fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.1 KiB
189 lines
6.1 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#pragma once
|
|
#include <stdint.h>
|
|
#include <algorithm>
|
|
#include <random>
|
|
|
|
#include "rocksdb/rocksdb_namespace.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// A very simple random number generator. Not especially good at
|
|
// generating truly random bits, but good enough for our needs in this
|
|
// package.
|
|
class Random {
|
|
private:
|
|
enum : uint32_t {
|
|
M = 2147483647L // 2^31-1
|
|
};
|
|
enum : uint64_t {
|
|
A = 16807 // bits 14, 8, 7, 5, 2, 1, 0
|
|
};
|
|
|
|
uint32_t seed_;
|
|
|
|
static uint32_t GoodSeed(uint32_t s) { return (s & M) != 0 ? (s & M) : 1; }
|
|
|
|
public:
|
|
// This is the largest value that can be returned from Next()
|
|
enum : uint32_t { kMaxNext = M };
|
|
|
|
explicit Random(uint32_t s) : seed_(GoodSeed(s)) {}
|
|
|
|
void Reset(uint32_t s) { seed_ = GoodSeed(s); }
|
|
|
|
uint32_t Next() {
|
|
// We are computing
|
|
// seed_ = (seed_ * A) % M, where M = 2^31-1
|
|
//
|
|
// seed_ must not be zero or M, or else all subsequent computed values
|
|
// will be zero or M respectively. For all other values, seed_ will end
|
|
// up cycling through every number in [1,M-1]
|
|
uint64_t product = seed_ * A;
|
|
|
|
// Compute (product % M) using the fact that ((x << 31) % M) == x.
|
|
seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
|
|
// The first reduction may overflow by 1 bit, so we may need to
|
|
// repeat. mod == M is not possible; using > allows the faster
|
|
// sign-bit-based test.
|
|
if (seed_ > M) {
|
|
seed_ -= M;
|
|
}
|
|
return seed_;
|
|
}
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniform(int n) { return Next() % n; }
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(int n) { return Uniform(n) == 0; }
|
|
|
|
// "Optional" one-in-n, where 0 or negative always returns false
|
|
// (may or may not consume a random value)
|
|
bool OneInOpt(int n) { return n > 0 && OneIn(n); }
|
|
|
|
// Returns random bool that is true for the given percentage of
|
|
// calls on average. Zero or less is always false and 100 or more
|
|
// is always true (may or may not consume a random value)
|
|
bool PercentTrue(int percentage) {
|
|
return static_cast<int>(Uniform(100)) < percentage;
|
|
}
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint32_t Skewed(int max_log) {
|
|
return Uniform(1 << Uniform(max_log + 1));
|
|
}
|
|
|
|
// Returns a random string of length "len"
|
|
std::string RandomString(int len);
|
|
|
|
// Generates a random string of len bytes using human-readable characters
|
|
std::string HumanReadableString(int len);
|
|
|
|
// Generates a random binary data
|
|
std::string RandomBinaryString(int len);
|
|
|
|
// Returns a Random instance for use by the current thread without
|
|
// additional locking
|
|
static Random* GetTLSInstance();
|
|
};
|
|
|
|
// A good 32-bit random number generator based on std::mt19937.
|
|
// This exists in part to avoid compiler variance in warning about coercing
|
|
// uint_fast32_t from mt19937 to uint32_t.
|
|
class Random32 {
|
|
private:
|
|
std::mt19937 generator_;
|
|
|
|
public:
|
|
explicit Random32(uint32_t s) : generator_(s) {}
|
|
|
|
// Generates the next random number
|
|
uint32_t Next() { return static_cast<uint32_t>(generator_()); }
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniform(uint32_t n) {
|
|
return static_cast<uint32_t>(
|
|
std::uniform_int_distribution<std::mt19937::result_type>(
|
|
0, n - 1)(generator_));
|
|
}
|
|
|
|
// Returns an *almost* uniformly distributed value in the range [0..n-1].
|
|
// Much faster than Uniform().
|
|
// REQUIRES: n > 0
|
|
uint32_t Uniformish(uint32_t n) {
|
|
// fastrange (without the header)
|
|
return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32);
|
|
}
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(uint32_t n) { return Uniform(n) == 0; }
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint32_t Skewed(int max_log) {
|
|
return Uniform(uint32_t{1} << Uniform(max_log + 1));
|
|
}
|
|
|
|
// Reset the seed of the generator to the given value
|
|
void Seed(uint32_t new_seed) { generator_.seed(new_seed); }
|
|
};
|
|
|
|
// A good 64-bit random number generator based on std::mt19937_64
|
|
class Random64 {
|
|
private:
|
|
std::mt19937_64 generator_;
|
|
|
|
public:
|
|
explicit Random64(uint64_t s) : generator_(s) { }
|
|
|
|
// Generates the next random number
|
|
uint64_t Next() { return generator_(); }
|
|
|
|
// Returns a uniformly distributed value in the range [0..n-1]
|
|
// REQUIRES: n > 0
|
|
uint64_t Uniform(uint64_t n) {
|
|
return std::uniform_int_distribution<uint64_t>(0, n - 1)(generator_);
|
|
}
|
|
|
|
// Randomly returns true ~"1/n" of the time, and false otherwise.
|
|
// REQUIRES: n > 0
|
|
bool OneIn(uint64_t n) { return Uniform(n) == 0; }
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
|
|
uint64_t Skewed(int max_log) {
|
|
return Uniform(uint64_t(1) << Uniform(max_log + 1));
|
|
}
|
|
};
|
|
|
|
// A seeded replacement for removed std::random_shuffle
|
|
template <class RandomIt>
|
|
void RandomShuffle(RandomIt first, RandomIt last, uint32_t seed) {
|
|
std::mt19937 rng(seed);
|
|
std::shuffle(first, last, rng);
|
|
}
|
|
|
|
// A replacement for removed std::random_shuffle
|
|
template <class RandomIt>
|
|
void RandomShuffle(RandomIt first, RandomIt last) {
|
|
RandomShuffle(first, last, std::random_device{}());
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|