fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2709 lines
100 KiB
2709 lines
100 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "cache/lru_cache.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "cache/cache_key.h"
|
|
#include "cache/clock_cache.h"
|
|
#include "cache/fast_lru_cache.h"
|
|
#include "db/db_test_util.h"
|
|
#include "file/sst_file_manager_impl.h"
|
|
#include "port/port.h"
|
|
#include "port/stack_trace.h"
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/io_status.h"
|
|
#include "rocksdb/sst_file_manager.h"
|
|
#include "rocksdb/utilities/cache_dump_load.h"
|
|
#include "test_util/testharness.h"
|
|
#include "util/coding.h"
|
|
#include "util/random.h"
|
|
#include "utilities/cache_dump_load_impl.h"
|
|
#include "utilities/fault_injection_fs.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class LRUCacheTest : public testing::Test {
|
|
public:
|
|
LRUCacheTest() {}
|
|
~LRUCacheTest() override { DeleteCache(); }
|
|
|
|
void DeleteCache() {
|
|
if (cache_ != nullptr) {
|
|
cache_->~LRUCacheShard();
|
|
port::cacheline_aligned_free(cache_);
|
|
cache_ = nullptr;
|
|
}
|
|
}
|
|
|
|
void NewCache(size_t capacity, double high_pri_pool_ratio = 0.0,
|
|
double low_pri_pool_ratio = 1.0,
|
|
bool use_adaptive_mutex = kDefaultToAdaptiveMutex) {
|
|
DeleteCache();
|
|
cache_ = reinterpret_cast<LRUCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard)));
|
|
new (cache_) LRUCacheShard(capacity, /*strict_capacity_limit=*/false,
|
|
high_pri_pool_ratio, low_pri_pool_ratio,
|
|
use_adaptive_mutex, kDontChargeCacheMetadata,
|
|
/*max_upper_hash_bits=*/24,
|
|
/*secondary_cache=*/nullptr);
|
|
}
|
|
|
|
void Insert(const std::string& key,
|
|
Cache::Priority priority = Cache::Priority::LOW) {
|
|
EXPECT_OK(cache_->Insert(key, 0 /*hash*/, nullptr /*value*/, 1 /*charge*/,
|
|
nullptr /*deleter*/, nullptr /*handle*/,
|
|
priority));
|
|
}
|
|
|
|
void Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
|
|
Insert(std::string(1, key), priority);
|
|
}
|
|
|
|
bool Lookup(const std::string& key) {
|
|
auto handle = cache_->Lookup(key, 0 /*hash*/);
|
|
if (handle) {
|
|
cache_->Release(handle);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Lookup(char key) { return Lookup(std::string(1, key)); }
|
|
|
|
void Erase(const std::string& key) { cache_->Erase(key, 0 /*hash*/); }
|
|
|
|
void ValidateLRUList(std::vector<std::string> keys,
|
|
size_t num_high_pri_pool_keys = 0,
|
|
size_t num_low_pri_pool_keys = 0,
|
|
size_t num_bottom_pri_pool_keys = 0) {
|
|
LRUHandle* lru;
|
|
LRUHandle* lru_low_pri;
|
|
LRUHandle* lru_bottom_pri;
|
|
cache_->TEST_GetLRUList(&lru, &lru_low_pri, &lru_bottom_pri);
|
|
|
|
LRUHandle* iter = lru;
|
|
|
|
bool in_low_pri_pool = false;
|
|
bool in_high_pri_pool = false;
|
|
|
|
size_t high_pri_pool_keys = 0;
|
|
size_t low_pri_pool_keys = 0;
|
|
size_t bottom_pri_pool_keys = 0;
|
|
|
|
if (iter == lru_bottom_pri) {
|
|
in_low_pri_pool = true;
|
|
in_high_pri_pool = false;
|
|
}
|
|
if (iter == lru_low_pri) {
|
|
in_low_pri_pool = false;
|
|
in_high_pri_pool = true;
|
|
}
|
|
|
|
for (const auto& key : keys) {
|
|
iter = iter->next;
|
|
ASSERT_NE(lru, iter);
|
|
ASSERT_EQ(key, iter->key().ToString());
|
|
ASSERT_EQ(in_high_pri_pool, iter->InHighPriPool());
|
|
ASSERT_EQ(in_low_pri_pool, iter->InLowPriPool());
|
|
if (in_high_pri_pool) {
|
|
ASSERT_FALSE(iter->InLowPriPool());
|
|
high_pri_pool_keys++;
|
|
} else if (in_low_pri_pool) {
|
|
ASSERT_FALSE(iter->InHighPriPool());
|
|
low_pri_pool_keys++;
|
|
} else {
|
|
bottom_pri_pool_keys++;
|
|
}
|
|
if (iter == lru_bottom_pri) {
|
|
ASSERT_FALSE(in_low_pri_pool);
|
|
ASSERT_FALSE(in_high_pri_pool);
|
|
in_low_pri_pool = true;
|
|
in_high_pri_pool = false;
|
|
}
|
|
if (iter == lru_low_pri) {
|
|
ASSERT_TRUE(in_low_pri_pool);
|
|
ASSERT_FALSE(in_high_pri_pool);
|
|
in_low_pri_pool = false;
|
|
in_high_pri_pool = true;
|
|
}
|
|
}
|
|
ASSERT_EQ(lru, iter->next);
|
|
ASSERT_FALSE(in_low_pri_pool);
|
|
ASSERT_TRUE(in_high_pri_pool);
|
|
ASSERT_EQ(num_high_pri_pool_keys, high_pri_pool_keys);
|
|
ASSERT_EQ(num_low_pri_pool_keys, low_pri_pool_keys);
|
|
ASSERT_EQ(num_bottom_pri_pool_keys, bottom_pri_pool_keys);
|
|
}
|
|
|
|
private:
|
|
LRUCacheShard* cache_ = nullptr;
|
|
};
|
|
|
|
TEST_F(LRUCacheTest, BasicLRU) {
|
|
NewCache(5);
|
|
for (char ch = 'a'; ch <= 'e'; ch++) {
|
|
Insert(ch);
|
|
}
|
|
ValidateLRUList({"a", "b", "c", "d", "e"}, 0, 5);
|
|
for (char ch = 'x'; ch <= 'z'; ch++) {
|
|
Insert(ch);
|
|
}
|
|
ValidateLRUList({"d", "e", "x", "y", "z"}, 0, 5);
|
|
ASSERT_FALSE(Lookup("b"));
|
|
ValidateLRUList({"d", "e", "x", "y", "z"}, 0, 5);
|
|
ASSERT_TRUE(Lookup("e"));
|
|
ValidateLRUList({"d", "x", "y", "z", "e"}, 0, 5);
|
|
ASSERT_TRUE(Lookup("z"));
|
|
ValidateLRUList({"d", "x", "y", "e", "z"}, 0, 5);
|
|
Erase("x");
|
|
ValidateLRUList({"d", "y", "e", "z"}, 0, 4);
|
|
ASSERT_TRUE(Lookup("d"));
|
|
ValidateLRUList({"y", "e", "z", "d"}, 0, 4);
|
|
Insert("u");
|
|
ValidateLRUList({"y", "e", "z", "d", "u"}, 0, 5);
|
|
Insert("v");
|
|
ValidateLRUList({"e", "z", "d", "u", "v"}, 0, 5);
|
|
}
|
|
|
|
TEST_F(LRUCacheTest, LowPriorityMidpointInsertion) {
|
|
// Allocate 2 cache entries to high-pri pool and 3 to low-pri pool.
|
|
NewCache(5, /* high_pri_pool_ratio */ 0.40, /* low_pri_pool_ratio */ 0.60);
|
|
|
|
Insert("a", Cache::Priority::LOW);
|
|
Insert("b", Cache::Priority::LOW);
|
|
Insert("c", Cache::Priority::LOW);
|
|
Insert("x", Cache::Priority::HIGH);
|
|
Insert("y", Cache::Priority::HIGH);
|
|
ValidateLRUList({"a", "b", "c", "x", "y"}, 2, 3);
|
|
|
|
// Low-pri entries inserted to the tail of low-pri list (the midpoint).
|
|
// After lookup, it will move to the tail of the full list.
|
|
Insert("d", Cache::Priority::LOW);
|
|
ValidateLRUList({"b", "c", "d", "x", "y"}, 2, 3);
|
|
ASSERT_TRUE(Lookup("d"));
|
|
ValidateLRUList({"b", "c", "x", "y", "d"}, 2, 3);
|
|
|
|
// High-pri entries will be inserted to the tail of full list.
|
|
Insert("z", Cache::Priority::HIGH);
|
|
ValidateLRUList({"c", "x", "y", "d", "z"}, 2, 3);
|
|
}
|
|
|
|
TEST_F(LRUCacheTest, BottomPriorityMidpointInsertion) {
|
|
// Allocate 2 cache entries to high-pri pool and 2 to low-pri pool.
|
|
NewCache(6, /* high_pri_pool_ratio */ 0.35, /* low_pri_pool_ratio */ 0.35);
|
|
|
|
Insert("a", Cache::Priority::BOTTOM);
|
|
Insert("b", Cache::Priority::BOTTOM);
|
|
Insert("i", Cache::Priority::LOW);
|
|
Insert("j", Cache::Priority::LOW);
|
|
Insert("x", Cache::Priority::HIGH);
|
|
Insert("y", Cache::Priority::HIGH);
|
|
ValidateLRUList({"a", "b", "i", "j", "x", "y"}, 2, 2, 2);
|
|
|
|
// Low-pri entries will be inserted to the tail of low-pri list (the
|
|
// midpoint). After lookup, 'k' will move to the tail of the full list, and
|
|
// 'x' will spill over to the low-pri pool.
|
|
Insert("k", Cache::Priority::LOW);
|
|
ValidateLRUList({"b", "i", "j", "k", "x", "y"}, 2, 2, 2);
|
|
ASSERT_TRUE(Lookup("k"));
|
|
ValidateLRUList({"b", "i", "j", "x", "y", "k"}, 2, 2, 2);
|
|
|
|
// High-pri entries will be inserted to the tail of full list. Although y was
|
|
// inserted with high priority, it got spilled over to the low-pri pool. As
|
|
// a result, j also got spilled over to the bottom-pri pool.
|
|
Insert("z", Cache::Priority::HIGH);
|
|
ValidateLRUList({"i", "j", "x", "y", "k", "z"}, 2, 2, 2);
|
|
Erase("x");
|
|
ValidateLRUList({"i", "j", "y", "k", "z"}, 2, 1, 2);
|
|
Erase("y");
|
|
ValidateLRUList({"i", "j", "k", "z"}, 2, 0, 2);
|
|
|
|
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
|
|
Insert("c", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"i", "j", "c", "k", "z"}, 2, 0, 3);
|
|
Insert("d", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"i", "j", "c", "d", "k", "z"}, 2, 0, 4);
|
|
Insert("e", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"j", "c", "d", "e", "k", "z"}, 2, 0, 4);
|
|
|
|
// Low-pri entries will be inserted to the tail of low-pri list (the
|
|
// midpoint).
|
|
Insert("l", Cache::Priority::LOW);
|
|
ValidateLRUList({"c", "d", "e", "l", "k", "z"}, 2, 1, 3);
|
|
Insert("m", Cache::Priority::LOW);
|
|
ValidateLRUList({"d", "e", "l", "m", "k", "z"}, 2, 2, 2);
|
|
|
|
Erase("k");
|
|
ValidateLRUList({"d", "e", "l", "m", "z"}, 1, 2, 2);
|
|
Erase("z");
|
|
ValidateLRUList({"d", "e", "l", "m"}, 0, 2, 2);
|
|
|
|
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
|
|
Insert("f", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"d", "e", "f", "l", "m"}, 0, 2, 3);
|
|
Insert("g", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"d", "e", "f", "g", "l", "m"}, 0, 2, 4);
|
|
|
|
// High-pri entries will be inserted to the tail of full list.
