You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/db_memtable_test.cc

344 lines
12 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <memory>
#include <string>
#include "db/db_test_util.h"
#include "db/memtable.h"
#include "db/range_del_aggregator.h"
#include "port/stack_trace.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/slice_transform.h"
namespace ROCKSDB_NAMESPACE {
class DBMemTableTest : public DBTestBase {
public:
DBMemTableTest() : DBTestBase("db_memtable_test", /*env_do_fsync=*/true) {}
};
class MockMemTableRep : public MemTableRep {
public:
explicit MockMemTableRep(Allocator* allocator, MemTableRep* rep)
: MemTableRep(allocator), rep_(rep), num_insert_with_hint_(0) {}
KeyHandle Allocate(const size_t len, char** buf) override {
return rep_->Allocate(len, buf);
}
void Insert(KeyHandle handle) override { rep_->Insert(handle); }
void InsertWithHint(KeyHandle handle, void** hint) override {
num_insert_with_hint_++;
EXPECT_NE(nullptr, hint);
last_hint_in_ = *hint;
rep_->InsertWithHint(handle, hint);
last_hint_out_ = *hint;
}
bool Contains(const char* key) const override { return rep_->Contains(key); }
void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry)) override {
rep_->Get(k, callback_args, callback_func);
}
size_t ApproximateMemoryUsage() override {
return rep_->ApproximateMemoryUsage();
}
Iterator* GetIterator(Arena* arena) override {
return rep_->GetIterator(arena);
}
void* last_hint_in() { return last_hint_in_; }
void* last_hint_out() { return last_hint_out_; }
int num_insert_with_hint() { return num_insert_with_hint_; }
private:
std::unique_ptr<MemTableRep> rep_;
void* last_hint_in_;
void* last_hint_out_;
int num_insert_with_hint_;
};
class MockMemTableRepFactory : public MemTableRepFactory {
public:
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger) override {
SkipListFactory factory;
MemTableRep* skiplist_rep =
factory.CreateMemTableRep(cmp, allocator, transform, logger);
mock_rep_ = new MockMemTableRep(allocator, skiplist_rep);
return mock_rep_;
}
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger,
uint32_t column_family_id) override {
last_column_family_id_ = column_family_id;
return CreateMemTableRep(cmp, allocator, transform, logger);
}
const char* Name() const override { return "MockMemTableRepFactory"; }
MockMemTableRep* rep() { return mock_rep_; }
bool IsInsertConcurrentlySupported() const override { return false; }
uint32_t GetLastColumnFamilyId() { return last_column_family_id_; }
private:
MockMemTableRep* mock_rep_;
// workaround since there's no std::numeric_limits<uint32_t>::max() yet.
uint32_t last_column_family_id_ = static_cast<uint32_t>(-1);
};
class TestPrefixExtractor : public SliceTransform {
public:
const char* Name() const override { return "TestPrefixExtractor"; }
Slice Transform(const Slice& key) const override {
const char* p = separator(key);
if (p == nullptr) {
return Slice();
}
return Slice(key.data(), p - key.data() + 1);
}
bool InDomain(const Slice& key) const override {
return separator(key) != nullptr;
}
bool InRange(const Slice& /*key*/) const override { return false; }
private:
const char* separator(const Slice& key) const {
return reinterpret_cast<const char*>(memchr(key.data(), '_', key.size()));
}
};
// Test that ::Add properly returns false when inserting duplicate keys
TEST_F(DBMemTableTest, DuplicateSeq) {
SequenceNumber seq = 123;
std::string value;
MergeContext merge_context;
Options options;
InternalKeyComparator ikey_cmp(options.comparator);
ReadRangeDelAggregator range_del_agg(&ikey_cmp,
kMaxSequenceNumber /* upper_bound */);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Write some keys and make sure it returns false on duplicates
ASSERT_OK(
mem->Add(seq, kTypeValue, "key", "value2", nullptr /* kv_prot_info */));
ASSERT_TRUE(
mem->Add(seq, kTypeValue, "key", "value2", nullptr /* kv_prot_info */)
.IsTryAgain());
// Changing the type should still cause the duplicatae key
ASSERT_TRUE(
mem->Add(seq, kTypeMerge, "key", "value2", nullptr /* kv_prot_info */)
.IsTryAgain());
// Changing the seq number will make the key fresh
ASSERT_OK(mem->Add(seq + 1, kTypeMerge, "key", "value2",
nullptr /* kv_prot_info */));
// Test with different types for duplicate keys
ASSERT_TRUE(
mem->Add(seq, kTypeDeletion, "key", "", nullptr /* kv_prot_info */)
.IsTryAgain());
ASSERT_TRUE(
mem->Add(seq, kTypeSingleDeletion, "key", "", nullptr /* kv_prot_info */)
.IsTryAgain());
// Test the duplicate keys under stress
for (int i = 0; i < 10000; i++) {
bool insert_dup = i % 10 == 1;
