEST_CASE_P(FormatDef, ComparatorDBTest,
testing::Values(test::kDefaultFormatVersion));
INSTANTIATE_TEST_CASE_P(FormatLatest, ComparatorDBTest,
testing::Values(test::kLatestFormatVersion));
TEST_P(ComparatorDBTest, Bytewise) {
for (int rand_seed = 301; rand_seed < 306; rand_seed++) {
DestroyAndReopen();
Random rnd(rand_seed);
DoRandomIteraratorTest(GetDB(),
{"a", "b", "c", "d", "e", "f", "g", "h", "i"}, &rnd,
8, 100, 3);
}
}
TEST_P(ComparatorDBTest, SimpleSuffixReverseComparator) {
SetOwnedComparator(new test::SimpleSuffixReverseComparator());
for (int rnd_seed = 301; rnd_seed < 316; rnd_seed++) {
Options* opt = GetOptions();
opt->comparator = kTestComparator;
DestroyAndReopen();
Random rnd(rnd_seed);
std::vector<std::string> source_strings;
std::vector<std::string> source_prefixes;
// Randomly generate 5 prefixes
for (int i = 0; i < 5; i++) {
source_prefixes.push_back(test::RandomHumanReadableString(&rnd, 8));
}
for (int j = 0; j < 20; j++) {
int prefix_index = rnd.Uniform(static_cast<int>(source_prefixes.size()));
std::string key = source_prefixes[prefix_index] +
test::RandomHumanReadableString(&rnd, rnd.Uniform(8));
source_strings.push_back(key);
}
DoRandomIteraratorTest(GetDB(), source_strings, &rnd, 30, 600, 66);
}
}
TEST_P(ComparatorDBTest, Uint64Comparator) {
SetOwnedComparator(test::Uint64Comparator(), false /* owner */);
for (int rnd_seed = 301; rnd_seed < 316; rnd_seed++) {
Options* opt = GetOptions();
opt->comparator = kTestComparator;
DestroyAndReopen();
Random rnd(rnd_seed);
Random64 rnd64(rnd_seed);
std::vector<std::string> source_strings;
// Randomly generate source keys
for (int i = 0; i < 100; i++) {
uint64_t r = rnd64.Next();
std::string str;
str.resize(8);
memcpy(&str[0], static_cast<void*>(&r), 8);
source_strings.push_back(str);
}
DoRandomIteraratorTest(GetDB(), source_strings, &rnd, 200, 1000, 66);
}
}
TEST_P(ComparatorDBTest, DoubleComparator) {
SetOwnedComparator(new DoubleComparator());
for (int rnd_seed = 301; rnd_seed < 316; rnd_seed++) {
Options* opt = GetOptions();
opt->comparator = kTestComparator;
DestroyAndReopen();
Random rnd(rnd_seed);
std::vector<std::string> source_strings;
// Randomly generate source keys
for (int i = 0; i < 100; i++) {
uint32_t r = rnd.Next();
uint32_t divide_order = rnd.Uniform(8);
double to_divide = 1.0;
for (uint32_t j = 0; j < divide_order; j++) {
to_divide *= 10.0;
}
source_strings.push_back(ToString(r / to_divide));
}
DoRandomIteraratorTest(GetDB(), source_strings, &rnd, 200, 1000, 66);
}
}
TEST_P(ComparatorDBTest, HashComparator) {
SetOwnedComparator(new HashComparator());
for (int rnd_seed = 301; rnd_seed < 316; rnd_seed++) {
Options* opt = GetOptions();
opt->comparator = kTestComparator;
DestroyAndReopen();
Random rnd(rnd_seed);
std::vector<std::string> source_strings;
// Randomly generate source keys
for (int i = 0; i < 100; i++) {
source_strings.push_back(test::RandomKey(&rnd, 8));
}
DoRandomIteraratorTest(GetDB(), source_strings, &rnd, 200, 1000, 66);
}
}
TEST_P(ComparatorDBTest, TwoStrComparator) {
SetOwnedComparator(new TwoStrComparator());
for (int rnd_seed = 301; rnd_seed < 316; rnd_seed++) {
Options* opt = GetOptions();
opt->comparator = kTestComparator;
DestroyAndReopen();
Random rnd(rnd_seed);
std::vector<std::string> source_strings;
// Randomly generate source keys
for (int i = 0; i < 100; i++) {
std::string str;
uint32_t size1 = rnd.Uniform(8);
uint32_t size2 = rnd.Uniform(8);
str.append(1, static_cast<char>(size1));
str.append(1, static_cast<char>(size2));
str.append(test::RandomKey(&rnd, size1));
str.append(test::RandomKey(&rnd, size2));
source_strings.push_back(str);
}
DoRandomIteraratorTest(GetDB(), source_strings, &rnd, 200, 1000, 66);
}
}
TEST_P(ComparatorDBTest, IsSameLengthImmediateSuccessor) {
{
// different length
Slice s("abcxy");
Slice t("abcxyz");
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
Slice s("abcxyz");
Slice t("abcxy");
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
// not last byte different
Slice s("abc1xyz");
Slice t("abc2xyz");
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
// same string
Slice s("abcxyz");
Slice t("abcxyz");
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
Slice s("abcxy");
Slice t("abcxz");
ASSERT_TRUE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