|
|
Insert("o", Cache::Priority::HIGH);
|
|
ValidateLRUList({"e", "f", "g", "l", "m", "o"}, 1, 2, 3);
|
|
Insert("p", Cache::Priority::HIGH);
|
|
ValidateLRUList({"f", "g", "l", "m", "o", "p"}, 2, 2, 2);
|
|
}
|
|
|
|
TEST_F(LRUCacheTest, EntriesWithPriority) {
|
|
// Allocate 2 cache entries to high-pri pool and 2 to low-pri pool.
|
|
NewCache(6, /* high_pri_pool_ratio */ 0.35, /* low_pri_pool_ratio */ 0.35);
|
|
|
|
Insert("a", Cache::Priority::LOW);
|
|
Insert("b", Cache::Priority::LOW);
|
|
ValidateLRUList({"a", "b"}, 0, 2, 0);
|
|
// Low-pri entries can overflow to bottom-pri pool.
|
|
Insert("c", Cache::Priority::LOW);
|
|
ValidateLRUList({"a", "b", "c"}, 0, 2, 1);
|
|
|
|
// Bottom-pri entries can take high-pri pool capacity if available
|
|
Insert("t", Cache::Priority::LOW);
|
|
Insert("u", Cache::Priority::LOW);
|
|
ValidateLRUList({"a", "b", "c", "t", "u"}, 0, 2, 3);
|
|
Insert("v", Cache::Priority::LOW);
|
|
ValidateLRUList({"a", "b", "c", "t", "u", "v"}, 0, 2, 4);
|
|
Insert("w", Cache::Priority::LOW);
|
|
ValidateLRUList({"b", "c", "t", "u", "v", "w"}, 0, 2, 4);
|
|
|
|
Insert("X", Cache::Priority::HIGH);
|
|
Insert("Y", Cache::Priority::HIGH);
|
|
ValidateLRUList({"t", "u", "v", "w", "X", "Y"}, 2, 2, 2);
|
|
|
|
// After lookup, the high-pri entry 'X' got spilled over to the low-pri pool.
|
|
// The low-pri entry 'v' got spilled over to the bottom-pri pool.
|
|
Insert("Z", Cache::Priority::HIGH);
|
|
ValidateLRUList({"u", "v", "w", "X", "Y", "Z"}, 2, 2, 2);
|
|
|
|
// Low-pri entries will be inserted to head of low-pri pool.
|
|
Insert("a", Cache::Priority::LOW);
|
|
ValidateLRUList({"v", "w", "X", "a", "Y", "Z"}, 2, 2, 2);
|
|
|
|
// After lookup, the high-pri entry 'Y' got spilled over to the low-pri pool.
|
|
// The low-pri entry 'X' got spilled over to the bottom-pri pool.
|
|
ASSERT_TRUE(Lookup("v"));
|
|
ValidateLRUList({"w", "X", "a", "Y", "Z", "v"}, 2, 2, 2);
|
|
|
|
// After lookup, the high-pri entry 'Z' got spilled over to the low-pri pool.
|
|
// The low-pri entry 'a' got spilled over to the bottom-pri pool.
|
|
ASSERT_TRUE(Lookup("X"));
|
|
ValidateLRUList({"w", "a", "Y", "Z", "v", "X"}, 2, 2, 2);
|
|
|
|
// After lookup, the low pri entry 'Z' got promoted back to high-pri pool. The
|
|
// high-pri entry 'v' got spilled over to the low-pri pool.
|
|
ASSERT_TRUE(Lookup("Z"));
|
|
ValidateLRUList({"w", "a", "Y", "v", "X", "Z"}, 2, 2, 2);
|
|
|
|
Erase("Y");
|
|
ValidateLRUList({"w", "a", "v", "X", "Z"}, 2, 1, 2);
|
|
Erase("X");
|
|
ValidateLRUList({"w", "a", "v", "Z"}, 1, 1, 2);
|
|
|
|
Insert("d", Cache::Priority::LOW);
|
|
Insert("e", Cache::Priority::LOW);
|
|
ValidateLRUList({"w", "a", "v", "d", "e", "Z"}, 1, 2, 3);
|
|
|
|
Insert("f", Cache::Priority::LOW);
|
|
Insert("g", Cache::Priority::LOW);
|
|
ValidateLRUList({"v", "d", "e", "f", "g", "Z"}, 1, 2, 3);
|
|
ASSERT_TRUE(Lookup("d"));
|
|
ValidateLRUList({"v", "e", "f", "g", "Z", "d"}, 2, 2, 2);
|
|
|
|
// Erase some entries.
|
|
Erase("e");
|
|
Erase("f");
|
|
Erase("Z");
|
|
ValidateLRUList({"v", "g", "d"}, 1, 1, 1);
|
|
|
|
// Bottom-pri entries can take low- and high-pri pool capacity if available
|
|
Insert("o", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"v", "o", "g", "d"}, 1, 1, 2);
|
|
Insert("p", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"v", "o", "p", "g", "d"}, 1, 1, 3);
|
|
Insert("q", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"v", "o", "p", "q", "g", "d"}, 1, 1, 4);
|
|
|
|
// High-pri entries can overflow to low-pri pool, and bottom-pri entries will
|
|
// be evicted.
|
|
Insert("x", Cache::Priority::HIGH);
|
|
ValidateLRUList({"o", "p", "q", "g", "d", "x"}, 2, 1, 3);
|
|
Insert("y", Cache::Priority::HIGH);
|
|
ValidateLRUList({"p", "q", "g", "d", "x", "y"}, 2, 2, 2);
|
|
Insert("z", Cache::Priority::HIGH);
|
|
ValidateLRUList({"q", "g", "d", "x", "y", "z"}, 2, 2, 2);
|
|
|
|
// 'g' is bottom-pri before this lookup, it will be inserted to head of
|
|
// high-pri pool after lookup.
|
|
ASSERT_TRUE(Lookup("g"));
|
|
ValidateLRUList({"q", "d", "x", "y", "z", "g"}, 2, 2, 2);
|
|
|
|
// High-pri entries will be inserted to head of high-pri pool after lookup.
|
|
ASSERT_TRUE(Lookup("z"));
|
|
ValidateLRUList({"q", "d", "x", "y", "g", "z"}, 2, 2, 2);
|
|
|
|
// Bottom-pri entries will be inserted to head of high-pri pool after lookup.
|
|
ASSERT_TRUE(Lookup("d"));
|
|
ValidateLRUList({"q", "x", "y", "g", "z", "d"}, 2, 2, 2);
|
|
|
|
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
|
|
Insert("m", Cache::Priority::BOTTOM);
|
|
ValidateLRUList({"x", "m", "y", "g", "z", "d"}, 2, 2, 2);
|
|
|
|
// Bottom-pri entries will be inserted to head of high-pri pool after lookup.
|
|
ASSERT_TRUE(Lookup("m"));
|
|
ValidateLRUList({"x", "y", "g", "z", "d", "m"}, 2, 2, 2);
|
|
}
|
|
|
|
// TODO: FastLRUCache and ClockCache use the same tests. We can probably remove
|
|
// them from FastLRUCache after ClockCache becomes productive, and we don't plan
|
|
// to use or maintain FastLRUCache any more.
|
|
namespace fast_lru_cache {
|
|
|
|
// TODO(guido) Replicate LRU policy tests from LRUCache here.
|
|
class FastLRUCacheTest : public testing::Test {
|
|
public:
|
|
FastLRUCacheTest() {}
|
|
~FastLRUCacheTest() override { DeleteCache(); }
|
|
|
|
void DeleteCache() {
|
|
if (cache_ != nullptr) {
|
|
cache_->~LRUCacheShard();
|
|
port::cacheline_aligned_free(cache_);
|
|
cache_ = nullptr;
|
|
}
|
|
}
|
|
|
|
void NewCache(size_t capacity) {
|
|
DeleteCache();
|
|
cache_ = reinterpret_cast<LRUCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard)));
|
|
new (cache_) LRUCacheShard(capacity, 1 /*estimated_value_size*/,
|
|
false /*strict_capacity_limit*/,
|
|
kDontChargeCacheMetadata);
|
|
}
|
|
|
|
Status Insert(const std::string& key) {
|
|
return cache_->Insert(key, 0 /*hash*/, nullptr /*value*/, 1 /*charge*/,
|
|
nullptr /*deleter*/, nullptr /*handle*/,
|
|
Cache::Priority::LOW);
|
|
}
|
|
|
|
Status Insert(char key, size_t len) { return Insert(std::string(len, key)); }
|
|
|
|
size_t CalcEstimatedHandleChargeWrapper(
|
|
size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return LRUCacheShard::CalcEstimatedHandleCharge(estimated_value_size,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
int CalcHashBitsWrapper(size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return LRUCacheShard::CalcHashBits(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
// Maximum number of items that a shard can hold.
|
|
double CalcMaxOccupancy(size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
size_t handle_charge = LRUCacheShard::CalcEstimatedHandleCharge(
|
|
estimated_value_size, metadata_charge_policy);
|
|
return capacity / (kLoadFactor * handle_charge);
|
|
}
|
|
bool TableSizeIsAppropriate(int hash_bits, double max_occupancy) {
|
|
if (hash_bits == 0) {
|
|
return max_occupancy <= 1;
|
|
} else {
|
|
return (1 << hash_bits >= max_occupancy) &&
|
|
(1 << (hash_bits - 1) <= max_occupancy);
|
|
}
|
|
}
|
|
|
|
private:
|
|
LRUCacheShard* cache_ = nullptr;
|
|
};
|
|
|
|
TEST_F(FastLRUCacheTest, ValidateKeySize) {
|
|
NewCache(3);
|
|
EXPECT_OK(Insert('a', 16));
|
|
EXPECT_NOK(Insert('b', 15));
|
|
EXPECT_OK(Insert('b', 16));
|
|
EXPECT_NOK(Insert('c', 17));
|
|
EXPECT_NOK(Insert('d', 1000));
|
|
EXPECT_NOK(Insert('e', 11));
|
|
EXPECT_NOK(Insert('f', 0));
|
|
}
|
|
|
|
TEST_F(FastLRUCacheTest, CalcHashBitsTest) {
|
|
size_t capacity;
|
|
size_t estimated_value_size;
|
|
double max_occupancy;
|
|
int hash_bits;
|
|
CacheMetadataChargePolicy metadata_charge_policy;
|
|
// Vary the cache capacity, fix the element charge.
|
|
for (int i = 0; i < 2048; i++) {
|
|
capacity = i;
|
|
estimated_value_size = 0;
|
|
metadata_charge_policy = kFullChargeCacheMetadata;
|
|
max_occupancy = CalcMaxOccupancy(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, max_occupancy));
|
|
}
|
|
// Fix the cache capacity, vary the element charge.
|
|
for (int i = 0; i < 1024; i++) {
|
|
capacity = 1024;
|
|
estimated_value_size = i;
|
|
metadata_charge_policy = kFullChargeCacheMetadata;
|
|
max_occupancy = CalcMaxOccupancy(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, max_occupancy));
|
|
}
|
|
// Zero-capacity cache, and only values have charge.
|
|
capacity = 0;
|
|
estimated_value_size = 1;
|
|
metadata_charge_policy = kDontChargeCacheMetadata;
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, 0 /* max_occupancy */));
|
|
// Zero-capacity cache, and only metadata has charge.
|
|
capacity = 0;
|
|
estimated_value_size = 0;
|
|
metadata_charge_policy = kFullChargeCacheMetadata;
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, 0 /* max_occupancy */));
|
|
// Small cache, large elements.
|
|
capacity = 1024;
|
|
estimated_value_size = 8192;
|
|
metadata_charge_policy = kFullChargeCacheMetadata;
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, 0 /* max_occupancy */));
|
|
// Large capacity.