if (!insert_dup) {
seq++;
}
Status s = mem->Add(seq, kTypeValue, "foo", "value" + std::to_string(seq),
nullptr /* kv_prot_info */);
if (insert_dup) {
ASSERT_TRUE(s.IsTryAgain());
} else {
ASSERT_OK(s);
}
}
delete mem;
// Test with InsertWithHint
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor()); // which uses _ to extract the prefix
ioptions = ImmutableOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Insert a duplicate key with _ in it
ASSERT_OK(
mem->Add(seq, kTypeValue, "key_1", "value", nullptr /* kv_prot_info */));
ASSERT_TRUE(
mem->Add(seq, kTypeValue, "key_1", "value", nullptr /* kv_prot_info */)
.IsTryAgain());
delete mem;
// Test when InsertConcurrently will be invoked
options.allow_concurrent_memtable_write = true;
ioptions = ImmutableOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
MemTablePostProcessInfo post_process_info;
ASSERT_OK(mem->Add(seq, kTypeValue, "key", "value",
nullptr /* kv_prot_info */, true, &post_process_info));
ASSERT_TRUE(mem->Add(seq, kTypeValue, "key", "value",
nullptr /* kv_prot_info */, true, &post_process_info)
.IsTryAgain());
delete mem;
}
// A simple test to verify that the concurrent merge writes is functional
TEST_F(DBMemTableTest, ConcurrentMergeWrite) {
int num_ops = 1000;
std::string value;
MergeContext merge_context;
Options options;
// A merge operator that is not sensitive to concurrent writes since in this
// test we don't order the writes.
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
options.allow_concurrent_memtable_write = true;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Put 0 as the base
PutFixed64(&value, static_cast<uint64_t>(0));
ASSERT_OK(mem->Add(0, kTypeValue, "key", value, nullptr /* kv_prot_info */));
value.clear();
// Write Merge concurrently
ROCKSDB_NAMESPACE::port::Thread write_thread1([&]() {
MemTablePostProcessInfo post_process_info1;
std::string v1;
for (int seq = 1; seq < num_ops / 2; seq++) {
PutFixed64(&v1, seq);
ASSERT_OK(mem->Add(seq, kTypeMerge, "key", v1, nullptr /* kv_prot_info */,
true, &post_process_info1));
v1.clear();
}
});
ROCKSDB_NAMESPACE::port::Thread write_thread2([&]() {
MemTablePostProcessInfo post_process_info2;
std::string v2;
for (int seq = num_ops / 2; seq < num_ops; seq++) {
PutFixed64(&v2, seq);
ASSERT_OK(mem->Add(seq, kTypeMerge, "key", v2, nullptr /* kv_prot_info */,
true, &post_process_info2));
v2.clear();
}
});
write_thread1.join();
write_thread2.join();
Status status;
ReadOptions roptions;
SequenceNumber max_covering_tombstone_seq = 0;
LookupKey lkey("key", kMaxSequenceNumber);
bool res = mem->Get(lkey, &value, /*columns=*/nullptr, /*timestamp=*/nullptr,
&status, &merge_context, &max_covering_tombstone_seq,
roptions, false /* immutable_memtable */);
ASSERT_OK(status);
ASSERT_TRUE(res);
uint64_t ivalue = DecodeFixed64(Slice(value).data());
uint64_t sum = 0;
for (int seq = 0; seq < num_ops; seq++) {
sum += seq;
}
ASSERT_EQ(ivalue, sum);
delete mem;
}
TEST_F(DBMemTableTest, InsertWithHint) {
Options options;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor());
options.env = env_;
Reopen(options);
MockMemTableRep* rep =
reinterpret_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->rep();
ASSERT_OK(Put("foo_k1", "foo_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_foo = rep->last_hint_out();
ASSERT_OK(Put("foo_k2", "foo_v2"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("foo_k3", "foo_v3"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("bar_k1", "bar_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_bar = rep->last_hint_out();
ASSERT_NE(hint_foo, hint_bar);
ASSERT_OK(Put("bar_k2", "bar_v2"));
ASSERT_EQ(hint_bar, rep->last_hint_in());
ASSERT_EQ(hint_bar, rep->last_hint_out());
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_OK(Put("NotInPrefixDomain", "vvv"));
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_EQ("foo_v1", Get("foo_k1"));
ASSERT_EQ("foo_v2", Get("foo_k2"));
ASSERT_EQ("foo_v3", Get("foo_k3"));
ASSERT_EQ("bar_v1", Get("bar_k1"));
ASSERT_EQ("bar_v2", Get("bar_k2"));
ASSERT_EQ("vvv", Get("NotInPrefixDomain"));
}
TEST_F(DBMemTableTest, ColumnFamilyId) {
// Verifies MemTableRepFactory is told the right column family id.
Options options;
options.env = CurrentOptions().env;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
for (uint32_t cf = 0; cf < 2; ++cf) {
ASSERT_OK(Put(cf, "key", "val"));
ASSERT_OK(Flush(cf));
ASSERT_EQ(
cf, static_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->GetLastColumnFamilyId());
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}