Slice s("abcxz");
Slice t("abcxy");
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
const char s_array[] = "\x50\x8a\xac";
const char t_array[] = "\x50\x8a\xad";
Slice s(s_array);
Slice t(t_array);
ASSERT_TRUE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
const char s_array[] = "\x50\x8a\xff";
const char t_array[] = "\x50\x8b\x00";
Slice s(s_array, 3);
Slice t(t_array, 3);
ASSERT_TRUE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
const char s_array[] = "\x50\x8a\xff\xff";
const char t_array[] = "\x50\x8b\x00\x00";
Slice s(s_array, 4);
Slice t(t_array, 4);
ASSERT_TRUE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
{
const char s_array[] = "\x50\x8a\xff\xff";
const char t_array[] = "\x50\x8b\x00\x01";
Slice s(s_array, 4);
Slice t(t_array, 4);
ASSERT_FALSE(BytewiseComparator()->IsSameLengthImmediateSuccessor(s, t));
}
}
TEST_P(ComparatorDBTest, FindShortestSeparator) {
std::string s1 = "abc1xyz";
std::string s2 = "abc3xy";
BytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_EQ("abc2", s1);
s1 = "abc5xyztt";
ReverseBytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_EQ("abc5", s1);
s1 = "abc3";
s2 = "abc2xy";
ReverseBytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_EQ("abc3", s1);
s1 = "abc3xyz";
s2 = "abc2xy";
ReverseBytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_EQ("abc3", s1);
s1 = "abc3xyz";
s2 = "abc2";
ReverseBytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_EQ("abc3", s1);
std::string old_s1 = s1 = "abc2xy";
s2 = "abc2";
ReverseBytewiseComparator()->FindShortestSeparator(&s1, s2);
ASSERT_TRUE(old_s1 >= s1);
ASSERT_TRUE(s1 > s2);
}
TEST_P(ComparatorDBTest, SeparatorSuccessorRandomizeTest) {
// Char list for boundary cases.
std::array<unsigned char, 6> char_list{{0, 1, 2, 253, 254, 255}};
Random rnd(301);
for (int attempts = 0; attempts < 1000; attempts++) {
uint32_t size1 = rnd.Skewed(4);
uint32_t size2;
if (rnd.OneIn(2)) {
// size2 to be random size
size2 = rnd.Skewed(4);
} else {
// size1 is within [-2, +2] of size1
int diff = static_cast<int>(rnd.Uniform(5)) - 2;
int tmp_size2 = static_cast<int>(size1) + diff;
if (tmp_size2 < 0) {
tmp_size2 = 0;
}
size2 = static_cast<uint32_t>(tmp_size2);
}
std::string s1;
std::string s2;
for (uint32_t i = 0; i < size1; i++) {
if (rnd.OneIn(2)) {
// Use random byte
s1 += static_cast<char>(rnd.Uniform(256));
} else {
// Use one byte in char_list
char c = static_cast<char>(char_list[rnd.Uniform(sizeof(char_list))]);
s1 += c;
}
}
// First set s2 to be the same as s1, and then modify s2.
s2 = s1;
s2.resize(size2);
// We start from the back of the string
if (size2 > 0) {
uint32_t pos = size2 - 1;
do {
if (pos >= size1 || rnd.OneIn(4)) {
// For 1/4 chance, use random byte
s2[pos] = static_cast<char>(rnd.Uniform(256));
} else if (rnd.OneIn(4)) {
// In 1/4 chance, stop here.
break;
} else {
// Create a char within [-2, +2] of the matching char of s1.
int diff = static_cast<int>(rnd.Uniform(5)) - 2;
// char may be signed or unsigned based on platform.
int s1_char = static_cast<int>(static_cast<unsigned char>(s1[pos]));
int s2_char = s1_char + diff;
if (s2_char < 0) {
s2_char = 0;
}
if (s2_char > 255) {
s2_char = 255;
}
s2[pos] = static_cast<char>(s2_char);
}
} while (pos-- != 0);
}
// Test separators
for (int rev = 0; rev < 2; rev++) {
if (rev == 1) {
// switch s1 and s2
std::string t = s1;
s1 = s2;
s2 = t;
}
std::string separator = s1;
BytewiseComparator()->FindShortestSeparator(&separator, s2);
std::string rev_separator = s1;
ReverseBytewiseComparator()->FindShortestSeparator(&rev_separator, s2);
if (s1 == s2) {
ASSERT_EQ(s1, separator);
ASSERT_EQ(s2, rev_separator);
} else if (s1 < s2) {
ASSERT_TRUE(s1 <= separator);
ASSERT_TRUE(s2 > separator);
ASSERT_LE(separator.size(), std::max(s1.size(), s2.size()));
ASSERT_EQ(s1, rev_separator);
} else {
ASSERT_TRUE(s1 >= rev_separator);
ASSERT_TRUE(s2 < rev_separator);
ASSERT_LE(rev_separator.size(), std::max(s1.size(), s2.size()));
ASSERT_EQ(s1, separator);
}
}
// Test successors
std::string succ = s1;
BytewiseComparator()->FindShortSuccessor(&succ);
ASSERT_TRUE(succ >= s1);
succ = s1;
ReverseBytewiseComparator()->FindShortSuccessor(&succ);
ASSERT_TRUE(succ <= s1);
}
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}