|
|
capacity = 31924172;
|
|
estimated_value_size = 8192;
|
|
metadata_charge_policy = kFullChargeCacheMetadata;
|
|
max_occupancy =
|
|
CalcMaxOccupancy(capacity, estimated_value_size, metadata_charge_policy);
|
|
hash_bits = CalcHashBitsWrapper(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
EXPECT_TRUE(TableSizeIsAppropriate(hash_bits, max_occupancy));
|
|
}
|
|
|
|
} // namespace fast_lru_cache
|
|
|
|
namespace hyper_clock_cache {
|
|
|
|
class ClockCacheTest : public testing::Test {
|
|
public:
|
|
ClockCacheTest() {}
|
|
~ClockCacheTest() override { DeleteShard(); }
|
|
|
|
void DeleteShard() {
|
|
if (shard_ != nullptr) {
|
|
shard_->~ClockCacheShard();
|
|
port::cacheline_aligned_free(shard_);
|
|
shard_ = nullptr;
|
|
}
|
|
}
|
|
|
|
void NewShard(size_t capacity, bool strict_capacity_limit = true) {
|
|
DeleteShard();
|
|
shard_ = reinterpret_cast<ClockCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(ClockCacheShard)));
|
|
new (shard_) ClockCacheShard(capacity, 1, strict_capacity_limit,
|
|
kDontChargeCacheMetadata);
|
|
}
|
|
|
|
Status Insert(const std::string& key,
|
|
Cache::Priority priority = Cache::Priority::LOW) {
|
|
return shard_->Insert(key, 0 /*hash*/, nullptr /*value*/, 1 /*charge*/,
|
|
nullptr /*deleter*/, nullptr /*handle*/, priority);
|
|
}
|
|
|
|
Status Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
|
|
return Insert(std::string(kCacheKeySize, key), priority);
|
|
}
|
|
|
|
Status InsertWithLen(char key, size_t len) {
|
|
return Insert(std::string(len, key));
|
|
}
|
|
|
|
bool Lookup(const std::string& key, bool useful = true) {
|
|
auto handle = shard_->Lookup(key, 0 /*hash*/);
|
|
if (handle) {
|
|
shard_->Release(handle, useful, /*erase_if_last_ref=*/false);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Lookup(char key, bool useful = true) {
|
|
return Lookup(std::string(kCacheKeySize, key), useful);
|
|
}
|
|
|
|
void Erase(const std::string& key) { shard_->Erase(key, 0 /*hash*/); }
|
|
|
|
#if 0 // FIXME
|
|
size_t CalcEstimatedHandleChargeWrapper(
|
|
size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return ClockCacheShard::CalcEstimatedHandleCharge(estimated_value_size,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
int CalcHashBitsWrapper(size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return ClockCacheShard::CalcHashBits(capacity, estimated_value_size,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
// Maximum number of items that a shard can hold.
|
|
double CalcMaxOccupancy(size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
size_t handle_charge = ClockCacheShard::CalcEstimatedHandleCharge(
|
|
estimated_value_size, metadata_charge_policy);
|
|
return capacity / (kLoadFactor * handle_charge);
|
|
}
|
|
|
|
bool TableSizeIsAppropriate(int hash_bits, double max_occupancy) {
|
|
if (hash_bits == 0) {
|
|
return max_occupancy <= 1;
|
|
} else {
|
|
return (1 << hash_bits >= max_occupancy) &&
|
|
(1 << (hash_bits - 1) <= max_occupancy);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ClockCacheShard* shard_ = nullptr;
|
|
};
|
|
|
|
TEST_F(ClockCacheTest, Misc) {
|
|
NewShard(3);
|
|
|
|
// Key size stuff
|
|
EXPECT_OK(InsertWithLen('a', 16));
|
|
EXPECT_NOK(InsertWithLen('b', 15));
|
|
EXPECT_OK(InsertWithLen('b', 16));
|
|
EXPECT_NOK(InsertWithLen('c', 17));
|
|
EXPECT_NOK(InsertWithLen('d', 1000));
|
|
EXPECT_NOK(InsertWithLen('e', 11));
|
|
EXPECT_NOK(InsertWithLen('f', 0));
|
|
|
|
// Some of this is motivated by code coverage
|
|
std::string wrong_size_key(15, 'x');
|
|
EXPECT_FALSE(Lookup(wrong_size_key));
|
|
EXPECT_FALSE(shard_->Ref(nullptr));
|
|
EXPECT_FALSE(shard_->Release(nullptr));
|
|
shard_->Erase(wrong_size_key, /*hash*/ 42); // no-op
|
|
}
|
|
|
|
TEST_F(ClockCacheTest, Limits) {
|
|
NewShard(3, false /*strict_capacity_limit*/);
|
|
for (bool strict_capacity_limit : {false, true, false}) {
|
|
SCOPED_TRACE("strict_capacity_limit = " +
|
|
std::to_string(strict_capacity_limit));
|
|
|
|
// Also tests switching between strict limit and not
|
|
shard_->SetStrictCapacityLimit(strict_capacity_limit);
|
|
|
|
std::string key(16, 'x');
|
|
|
|
// Single entry charge beyond capacity
|
|
{
|
|
Status s = shard_->Insert(key, 0 /*hash*/, nullptr /*value*/,
|
|
5 /*charge*/, nullptr /*deleter*/,
|
|
nullptr /*handle*/, Cache::Priority::LOW);
|
|
if (strict_capacity_limit) {
|
|
EXPECT_TRUE(s.IsMemoryLimit());
|
|
} else {
|
|
EXPECT_OK(s);
|
|
}
|
|
}
|
|
|
|
// Single entry fills capacity
|
|
{
|
|
Cache::Handle* h;
|
|
ASSERT_OK(shard_->Insert(key, 0 /*hash*/, nullptr /*value*/, 3 /*charge*/,
|
|
nullptr /*deleter*/, &h, Cache::Priority::LOW));
|
|
// Try to insert more
|
|
Status s = Insert('a');
|
|
if (strict_capacity_limit) {
|
|
EXPECT_TRUE(s.IsMemoryLimit());
|
|
} else {
|
|
EXPECT_OK(s);
|
|
}
|
|
// Release entry filling capacity.
|
|
// Cover useful = false case.
|
|
shard_->Release(h, false /*useful*/, false /*erase_if_last_ref*/);
|
|
}
|
|
|
|
// Insert more than table size can handle (cleverly using zero-charge
|
|
// entries) to exceed occupancy limit.
|
|
{
|
|
size_t n = shard_->GetTableAddressCount() + 1;
|
|
std::unique_ptr<Cache::Handle* []> ha { new Cache::Handle* [n] {} };
|
|
Status s;
|
|
for (size_t i = 0; i < n && s.ok(); ++i) {
|
|
EncodeFixed64(&key[0], i);
|
|
s = shard_->Insert(key, 0 /*hash*/, nullptr /*value*/, 0 /*charge*/,
|
|
nullptr /*deleter*/, &ha[i], Cache::Priority::LOW);
|
|
if (i == 0) {
|
|
EXPECT_OK(s);
|
|
}
|
|
}
|
|
if (strict_capacity_limit) {
|
|
EXPECT_TRUE(s.IsMemoryLimit());
|
|
} else {
|
|
EXPECT_OK(s);
|
|
}
|
|
// Same result if not keeping a reference
|
|
s = Insert('a');
|
|
if (strict_capacity_limit) {
|
|
EXPECT_TRUE(s.IsMemoryLimit());
|
|
} else {
|
|
EXPECT_OK(s);
|
|
}
|
|
|
|
// Regardless, we didn't allow table to actually get full
|
|
EXPECT_LT(shard_->GetOccupancyCount(), shard_->GetTableAddressCount());
|
|
|
|
// Release handles
|
|
for (size_t i = 0; i < n; ++i) {
|
|
if (ha[i]) {
|
|
shard_->Release(ha[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(ClockCacheTest, ClockEvictionTest) {
|
|
for (bool strict_capacity_limit : {false, true}) {
|
|
SCOPED_TRACE("strict_capacity_limit = " +
|
|
std::to_string(strict_capacity_limit));
|
|
|
|
NewShard(6, strict_capacity_limit);
|
|
EXPECT_OK(Insert('a', Cache::Priority::BOTTOM));
|
|
EXPECT_OK(Insert('b', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('c', Cache::Priority::HIGH));
|
|
EXPECT_OK(Insert('d', Cache::Priority::BOTTOM));
|
|
EXPECT_OK(Insert('e', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('f', Cache::Priority::HIGH));
|
|
|
|
EXPECT_TRUE(Lookup('a', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('b', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('c', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('d', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('e', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('f', /*use*/ false));
|
|
|
|
// Ensure bottom are evicted first, even if new entries are low
|
|
EXPECT_OK(Insert('g', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('h', Cache::Priority::LOW));
|
|
|
|
EXPECT_FALSE(Lookup('a', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('b', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('c', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('d', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('e', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('f', /*use*/ false));
|
|
// Mark g & h useful
|
|
EXPECT_TRUE(Lookup('g', /*use*/ true));
|
|
EXPECT_TRUE(Lookup('h', /*use*/ true));
|
|
|
|
// Then old LOW entries
|
|
EXPECT_OK(Insert('i', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('j', Cache::Priority::LOW));
|
|
|
|
EXPECT_FALSE(Lookup('b', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('c', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('e', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('f', /*use*/ false));
|
|
// Mark g & h useful once again
|
|
EXPECT_TRUE(Lookup('g', /*use*/ true));
|
|
EXPECT_TRUE(Lookup('h', /*use*/ true));
|
|
EXPECT_TRUE(Lookup('i', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('j', /*use*/ false));
|
|
|
|
// Then old HIGH entries
|
|
EXPECT_OK(Insert('k', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('l', Cache::Priority::LOW));
|
|
|
|
EXPECT_FALSE(Lookup('c', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('f', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('g', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('h', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('i', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('j', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('k', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('l', /*use*/ false));
|
|
|
|
// Then the (roughly) least recently useful
|
|
EXPECT_OK(Insert('m', Cache::Priority::HIGH));
|
|
EXPECT_OK(Insert('n', Cache::Priority::HIGH));
|
|
|
|
EXPECT_TRUE(Lookup('g', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('h', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('i', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('j', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('k', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('l', /*use*/ false));
|
|
|
|
// Now try changing capacity down
|
|
shard_->SetCapacity(4);
|
|
// Insert to ensure evictions happen
|
|
EXPECT_OK(Insert('o', Cache::Priority::LOW));
|
|
EXPECT_OK(Insert('p', Cache::Priority::LOW));
|
|
|
|
EXPECT_FALSE(Lookup('g', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('h', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('k', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('l', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('m', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('n', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('o', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('p', /*use*/ false));
|
|
|
|
// Now try changing capacity up
|
|
EXPECT_TRUE(Lookup('m', /*use*/ true));
|
|
EXPECT_TRUE(Lookup('n', /*use*/ true));
|
|
shard_->SetCapacity(6);
|
|
EXPECT_OK(Insert('q', Cache::Priority::HIGH));
|
|
EXPECT_OK(Insert('r', Cache::Priority::HIGH));
|
|
EXPECT_OK(Insert('s', Cache::Priority::HIGH));
|
|
EXPECT_OK(Insert('t', Cache::Priority::HIGH));
|
|
|
|
EXPECT_FALSE(Lookup('o', /*use*/ false));
|
|
EXPECT_FALSE(Lookup('p', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('m', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('n', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('q', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('r', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('s', /*use*/ false));
|
|
EXPECT_TRUE(Lookup('t', /*use*/ false));
|
|
}
|
|
}
|
|
|
|
void IncrementIntDeleter(const Slice& /*key*/, void* value) {
|
|
*reinterpret_cast<int*>(value) += 1;
|
|
}
|
|
|
|
// Testing calls to CorrectNearOverflow in Release
|
|
TEST_F(ClockCacheTest, ClockCounterOverflowTest) {
|
|
NewShard(6, /*strict_capacity_limit*/ false);
|
|
Cache::Handle* h;
|
|
int deleted = 0;
|
|
std::string my_key(kCacheKeySize, 'x');
|
|
uint32_t my_hash = 42;
|
|
ASSERT_OK(shard_->Insert(my_key, my_hash, &deleted, 1, IncrementIntDeleter,
|
|
&h, Cache::Priority::HIGH));
|
|
|
|
// Some large number outstanding
|
|
shard_->TEST_RefN(h, 123456789);
|
|
// Simulate many lookup/ref + release, plenty to overflow counters
|
|
for (int i = 0; i < 10000; ++i) {
|
|
shard_->TEST_RefN(h, 1234567);
|
|
shard_->TEST_ReleaseN(h, 1234567);
|
|
}
|
|
// Mark it invisible (to reach a different CorrectNearOverflow() in Release)
|
|
shard_->Erase(my_key, my_hash);
|
|
// Simulate many more lookup/ref + release (one-by-one would be too
|
|
// expensive for unit test)
|
|
for (int i = 0; i < 10000; ++i) {
|
|
shard_->TEST_RefN(h, 1234567);
|
|
shard_->TEST_ReleaseN(h, 1234567);
|
|
}
|
|
// Free all but last 1
|
|
shard_->TEST_ReleaseN(h, 123456789);
|
|
// Still alive
|
|
ASSERT_EQ(deleted, 0);
|
|
// Free last ref, which will finalize erasure
|
|
shard_->Release(h);
|
|
// Deleted
|
|
ASSERT_EQ(deleted, 1);
|
|
}
|
|
|
|
// This test is mostly to exercise some corner case logic, by forcing two
|
|
// keys to have the same hash, and more
|
|
TEST_F(ClockCacheTest, CollidingInsertEraseTest) {
|
|
NewShard(6, /*strict_capacity_limit*/ false);
|
|
int deleted = 0;
|
|
std::string key1(kCacheKeySize, 'x');
|
|
std::string key2(kCacheKeySize, 'y');
|
|
std::string key3(kCacheKeySize, 'z');
|
|
uint32_t my_hash = 42;
|
|
Cache::Handle* h1;
|
|
ASSERT_OK(shard_->Insert(key1, my_hash, &deleted, 1, IncrementIntDeleter, &h1,
|
|
Cache::Priority::HIGH));
|
|
Cache::Handle* h2;
|
|
ASSERT_OK(shard_->Insert(key2, my_hash, &deleted, 1, IncrementIntDeleter, &h2,
|
|
Cache::Priority::HIGH));
|
|
Cache::Handle* h3;
|
|
ASSERT_OK(shard_->Insert(key3, my_hash, &deleted, 1, IncrementIntDeleter, &h3,
|
|
Cache::Priority::HIGH));
|
|
|
|
// Can repeatedly lookup+release despite the hash collision
|
|
Cache::Handle* tmp_h;
|
|
for (bool erase_if_last_ref : {true, false}) { // but not last ref
|
|
tmp_h = shard_->Lookup(key1, my_hash);
|
|
ASSERT_EQ(h1, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
|
|
tmp_h = shard_->Lookup(key2, my_hash);
|
|
ASSERT_EQ(h2, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
|
|
tmp_h = shard_->Lookup(key3, my_hash);
|
|
ASSERT_EQ(h3, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
}
|
|
|
|
// Make h1 invisible
|
|
shard_->Erase(key1, my_hash);
|
|
// Redundant erase
|
|
shard_->Erase(key1, my_hash);
|
|
|
|
// All still alive
|
|
ASSERT_EQ(deleted, 0);
|
|
|
|
// Invisible to Lookup
|
|
tmp_h = shard_->Lookup(key1, my_hash);
|
|
ASSERT_EQ(nullptr, tmp_h);
|
|
|
|
// Can still find h2, h3
|
|
for (bool erase_if_last_ref : {true, false}) { // but not last ref
|
|
tmp_h = shard_->Lookup(key2, my_hash);
|
|
ASSERT_EQ(h2, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
|
|
tmp_h = shard_->Lookup(key3, my_hash);
|
|
ASSERT_EQ(h3, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
}
|
|
|
|
// Also Insert with invisible entry there
|
|
ASSERT_OK(shard_->Insert(key1, my_hash, &deleted, 1, IncrementIntDeleter,
|
|
nullptr, Cache::Priority::HIGH));
|
|
tmp_h = shard_->Lookup(key1, my_hash);
|
|
// Found but distinct handle
|
|
ASSERT_NE(nullptr, tmp_h);
|
|
ASSERT_NE(h1, tmp_h);
|
|
ASSERT_TRUE(shard_->Release(tmp_h, /*erase_if_last_ref*/ true));
|
|
|
|
// tmp_h deleted
|
|
ASSERT_EQ(deleted--, 1);
|
|
|
|
// Release last ref on h1 (already invisible)
|
|
ASSERT_TRUE(shard_->Release(h1, /*erase_if_last_ref*/ false));
|
|
|
|
// h1 deleted
|
|
ASSERT_EQ(deleted--, 1);
|
|
h1 = nullptr;
|
|
|
|
// Can still find h2, h3
|
|
for (bool erase_if_last_ref : {true, false}) { // but not last ref
|
|
tmp_h = shard_->Lookup(key2, my_hash);
|
|
ASSERT_EQ(h2, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
|
|
tmp_h = shard_->Lookup(key3, my_hash);
|
|
ASSERT_EQ(h3, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
}
|
|
|
|
// Release last ref on h2
|
|
ASSERT_FALSE(shard_->Release(h2, /*erase_if_last_ref*/ false));
|
|
|
|
// h2 still not deleted (unreferenced in cache)
|
|
ASSERT_EQ(deleted, 0);
|
|
|
|
// Can still find it
|
|
tmp_h = shard_->Lookup(key2, my_hash);
|
|
ASSERT_EQ(h2, tmp_h);
|
|
|
|
// Release last ref on h2, with erase
|
|
ASSERT_TRUE(shard_->Release(h2, /*erase_if_last_ref*/ true));
|
|
|
|
// h2 deleted
|
|
ASSERT_EQ(deleted--, 1);
|
|
tmp_h = shard_->Lookup(key2, my_hash);
|
|
ASSERT_EQ(nullptr, tmp_h);
|
|
|
|
// Can still find h3
|
|
for (bool erase_if_last_ref : {true, false}) { // but not last ref
|
|
tmp_h = shard_->Lookup(key3, my_hash);
|
|
ASSERT_EQ(h3, tmp_h);
|
|
ASSERT_FALSE(shard_->Release(tmp_h, erase_if_last_ref));
|
|
}
|
|
|
|
// Release last ref on h3, without erase
|
|
ASSERT_FALSE(shard_->Release(h3, /*erase_if_last_ref*/ false));
|
|
|
|
// h3 still not deleted (unreferenced in cache)
|
|
ASSERT_EQ(deleted, 0);
|
|
|
|
// Explicit erase
|
|
shard_->Erase(key3, my_hash);
|
|
|
|
// h3 deleted
|
|
ASSERT_EQ(deleted--, 1);
|
|
tmp_h = shard_->Lookup(key3, my_hash);
|
|
ASSERT_EQ(nullptr, tmp_h);
|
|
}
|
|
|
|
// This uses the public API to effectively test CalcHashBits etc.
|
|
TEST_F(ClockCacheTest, TableSizesTest) {
|
|
for (size_t est_val_size : {1U, 5U, 123U, 2345U, 345678U}) {
|
|
SCOPED_TRACE("est_val_size = " + std::to_string(est_val_size));
|
|
for (double est_count : {1.1, 2.2, 511.9, 512.1, 2345.0}) {
|
|
SCOPED_TRACE("est_count = " + std::to_string(est_count));
|
|
size_t capacity = static_cast<size_t>(est_val_size * est_count);
|
|
// kDontChargeCacheMetadata
|
|
auto cache = HyperClockCacheOptions(
|
|
capacity, est_val_size, /*num shard_bits*/ -1,
|
|
/*strict_capacity_limit*/ false,
|
|
/*memory_allocator*/ nullptr, kDontChargeCacheMetadata)
|
|
.MakeSharedCache();
|
|
// Table sizes are currently only powers of two
|
|
EXPECT_GE(cache->GetTableAddressCount(), est_count / kLoadFactor);
|
|
EXPECT_LE(cache->GetTableAddressCount(), est_count / kLoadFactor * 2.0);
|
|
EXPECT_EQ(cache->GetUsage(), 0);
|
|
|
|
// kFullChargeMetaData
|
|
// Because table sizes are currently only powers of two, sizes get
|
|
// really weird when metadata is a huge portion of capacity. For example,
|
|
// doubling the table size could cut by 90% the space available to
|
|
// values. Therefore, we omit those weird cases for now.
|
|
if (est_val_size >= 512) {
|
|
cache = HyperClockCacheOptions(
|
|
capacity, est_val_size, /*num shard_bits*/ -1,
|
|
/*strict_capacity_limit*/ false,
|
|
/*memory_allocator*/ nullptr, kFullChargeCacheMetadata)
|
|
.MakeSharedCache();
|
|
double est_count_after_meta =
|
|
(capacity - cache->GetUsage()) * 1.0 / est_val_size;
|
|
EXPECT_GE(cache->GetTableAddressCount(),
|
|
est_count_after_meta / kLoadFactor);
|
|
EXPECT_LE(cache->GetTableAddressCount(),
|
|
est_count_after_meta / kLoadFactor * 2.0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace hyper_clock_cache
|
|
|
|
class TestSecondaryCache : public SecondaryCache {
|
|
public:
|
|
// Specifies what action to take on a lookup for a particular key
|
|
enum ResultType {
|
|
SUCCESS,
|
|
// Fail lookup immediately
|
|
FAIL,
|
|
// Defer the result. It will returned after Wait/WaitAll is called
|
|
DEFER,
|
|
// Defer the result and eventually return failure
|
|
DEFER_AND_FAIL
|
|
};
|
|
|
|
using ResultMap = std::unordered_map<std::string, ResultType>;
|
|
|
|
explicit TestSecondaryCache(size_t capacity)
|
|
: num_inserts_(0), num_lookups_(0), inject_failure_(false) {
|
|
cache_ =
|
|
NewLRUCache(capacity, 0, false, 0.5 /* high_pri_pool_ratio */, nullptr,
|
|
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
|
|
}
|
|
~TestSecondaryCache() override { cache_.reset(); }
|
|
|
|
const char* Name() const override { return "TestSecondaryCache"; }
|
|
|
|
void InjectFailure() { inject_failure_ = true; }
|
|
|
|
void ResetInjectFailure() { inject_failure_ = false; }
|
|
|
|
Status Insert(const Slice& key, void* value,
|
|
const Cache::CacheItemHelper* helper) override {
|
|
if (inject_failure_) {
|
|
return Status::Corruption("Insertion Data Corrupted");
|
|
}
|
|
CheckCacheKeyCommonPrefix(key);
|
|
size_t size;
|
|
char* buf;
|
|
Status s;
|
|
|
|
num_inserts_++;
|
|
size = (*helper->size_cb)(value);
|
|
buf = new char[size + sizeof(uint64_t)];
|
|
EncodeFixed64(buf, size);
|
|
s = (*helper->saveto_cb)(value, 0, size, buf + sizeof(uint64_t));
|
|
if (!s.ok()) {
|
|
delete[] buf;
|
|
return s;
|
|
}
|
|
return cache_->Insert(key, buf, size,
|
|
[](const Slice& /*key*/, void* val) -> void {
|
|
delete[] static_cast<char*>(val);
|
|
});
|
|
}
|
|
|
|
std::unique_ptr<SecondaryCacheResultHandle> Lookup(
|
|
const Slice& key, const Cache::CreateCallback& create_cb, bool /*wait*/,
|
|
bool /*advise_erase*/, bool& is_in_sec_cache) override {
|
|
std::string key_str = key.ToString();
|
|
TEST_SYNC_POINT_CALLBACK("TestSecondaryCache::Lookup", &key_str);
|
|
|
|
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle;
|
|
is_in_sec_cache = false;
|
|
ResultType type = ResultType::SUCCESS;
|
|
auto iter = result_map_.find(key.ToString());
|
|
if (iter != result_map_.end()) {
|
|
type = iter->second;
|
|
}
|
|
if (type == ResultType::FAIL) {
|
|
return secondary_handle;
|
|
}
|
|
|
|
Cache::Handle* handle = cache_->Lookup(key);
|
|
num_lookups_++;
|
|
if (handle) {
|
|
void* value = nullptr;
|
|
size_t charge = 0;
|
|
Status s;
|
|
if (type != ResultType::DEFER_AND_FAIL) {
|
|
char* ptr = (char*)cache_->Value(handle);
|
|
size_t size = DecodeFixed64(ptr);
|
|
ptr += sizeof(uint64_t);
|
|
s = create_cb(ptr, size, &value, &charge);
|
|
}
|
|
if (s.ok()) {
|
|
secondary_handle.reset(new TestSecondaryCacheResultHandle(
|
|
cache_.get(), handle, value, charge, type));
|
|
is_in_sec_cache = true;
|
|
} else {
|
|
cache_->Release(handle);
|
|
}
|
|
}
|
|
return secondary_handle;
|
|
}
|
|
|
|
bool SupportForceErase() const override { return false; }
|
|
|
|
void Erase(const Slice& /*key*/) override {}
|
|
|
|
void WaitAll(std::vector<SecondaryCacheResultHandle*> handles) override {
|
|
for (SecondaryCacheResultHandle* handle : handles) {
|
|
TestSecondaryCacheResultHandle* sec_handle =
|
|
static_cast<TestSecondaryCacheResultHandle*>(handle);
|
|
sec_handle->SetReady();
|
|
}
|
|
}
|
|
|
|
std::string GetPrintableOptions() const override { return ""; }
|
|
|
|
void SetResultMap(ResultMap&& map) { result_map_ = std::move(map); }
|
|
|
|
uint32_t num_inserts() { return num_inserts_; }
|
|
|
|
uint32_t num_lookups() { return num_lookups_; }
|
|
|
|
void CheckCacheKeyCommonPrefix(const Slice& key) {
|
|
Slice current_prefix(key.data(), OffsetableCacheKey::kCommonPrefixSize);
|
|
if (ckey_prefix_.empty()) {
|
|
ckey_prefix_ = current_prefix.ToString();
|
|
} else {
|
|
EXPECT_EQ(ckey_prefix_, current_prefix.ToString());
|
|
}
|
|
}
|
|
|
|
private:
|
|
class TestSecondaryCacheResultHandle : public SecondaryCacheResultHandle {
|
|
public:
|
|
TestSecondaryCacheResultHandle(Cache* cache, Cache::Handle* handle,
|
|
void* value, size_t size, ResultType type)
|
|
: cache_(cache),
|
|
handle_(handle),
|
|
value_(value),
|
|
size_(size),
|
|
is_ready_(true) {
|
|
if (type != ResultType::SUCCESS) {
|
|
is_ready_ = false;
|
|
}
|
|
}
|
|
|
|
~TestSecondaryCacheResultHandle() override { cache_->Release(handle_); }
|
|
|
|
bool IsReady() override { return is_ready_; }
|
|
|
|
void Wait() override {}
|
|
|
|
void* Value() override {
|
|
assert(is_ready_);
|
|
return value_;
|
|
}
|
|
|
|
size_t Size() override { return Value() ? size_ : 0; }
|
|
|
|
void SetReady() { is_ready_ = true; }
|
|
|
|
private:
|
|
Cache* cache_;
|
|
Cache::Handle* handle_;
|
|
void* value_;
|
|
size_t size_;
|
|
bool is_ready_;
|
|
};
|
|
|
|
std::shared_ptr<Cache> cache_;
|
|
uint32_t num_inserts_;
|
|
uint32_t num_lookups_;
|
|
bool inject_failure_;
|
|
std::string ckey_prefix_;
|
|
ResultMap result_map_;
|
|
};
|
|
|
|
class DBSecondaryCacheTest : public DBTestBase {
|
|
public:
|
|
DBSecondaryCacheTest()
|
|
: DBTestBase("db_secondary_cache_test", /*env_do_fsync=*/true) {
|
|
fault_fs_.reset(new FaultInjectionTestFS(env_->GetFileSystem()));
|
|
fault_env_.reset(new CompositeEnvWrapper(env_, fault_fs_));
|
|
}
|
|
|
|
std::shared_ptr<FaultInjectionTestFS> fault_fs_;
|
|
std::unique_ptr<Env> fault_env_;
|
|
};
|
|
|
|
class LRUCacheSecondaryCacheTest : public LRUCacheTest {
|
|
public:
|
|
LRUCacheSecondaryCacheTest() : fail_create_(false) {}
|
|
~LRUCacheSecondaryCacheTest() {}
|
|
|
|
protected:
|
|
class TestItem {
|
|
public:
|
|
TestItem(const char* buf, size_t size) : buf_(new char[size]), size_(size) {
|
|
memcpy(buf_.get(), buf, size);
|
|
}
|
|
~TestItem() {}
|
|
|
|
char* Buf() { return buf_.get(); }
|
|
size_t Size() { return size_; }
|
|
std::string ToString() { return std::string(Buf(), Size()); }
|
|
|
|
private:
|
|
std::unique_ptr<char[]> buf_;
|
|
size_t size_;
|
|
};
|
|
|
|
static size_t SizeCallback(void* obj) {
|
|
return reinterpret_cast<TestItem*>(obj)->Size();
|
|
}
|
|
|
|
static Status SaveToCallback(void* from_obj, size_t from_offset,
|
|
size_t length, void* out) {
|
|
TestItem* item = reinterpret_cast<TestItem*>(from_obj);
|
|
char* buf = item->Buf();
|
|
EXPECT_EQ(length, item->Size());
|
|
EXPECT_EQ(from_offset, 0);
|
|
memcpy(out, buf, length);
|
|
return Status::OK();
|
|
}
|
|
|
|
static void DeletionCallback(const Slice& /*key*/, void* obj) {
|
|
delete reinterpret_cast<TestItem*>(obj);
|
|
}
|
|
|
|
static Cache::CacheItemHelper helper_;
|
|
|
|
static Status SaveToCallbackFail(void* /*obj*/, size_t /*offset*/,
|
|
size_t /*size*/, void* /*out*/) {
|
|
return Status::NotSupported();
|
|
}
|
|
|
|
static Cache::CacheItemHelper helper_fail_;
|
|
|
|
Cache::CreateCallback test_item_creator = [&](const void* buf, size_t size,
|
|
void** out_obj,
|
|
size_t* charge) -> Status {
|
|
if (fail_create_) {
|
|
return Status::NotSupported();
|
|
}
|
|
*out_obj = reinterpret_cast<void*>(new TestItem((char*)buf, size));
|
|
*charge = size;
|
|
return Status::OK();
|
|
};
|
|
|
|
void SetFailCreate(bool fail) { fail_create_ = fail; }
|
|
|
|
private:
|
|
bool fail_create_;
|
|
};
|
|
|
|
Cache::CacheItemHelper LRUCacheSecondaryCacheTest::helper_(
|
|
LRUCacheSecondaryCacheTest::SizeCallback,
|
|
LRUCacheSecondaryCacheTest::SaveToCallback,
|
|
LRUCacheSecondaryCacheTest::DeletionCallback);
|
|
|
|
Cache::CacheItemHelper LRUCacheSecondaryCacheTest::helper_fail_(
|
|
LRUCacheSecondaryCacheTest::SizeCallback,
|
|
LRUCacheSecondaryCacheTest::SaveToCallbackFail,
|
|
LRUCacheSecondaryCacheTest::DeletionCallback);
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, BasicTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
std::shared_ptr<Statistics> stats = CreateDBStatistics();
|
|
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
|
|
Random rnd(301);
|
|
std::string str1 = rnd.RandomString(1020);
|
|
TestItem* item1 = new TestItem(str1.data(), str1.length());
|
|
ASSERT_OK(cache->Insert(k1.AsSlice(), item1,
|
|
&LRUCacheSecondaryCacheTest::helper_, str1.length()));
|
|
std::string str2 = rnd.RandomString(1021);
|
|
TestItem* item2 = new TestItem(str2.data(), str2.length());
|
|
// k1 should be demoted to NVM
|
|
ASSERT_OK(cache->Insert(k2.AsSlice(), item2,
|
|
&LRUCacheSecondaryCacheTest::helper_, str2.length()));
|
|
|
|
get_perf_context()->Reset();
|
|
Cache::Handle* handle;
|
|
handle =
|
|
cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true, stats.get());
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
// This lookup should promote k1 and demote k2
|
|
handle =
|
|
cache->Lookup(k1.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true, stats.get());
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
|
|
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_HITS),
|
|
secondary_cache->num_lookups());
|
|
PerfContext perf_ctx = *get_perf_context();
|
|
ASSERT_EQ(perf_ctx.secondary_cache_hit_count, secondary_cache->num_lookups());
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, BasicFailTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
|
|
Random rnd(301);
|
|
std::string str1 = rnd.RandomString(1020);
|
|
auto item1 = std::make_unique<TestItem>(str1.data(), str1.length());
|
|
ASSERT_TRUE(cache->Insert(k1.AsSlice(), item1.get(), nullptr, str1.length())
|
|
.IsInvalidArgument());
|
|
ASSERT_OK(cache->Insert(k1.AsSlice(), item1.get(),
|
|
&LRUCacheSecondaryCacheTest::helper_, str1.length()));
|
|
item1.release(); // Appease clang-analyze "potential memory leak"
|
|
|
|
Cache::Handle* handle;
|
|
handle = cache->Lookup(k2.AsSlice(), nullptr, test_item_creator,
|
|
Cache::Priority::LOW, true);
|
|
ASSERT_EQ(handle, nullptr);
|
|
handle = cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, false);
|
|
ASSERT_EQ(handle, nullptr);
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, SaveFailTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
|
|
Random rnd(301);
|
|
std::string str1 = rnd.RandomString(1020);
|
|
TestItem* item1 = new TestItem(str1.data(), str1.length());
|
|
ASSERT_OK(cache->Insert(k1.AsSlice(), item1,
|
|
&LRUCacheSecondaryCacheTest::helper_fail_,
|
|
str1.length()));
|
|
std::string str2 = rnd.RandomString(1020);
|
|
TestItem* item2 = new TestItem(str2.data(), str2.length());
|
|
// k1 should be demoted to NVM
|
|
ASSERT_OK(cache->Insert(k2.AsSlice(), item2,
|
|
&LRUCacheSecondaryCacheTest::helper_fail_,
|
|
str2.length()));
|
|
|
|
Cache::Handle* handle;
|
|
handle =
|
|
cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_fail_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
// This lookup should fail, since k1 demotion would have failed
|
|
handle =
|
|
cache->Lookup(k1.AsSlice(), &LRUCacheSecondaryCacheTest::helper_fail_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_EQ(handle, nullptr);
|
|
// Since k1 didn't get promoted, k2 should still be in cache
|
|
handle =
|
|
cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_fail_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, CreateFailTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
|
|
Random rnd(301);
|
|
std::string str1 = rnd.RandomString(1020);
|
|
TestItem* item1 = new TestItem(str1.data(), str1.length());
|
|
ASSERT_OK(cache->Insert(k1.AsSlice(), item1,
|
|
&LRUCacheSecondaryCacheTest::helper_, str1.length()));
|
|
std::string str2 = rnd.RandomString(1020);
|
|
TestItem* item2 = new TestItem(str2.data(), str2.length());
|
|
// k1 should be demoted to NVM
|
|
ASSERT_OK(cache->Insert(k2.AsSlice(), item2,
|
|
&LRUCacheSecondaryCacheTest::helper_, str2.length()));
|
|
|
|
Cache::Handle* handle;
|
|
SetFailCreate(true);
|
|
handle = cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
// This lookup should fail, since k1 creation would have failed
|
|
handle = cache->Lookup(k1.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_EQ(handle, nullptr);
|
|
// Since k1 didn't get promoted, k2 should still be in cache
|
|
handle = cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, FullCapacityTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 0 /* num_shard_bits */,
|
|
true /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
|
|
|
|
Random rnd(301);
|
|
std::string str1 = rnd.RandomString(1020);
|
|
TestItem* item1 = new TestItem(str1.data(), str1.length());
|
|
ASSERT_OK(cache->Insert(k1.AsSlice(), item1,
|
|
&LRUCacheSecondaryCacheTest::helper_, str1.length()));
|
|
std::string str2 = rnd.RandomString(1020);
|
|
TestItem* item2 = new TestItem(str2.data(), str2.length());
|
|
// k1 should be demoted to NVM
|
|
ASSERT_OK(cache->Insert(k2.AsSlice(), item2,
|
|
&LRUCacheSecondaryCacheTest::helper_, str2.length()));
|
|
|
|
Cache::Handle* handle;
|
|
handle = cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
// k1 promotion should fail due to the block cache being at capacity,
|
|
// but the lookup should still succeed
|
|
Cache::Handle* handle2;
|
|
handle2 = cache->Lookup(k1.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle2, nullptr);
|
|
// Since k1 didn't get inserted, k2 should still be in cache
|
|
cache->Release(handle);
|
|
cache->Release(handle2);
|
|
handle = cache->Lookup(k2.AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, true);
|
|
ASSERT_NE(handle, nullptr);
|
|
cache->Release(handle);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
|
|
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
|
|
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
|
|
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
|
|
// if we try to insert block_1 to the block cache, it will always fails. Only
|
|
// block_2 will be successfully inserted into the block cache.
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness1) {
|
|
LRUCacheOptions opts(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
|
|
// Set the file paranoid check, so after flush, the file will be read
|
|
// all the blocks will be accessed.
|
|
options.paranoid_file_checks = true;
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
// After Flush is successful, RocksDB will do the paranoid check for the new
|
|
// SST file. Meta blocks are always cached in the block cache and they
|
|
// will not be evicted. When block_2 is cache miss and read out, it is
|
|
// inserted to the block cache. Note that, block_1 is never successfully
|
|
// inserted to the block cache. Here are 2 lookups in the secondary cache
|
|
// for block_1 and block_2
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
Compact("a", "z");
|
|
// Compaction will create the iterator to scan the whole file. So all the
|
|
// blocks are needed. Meta blocks are always cached. When block_1 is read
|
|
// out, block_2 is evicted from block cache and inserted to secondary
|
|
// cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// The first data block is not in the cache, similarly, trigger the block
|
|
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
|
|
// be inserted successfully due to the size. Currently, cache only has
|
|
// the meta blocks.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// The second data block is not in the cache, similarly, trigger the block
|
|
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
|
|
// in the secondary cache. Now block cache has block_2
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// block_2 is in the block cache. There is a block cache hit. No need to
|
|
// lookup or insert the secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// Lookup the first data block, not in the block cache, so lookup the
|
|
// secondary cache. Also not in the secondary cache. After Get, still
|
|
// block_1 is will not be cached.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// Lookup the first data block, not in the block cache, so lookup the
|
|
// secondary cache. Also not in the secondary cache. After Get, still
|
|
// block_1 is will not be cached.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
// In this test, the block cache size is set to 6100, after insert 6 KV-pairs
|
|
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
|
|
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
|
|
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
|
|
// insert and cache block_1 in the block cache (this is the different place
|
|
// from TestSecondaryCacheCorrectness1)
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness2) {
|
|
LRUCacheOptions opts(6100 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.paranoid_file_checks = true;
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
// After Flush is successful, RocksDB will do the paranoid check for the new
|
|
// SST file. Meta blocks are always cached in the block cache and they
|
|
// will not be evicted. When block_2 is cache miss and read out, it is
|
|
// inserted to the block cache. Thefore, block_1 is evicted from block
|
|
// cache and successfully inserted to the secondary cache. Here are 2
|
|
// lookups in the secondary cache for block_1 and block_2.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
Compact("a", "z");
|
|
// Compaction will create the iterator to scan the whole file. So all the
|
|
// blocks are needed. After Flush, only block_2 is cached in block cache
|
|
// and block_1 is in the secondary cache. So when read block_1, it is
|
|
// read out from secondary cache and inserted to block cache. At the same
|
|
// time, block_2 is inserted to secondary cache. Now, secondary cache has
|
|
// both block_1 and block_2. After compaction, block_1 is in the cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// This Get needs to access block_1, since block_1 is cached in block cache
|
|
// there is no secondary cache lookup.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// This Get needs to access block_2 which is not in the block cache. So
|
|
// it will lookup the secondary cache for block_2 and cache it in the
|
|
// block_cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// This Get needs to access block_2 which is already in the block cache.
|
|
// No need to lookup secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// This Get needs to access block_1, since block_1 is not in block cache
|
|
// there is one econdary cache lookup. Then, block_1 is cached in the
|
|
// block cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// This Get needs to access block_1, since block_1 is cached in block cache
|
|
// there is no secondary cache lookup.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
// The block cache size is set to 1024*1024, after insert 6 KV-pairs
|
|
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
|
|
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
|
|
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
|
|
// cache all the blocks in the block cache and there is not secondary cache
|
|
// insertion. 2 lookup is needed for the blocks.
|
|
TEST_F(DBSecondaryCacheTest, NoSecondaryCacheInsertion) {
|
|
LRUCacheOptions opts(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.paranoid_file_checks = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1000);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
// After Flush is successful, RocksDB will do the paranoid check for the new
|
|
// SST file. Meta blocks are always cached in the block cache and they
|
|
// will not be evicted. Now, block cache is large enough, it cache
|
|
// both block_1 and block_2. When first time read block_1 and block_2
|
|
// there are cache misses. So 2 secondary cache lookups are needed for
|
|
// the 2 blocks
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
Compact("a", "z");
|
|
// Compaction will iterate the whole SST file. Since all the data blocks
|
|
// are in the block cache. No need to lookup the secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1000, v.size());
|
|
// Since the block cache is large enough, all the blocks are cached. we
|
|
// do not need to lookup the seondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
TEST_F(DBSecondaryCacheTest, SecondaryCacheIntensiveTesting) {
|
|
LRUCacheOptions opts(8 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 256;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1000);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
ASSERT_OK(Flush());
|
|
Compact("a", "z");
|
|
|
|
Random r_index(47);
|
|
std::string v;
|
|
for (int i = 0; i < 1000; i++) {
|
|
uint32_t key_i = r_index.Next() % N;
|
|
v = Get(Key(key_i));
|
|
}
|
|
|
|
// We have over 200 data blocks there will be multiple insertion
|
|
// and lookups.
|
|
ASSERT_GE(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_GE(secondary_cache->num_lookups(), 1u);
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
|
|
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
|
|
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
|
|
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
|
|
// if we try to insert block_1 to the block cache, it will always fails. Only
|
|
// block_2 will be successfully inserted into the block cache.
|
|
TEST_F(DBSecondaryCacheTest, SecondaryCacheFailureTest) {
|
|
LRUCacheOptions opts(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.paranoid_file_checks = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
// After Flush is successful, RocksDB will do the paranoid check for the new
|
|
// SST file. Meta blocks are always cached in the block cache and they
|
|
// will not be evicted. When block_2 is cache miss and read out, it is
|
|
// inserted to the block cache. Note that, block_1 is never successfully
|
|
// inserted to the block cache. Here are 2 lookups in the secondary cache
|
|
// for block_1 and block_2
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
// Fail the insertion, in LRU cache, the secondary insertion returned status
|
|
// is not checked, therefore, the DB will not be influenced.
|
|
secondary_cache->InjectFailure();
|
|
Compact("a", "z");
|
|
// Compaction will create the iterator to scan the whole file. So all the
|
|
// blocks are needed. Meta blocks are always cached. When block_1 is read
|
|
// out, block_2 is evicted from block cache and inserted to secondary
|
|
// cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// The first data block is not in the cache, similarly, trigger the block
|
|
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
|
|
// be inserted successfully due to the size. Currently, cache only has
|
|
// the meta blocks.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// The second data block is not in the cache, similarly, trigger the block
|
|
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
|
|
// in the secondary cache. Now block cache has block_2
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
// block_2 is in the block cache. There is a block cache hit. No need to
|
|
// lookup or insert the secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// Lookup the first data block, not in the block cache, so lookup the
|
|
// secondary cache. Also not in the secondary cache. After Get, still
|
|
// block_1 is will not be cached.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
|
|
|
|
v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
// Lookup the first data block, not in the block cache, so lookup the
|
|
// secondary cache. Also not in the secondary cache. After Get, still
|
|
// block_1 is will not be cached.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
|
|
secondary_cache->ResetInjectFailure();
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
TEST_F(LRUCacheSecondaryCacheTest, BasicWaitAllTest) {
|
|
LRUCacheOptions opts(1024 /* capacity */, 2 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(32 * 1024);
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
const int num_keys = 32;
|
|
OffsetableCacheKey ock{"foo", "bar", 1};
|
|
|
|
Random rnd(301);
|
|
std::vector<std::string> values;
|
|
for (int i = 0; i < num_keys; ++i) {
|
|
std::string str = rnd.RandomString(1020);
|
|
values.emplace_back(str);
|
|
TestItem* item = new TestItem(str.data(), str.length());
|
|
ASSERT_OK(cache->Insert(ock.WithOffset(i).AsSlice(), item,
|
|
&LRUCacheSecondaryCacheTest::helper_,
|
|
str.length()));
|
|
}
|
|
// Force all entries to be evicted to the secondary cache
|
|
cache->SetCapacity(0);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 32u);
|
|
cache->SetCapacity(32 * 1024);
|
|
|
|
secondary_cache->SetResultMap(
|
|
{{ock.WithOffset(3).AsSlice().ToString(),
|
|
TestSecondaryCache::ResultType::DEFER},
|
|
{ock.WithOffset(4).AsSlice().ToString(),
|
|
TestSecondaryCache::ResultType::DEFER_AND_FAIL},
|
|
{ock.WithOffset(5).AsSlice().ToString(),
|
|
TestSecondaryCache::ResultType::FAIL}});
|
|
std::vector<Cache::Handle*> results;
|
|
for (int i = 0; i < 6; ++i) {
|
|
results.emplace_back(cache->Lookup(
|
|
ock.WithOffset(i).AsSlice(), &LRUCacheSecondaryCacheTest::helper_,
|
|
test_item_creator, Cache::Priority::LOW, false));
|
|
}
|
|
cache->WaitAll(results);
|
|
for (int i = 0; i < 6; ++i) {
|
|
if (i == 4) {
|
|
ASSERT_EQ(cache->Value(results[i]), nullptr);
|
|
} else if (i == 5) {
|
|
ASSERT_EQ(results[i], nullptr);
|
|
continue;
|
|
} else {
|
|
TestItem* item = static_cast<TestItem*>(cache->Value(results[i]));
|
|
ASSERT_EQ(item->ToString(), values[i]);
|
|
}
|
|
cache->Release(results[i]);
|
|
}
|
|
|
|
cache.reset();
|
|
secondary_cache.reset();
|
|
}
|
|
|
|
// In this test, we have one KV pair per data block. We indirectly determine
|
|
// the cache key associated with each data block (and thus each KV) by using
|
|
// a sync point callback in TestSecondaryCache::Lookup. We then control the
|
|
// lookup result by setting the ResultMap.
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheMultiGet) {
|
|
LRUCacheOptions opts(1 << 20 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
table_options.cache_index_and_filter_blocks = false;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.paranoid_file_checks = true;
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 8;
|
|
std::vector<std::string> keys;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(4000);
|
|
keys.emplace_back(p_v);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
// After Flush is successful, RocksDB does the paranoid check for the new
|
|
// SST file. This will try to lookup all data blocks in the secondary
|
|
// cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 8u);
|
|
|
|
cache->SetCapacity(0);
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 8u);
|
|
cache->SetCapacity(1 << 20);
|
|
|
|
std::vector<std::string> cache_keys;
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
|
|
"TestSecondaryCache::Lookup", [&cache_keys](void* key) -> void {
|
|
cache_keys.emplace_back(*(static_cast<std::string*>(key)));
|
|
});
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
|
|
for (int i = 0; i < N; ++i) {
|
|
std::string v = Get(Key(i));
|
|
ASSERT_EQ(4000, v.size());
|
|
ASSERT_EQ(v, keys[i]);
|
|
}
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 16u);
|
|
cache->SetCapacity(0);
|
|
cache->SetCapacity(1 << 20);
|
|
|
|
ASSERT_EQ(Get(Key(2)), keys[2]);
|
|
ASSERT_EQ(Get(Key(7)), keys[7]);
|
|
secondary_cache->SetResultMap(
|
|
{{cache_keys[3], TestSecondaryCache::ResultType::DEFER},
|
|
{cache_keys[4], TestSecondaryCache::ResultType::DEFER_AND_FAIL},
|
|
{cache_keys[5], TestSecondaryCache::ResultType::FAIL}});
|
|
|
|
std::vector<std::string> mget_keys(
|
|
{Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7)});
|
|
std::vector<PinnableSlice> values(mget_keys.size());
|
|
std::vector<Status> s(keys.size());
|
|
std::vector<Slice> key_slices;
|
|
for (const std::string& key : mget_keys) {
|
|
key_slices.emplace_back(key);
|
|
}
|
|
uint32_t num_lookups = secondary_cache->num_lookups();
|
|
dbfull()->MultiGet(ReadOptions(), dbfull()->DefaultColumnFamily(),
|
|
key_slices.size(), key_slices.data(), values.data(),
|
|
s.data(), false);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), num_lookups + 5);
|
|
for (int i = 0; i < N; ++i) {
|
|
ASSERT_OK(s[i]);
|
|
ASSERT_EQ(values[i].ToString(), keys[i]);
|
|
values[i].Reset();
|
|
}
|
|
Destroy(options);
|
|
}
|
|
|
|
class LRUCacheWithStat : public LRUCache {
|
|
public:
|
|
LRUCacheWithStat(
|
|
size_t _capacity, int _num_shard_bits, bool _strict_capacity_limit,
|
|
double _high_pri_pool_ratio, double _low_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> _memory_allocator = nullptr,
|
|
bool _use_adaptive_mutex = kDefaultToAdaptiveMutex,
|
|
CacheMetadataChargePolicy _metadata_charge_policy =
|
|
kDontChargeCacheMetadata,
|
|
const std::shared_ptr<SecondaryCache>& _secondary_cache = nullptr)
|
|
: LRUCache(_capacity, _num_shard_bits, _strict_capacity_limit,
|
|
_high_pri_pool_ratio, _low_pri_pool_ratio, _memory_allocator,
|
|
_use_adaptive_mutex, _metadata_charge_policy,
|
|
_secondary_cache) {
|
|
insert_count_ = 0;
|
|
lookup_count_ = 0;
|
|
}
|
|
~LRUCacheWithStat() {}
|
|
|
|
Status Insert(const Slice& key, void* value, size_t charge, DeleterFn deleter,
|
|
Handle** handle, Priority priority) override {
|
|
insert_count_++;
|
|
return LRUCache::Insert(key, value, charge, deleter, handle, priority);
|
|
}
|
|
Status Insert(const Slice& key, void* value, const CacheItemHelper* helper,
|
|
size_t charge, Handle** handle = nullptr,
|
|
Priority priority = Priority::LOW) override {
|
|
insert_count_++;
|
|
return LRUCache::Insert(key, value, helper, charge, handle, priority);
|
|
}
|
|
Handle* Lookup(const Slice& key, Statistics* stats) override {
|
|
lookup_count_++;
|
|
return LRUCache::Lookup(key, stats);
|
|
}
|
|
Handle* Lookup(const Slice& key, const CacheItemHelper* helper,
|
|
const CreateCallback& create_cb, Priority priority, bool wait,
|
|
Statistics* stats = nullptr) override {
|
|
lookup_count_++;
|
|
return LRUCache::Lookup(key, helper, create_cb, priority, wait, stats);
|
|
}
|
|
|
|
uint32_t GetInsertCount() { return insert_count_; }
|
|
uint32_t GetLookupcount() { return lookup_count_; }
|
|
void ResetCount() {
|
|
insert_count_ = 0;
|
|
lookup_count_ = 0;
|
|
}
|
|
|
|
private:
|
|
uint32_t insert_count_;
|
|
uint32_t lookup_count_;
|
|
};
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
TEST_F(DBSecondaryCacheTest, LRUCacheDumpLoadBasic) {
|
|
LRUCacheOptions cache_opts(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */,
|
|
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
|
|
LRUCacheWithStat* tmp_cache = new LRUCacheWithStat(
|
|
cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
|
|
cache_opts.low_pri_pool_ratio, cache_opts.memory_allocator,
|
|
cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy,
|
|
cache_opts.secondary_cache);
|
|
std::shared_ptr<Cache> cache(tmp_cache);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
DestroyAndReopen(options);
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
|
|
Random rnd(301);
|
|
const int N = 256;
|
|
std::vector<std::string> value;
|
|
char buf[1000];
|
|
memset(buf, 'a', 1000);
|
|
value.resize(N);
|
|
for (int i = 0; i < N; i++) {
|
|
// std::string p_v = rnd.RandomString(1000);
|
|
std::string p_v(buf, 1000);
|
|
value[i] = p_v;
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
ASSERT_OK(Flush());
|
|
Compact("a", "z");
|
|
|
|
// do th eread for all the key value pairs, so all the blocks should be in
|
|
// cache
|
|
uint32_t start_insert = tmp_cache->GetInsertCount();
|
|
uint32_t start_lookup = tmp_cache->GetLookupcount();
|
|
std::string v;
|
|
for (int i = 0; i < N; i++) {
|
|
v = Get(Key(i));
|
|
ASSERT_EQ(v, value[i]);
|
|
}
|
|
uint32_t dump_insert = tmp_cache->GetInsertCount() - start_insert;
|
|
uint32_t dump_lookup = tmp_cache->GetLookupcount() - start_lookup;
|
|
ASSERT_EQ(63,
|
|
static_cast<int>(dump_insert)); // the insert in the block cache
|
|
ASSERT_EQ(256,
|
|
static_cast<int>(dump_lookup)); // the lookup in the block cache
|
|
// We have enough blocks in the block cache
|
|
|
|
CacheDumpOptions cd_options;
|
|
cd_options.clock = fault_env_->GetSystemClock().get();
|
|
std::string dump_path = db_->GetName() + "/cache_dump";
|
|
std::unique_ptr<CacheDumpWriter> dump_writer;
|
|
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
|
|
&dump_writer);
|
|
ASSERT_OK(s);
|
|
std::unique_ptr<CacheDumper> cache_dumper;
|
|
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
|
|
&cache_dumper);
|
|
ASSERT_OK(s);
|
|
std::vector<DB*> db_list;
|
|
db_list.push_back(db_);
|
|
s = cache_dumper->SetDumpFilter(db_list);
|
|
ASSERT_OK(s);
|
|
s = cache_dumper->DumpCacheEntriesToWriter();
|
|
ASSERT_OK(s);
|
|
cache_dumper.reset();
|
|
|
|
// we have a new cache it is empty, then, before we do the Get, we do the
|
|
// dumpload
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048 * 1024);
|
|
cache_opts.secondary_cache = secondary_cache;
|
|
tmp_cache = new LRUCacheWithStat(
|
|
cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
|
|
cache_opts.low_pri_pool_ratio, cache_opts.memory_allocator,
|
|
cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy,
|
|
cache_opts.secondary_cache);
|
|
std::shared_ptr<Cache> cache_new(tmp_cache);
|
|
table_options.block_cache = cache_new;
|
|
table_options.block_size = 4 * 1024;
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
|
|
// start to load the data to new block cache
|
|
start_insert = secondary_cache->num_inserts();
|
|
start_lookup = secondary_cache->num_lookups();
|
|
std::unique_ptr<CacheDumpReader> dump_reader;
|
|
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
|
|
&dump_reader);
|
|
ASSERT_OK(s);
|
|
std::unique_ptr<CacheDumpedLoader> cache_loader;
|
|
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
|
|
std::move(dump_reader), &cache_loader);
|
|
ASSERT_OK(s);
|
|
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
|
|
ASSERT_OK(s);
|
|
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
|
|
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
|
|
// check the number we inserted
|
|
ASSERT_EQ(64, static_cast<int>(load_insert));
|
|
ASSERT_EQ(0, static_cast<int>(load_lookup));
|
|
ASSERT_OK(s);
|
|
|
|
Reopen(options);
|
|
|
|
// After load, we do the Get again
|
|
start_insert = secondary_cache->num_inserts();
|
|
start_lookup = secondary_cache->num_lookups();
|
|
uint32_t cache_insert = tmp_cache->GetInsertCount();
|
|
uint32_t cache_lookup = tmp_cache->GetLookupcount();
|
|
for (int i = 0; i < N; i++) {
|
|
v = Get(Key(i));
|
|
ASSERT_EQ(v, value[i]);
|
|
}
|
|
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
|
|
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
|
|
// no insert to secondary cache
|
|
ASSERT_EQ(0, static_cast<int>(final_insert));
|
|
// lookup the secondary to get all blocks
|
|
ASSERT_EQ(64, static_cast<int>(final_lookup));
|
|
uint32_t block_insert = tmp_cache->GetInsertCount() - cache_insert;
|
|
uint32_t block_lookup = tmp_cache->GetLookupcount() - cache_lookup;
|
|
// Check the new block cache insert and lookup, should be no insert since all
|
|
// blocks are from the secondary cache.
|
|
ASSERT_EQ(0, static_cast<int>(block_insert));
|
|
ASSERT_EQ(256, static_cast<int>(block_lookup));
|
|
|
|
fault_fs_->SetFailGetUniqueId(false);
|
|
Destroy(options);
|
|
}
|
|
|
|
TEST_F(DBSecondaryCacheTest, LRUCacheDumpLoadWithFilter) {
|
|
LRUCacheOptions cache_opts(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */,
|
|
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
|
|
LRUCacheWithStat* tmp_cache = new LRUCacheWithStat(
|
|
cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
|
|
cache_opts.low_pri_pool_ratio, cache_opts.memory_allocator,
|
|
cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy,
|
|
cache_opts.secondary_cache);
|
|
std::shared_ptr<Cache> cache(tmp_cache);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
std::string dbname1 = test::PerThreadDBPath("db_1");
|
|
ASSERT_OK(DestroyDB(dbname1, options));
|
|
DB* db1 = nullptr;
|
|
ASSERT_OK(DB::Open(options, dbname1, &db1));
|
|
std::string dbname2 = test::PerThreadDBPath("db_2");
|
|
ASSERT_OK(DestroyDB(dbname2, options));
|
|
DB* db2 = nullptr;
|
|
ASSERT_OK(DB::Open(options, dbname2, &db2));
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
|
|
// write the KVs to db1
|
|
Random rnd(301);
|
|
const int N = 256;
|
|
std::vector<std::string> value1;
|
|
WriteOptions wo;
|
|
char buf[1000];
|
|
memset(buf, 'a', 1000);
|
|
value1.resize(N);
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v(buf, 1000);
|
|
value1[i] = p_v;
|
|
ASSERT_OK(db1->Put(wo, Key(i), p_v));
|
|
}
|
|
ASSERT_OK(db1->Flush(FlushOptions()));
|
|
Slice bg("a");
|
|
Slice ed("b");
|
|
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
|
|
|
|
// Write the KVs to DB2
|
|
std::vector<std::string> value2;
|
|
memset(buf, 'b', 1000);
|
|
value2.resize(N);
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v(buf, 1000);
|
|
value2[i] = p_v;
|
|
ASSERT_OK(db2->Put(wo, Key(i), p_v));
|
|
}
|
|
ASSERT_OK(db2->Flush(FlushOptions()));
|
|
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
|
|
|
|
// do th eread for all the key value pairs, so all the blocks should be in
|
|
// cache
|
|
uint32_t start_insert = tmp_cache->GetInsertCount();
|
|
uint32_t start_lookup = tmp_cache->GetLookupcount();
|
|
ReadOptions ro;
|
|
std::string v;
|
|
for (int i = 0; i < N; i++) {
|
|
ASSERT_OK(db1->Get(ro, Key(i), &v));
|
|
ASSERT_EQ(v, value1[i]);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
ASSERT_OK(db2->Get(ro, Key(i), &v));
|
|
ASSERT_EQ(v, value2[i]);
|
|
}
|
|
uint32_t dump_insert = tmp_cache->GetInsertCount() - start_insert;
|
|
uint32_t dump_lookup = tmp_cache->GetLookupcount() - start_lookup;
|
|
ASSERT_EQ(128,
|
|
static_cast<int>(dump_insert)); // the insert in the block cache
|
|
ASSERT_EQ(512,
|
|
static_cast<int>(dump_lookup)); // the lookup in the block cache
|
|
// We have enough blocks in the block cache
|
|
|
|
CacheDumpOptions cd_options;
|
|
cd_options.clock = fault_env_->GetSystemClock().get();
|
|
std::string dump_path = db1->GetName() + "/cache_dump";
|
|
std::unique_ptr<CacheDumpWriter> dump_writer;
|
|
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
|
|
&dump_writer);
|
|
ASSERT_OK(s);
|
|
std::unique_ptr<CacheDumper> cache_dumper;
|
|
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
|
|
&cache_dumper);
|
|
ASSERT_OK(s);
|
|
std::vector<DB*> db_list;
|
|
db_list.push_back(db1);
|
|
s = cache_dumper->SetDumpFilter(db_list);
|
|
ASSERT_OK(s);
|
|
s = cache_dumper->DumpCacheEntriesToWriter();
|
|
ASSERT_OK(s);
|
|
cache_dumper.reset();
|
|
|
|
// we have a new cache it is empty, then, before we do the Get, we do the
|
|
// dumpload
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache =
|
|
std::make_shared<TestSecondaryCache>(2048 * 1024);
|
|
cache_opts.secondary_cache = secondary_cache;
|
|
tmp_cache = new LRUCacheWithStat(
|
|
cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
|
|
cache_opts.low_pri_pool_ratio, cache_opts.memory_allocator,
|
|
cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy,
|
|
cache_opts.secondary_cache);
|
|
std::shared_ptr<Cache> cache_new(tmp_cache);
|
|
table_options.block_cache = cache_new;
|
|
table_options.block_size = 4 * 1024;
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
|
|
// Start the cache loading process
|
|
start_insert = secondary_cache->num_inserts();
|
|
start_lookup = secondary_cache->num_lookups();
|
|
std::unique_ptr<CacheDumpReader> dump_reader;
|
|
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
|
|
&dump_reader);
|
|
ASSERT_OK(s);
|
|
std::unique_ptr<CacheDumpedLoader> cache_loader;
|
|
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
|
|
std::move(dump_reader), &cache_loader);
|
|
ASSERT_OK(s);
|
|
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
|
|
ASSERT_OK(s);
|
|
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
|
|
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
|
|
// check the number we inserted
|
|
ASSERT_EQ(64, static_cast<int>(load_insert));
|
|
ASSERT_EQ(0, static_cast<int>(load_lookup));
|
|
ASSERT_OK(s);
|
|
|
|
ASSERT_OK(db1->Close());
|
|
delete db1;
|
|
ASSERT_OK(DB::Open(options, dbname1, &db1));
|
|
|
|
// After load, we do the Get again. To validate the cache, we do not allow any
|
|
// I/O, so we set the file system to false.
|
|
IOStatus error_msg = IOStatus::IOError("Retryable IO Error");
|
|
fault_fs_->SetFilesystemActive(false, error_msg);
|
|
start_insert = secondary_cache->num_inserts();
|
|
start_lookup = secondary_cache->num_lookups();
|
|
uint32_t cache_insert = tmp_cache->GetInsertCount();
|
|
uint32_t cache_lookup = tmp_cache->GetLookupcount();
|
|
for (int i = 0; i < N; i++) {
|
|
ASSERT_OK(db1->Get(ro, Key(i), &v));
|
|
ASSERT_EQ(v, value1[i]);
|
|
}
|
|
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
|
|
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
|
|
// no insert to secondary cache
|
|
ASSERT_EQ(0, static_cast<int>(final_insert));
|
|
// lookup the secondary to get all blocks
|
|
ASSERT_EQ(64, static_cast<int>(final_lookup));
|
|
uint32_t block_insert = tmp_cache->GetInsertCount() - cache_insert;
|
|
uint32_t block_lookup = tmp_cache->GetLookupcount() - cache_lookup;
|
|
// Check the new block cache insert and lookup, should be no insert since all
|
|
// blocks are from the secondary cache.
|
|
ASSERT_EQ(0, static_cast<int>(block_insert));
|
|
ASSERT_EQ(256, static_cast<int>(block_lookup));
|
|
fault_fs_->SetFailGetUniqueId(false);
|
|
fault_fs_->SetFilesystemActive(true);
|
|
delete db1;
|
|
delete db2;
|
|
ASSERT_OK(DestroyDB(dbname1, options));
|
|
ASSERT_OK(DestroyDB(dbname2, options));
|
|
}
|
|
|
|
// Test the option not to use the secondary cache in a certain DB.
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionBasic) {
|
|
LRUCacheOptions opts(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
|
|
|
|
// Set the file paranoid check, so after flush, the file will be read
|
|
// all the blocks will be accessed.
|
|
options.paranoid_file_checks = true;
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i + 70), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
|
|
// Flush will trigger the paranoid check and read blocks. But only block cache
|
|
// will be read. No operations for secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
Compact("a", "z");
|
|
|
|
// Compaction will also insert and evict blocks, no operations to the block
|
|
// cache. No operations for secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the data in first block. Cache miss, direclty read from SST file.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the second block.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// block cache hit
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(70));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the first block in the second SST file. Cache miss and trigger SST
|
|
// file read. No operations for secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(75));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the second block in the second SST file. Cache miss and trigger SST
|
|
// file read. No operations for secondary cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
Destroy(options);
|
|
}
|
|
|
|
// We disable the secondary cache in DBOptions at first. Close and reopen the DB
|
|
// with new options, which set the lowest_used_cache_tier to
|
|
// kNonVolatileBlockTier. So secondary cache will be used.
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionChange) {
|
|
LRUCacheOptions opts(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
|
|
|
|
// Set the file paranoid check, so after flush, the file will be read
|
|
// all the blocks will be accessed.
|
|
options.paranoid_file_checks = true;
|
|
DestroyAndReopen(options);
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(Put(Key(i + 70), p_v));
|
|
}
|
|
|
|
ASSERT_OK(Flush());
|
|
|
|
// Flush will trigger the paranoid check and read blocks. But only block cache
|
|
// will be read.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
Compact("a", "z");
|
|
|
|
// Compaction will also insert and evict blocks, no operations to the block
|
|
// cache.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
std::string v = Get(Key(0));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the data in first block. Cache miss, direclty read from SST file.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Check the second block.
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
v = Get(Key(5));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// block cache hit
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
|
|
// Change the option to enable secondary cache after we Reopen the DB
|
|
options.lowest_used_cache_tier = CacheTier::kNonVolatileBlockTier;
|
|
Reopen(options);
|
|
|
|
v = Get(Key(70));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// Enable the secondary cache, trigger lookup of the first block in second SST
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
|
|
|
|
v = Get(Key(75));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// trigger lookup of the second block in second SST
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
Destroy(options);
|
|
}
|
|
|
|
// Two DB test. We create 2 DBs sharing the same block cache and secondary
|
|
// cache. We diable the secondary cache option for DB2.
|
|
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheOptionTwoDB) {
|
|
LRUCacheOptions opts(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
|
|
false /* strict_capacity_limit */,
|
|
0.5 /* high_pri_pool_ratio */,
|
|
nullptr /* memory_allocator */, kDefaultToAdaptiveMutex,
|
|
kDontChargeCacheMetadata);
|
|
std::shared_ptr<TestSecondaryCache> secondary_cache(
|
|
new TestSecondaryCache(2048 * 1024));
|
|
opts.secondary_cache = secondary_cache;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(opts);
|
|
BlockBasedTableOptions table_options;
|
|
table_options.block_cache = cache;
|
|
table_options.block_size = 4 * 1024;
|
|
Options options = GetDefaultOptions();
|
|
options.create_if_missing = true;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
options.env = fault_env_.get();
|
|
options.paranoid_file_checks = true;
|
|
std::string dbname1 = test::PerThreadDBPath("db_t_1");
|
|
ASSERT_OK(DestroyDB(dbname1, options));
|
|
DB* db1 = nullptr;
|
|
ASSERT_OK(DB::Open(options, dbname1, &db1));
|
|
std::string dbname2 = test::PerThreadDBPath("db_t_2");
|
|
ASSERT_OK(DestroyDB(dbname2, options));
|
|
DB* db2 = nullptr;
|
|
Options options2 = options;
|
|
options2.lowest_used_cache_tier = CacheTier::kVolatileTier;
|
|
ASSERT_OK(DB::Open(options2, dbname2, &db2));
|
|
fault_fs_->SetFailGetUniqueId(true);
|
|
|
|
WriteOptions wo;
|
|
Random rnd(301);
|
|
const int N = 6;
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(db1->Put(wo, Key(i), p_v));
|
|
}
|
|
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
|
|
ASSERT_OK(db1->Flush(FlushOptions()));
|
|
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
std::string p_v = rnd.RandomString(1007);
|
|
ASSERT_OK(db2->Put(wo, Key(i), p_v));
|
|
}
|
|
|
|
// No change in the secondary cache, since it is disabled in DB2
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
ASSERT_OK(db2->Flush(FlushOptions()));
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
Slice bg("a");
|
|
Slice ed("b");
|
|
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
|
|
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
|
|
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
|
|
|
|
ReadOptions ro;
|
|
std::string v;
|
|
ASSERT_OK(db1->Get(ro, Key(0), &v));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// DB 1 has lookup block 1 and it is miss in block cache, trigger secondary
|
|
// cache lookup
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
|
|
|
|
ASSERT_OK(db1->Get(ro, Key(5), &v));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// DB 1 lookup the second block and it is miss in block cache, trigger
|
|
// secondary cache lookup
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
ASSERT_OK(db2->Get(ro, Key(0), &v));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// For db2, it is not enabled with secondary cache, so no search in the
|
|
// secondary cache
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
ASSERT_OK(db2->Get(ro, Key(5), &v));
|
|
ASSERT_EQ(1007, v.size());
|
|
|
|
// For db2, it is not enabled with secondary cache, so no search in the
|
|
// secondary cache
|
|
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
|
|
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
|
|
|
|
fault_fs_->SetFailGetUniqueId(false);
|
|
fault_fs_->SetFilesystemActive(true);
|
|
delete db1;
|
|
delete db2;
|
|
ASSERT_OK(DestroyDB(dbname1, options));
|
|
ASSERT_OK(DestroyDB(dbname2, options));
|
|
}
|
|
|
|
#endif // ROCKSDB_LITE
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|