You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/db/column_family.cc

785 lines
27 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/column_family.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include <vector>
#include <string>
#include <algorithm>
#include <limits>
#include "db/db_impl.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/internal_stats.h"
#include "db/compaction_picker.h"
#include "db/table_properties_collector.h"
#include "db/write_controller.h"
#include "util/autovector.h"
#include "util/hash_skiplist_rep.h"
#include "util/options_helper.h"
namespace rocksdb {
namespace {
// This function computes the amount of time in microseconds by which a write
// should be delayed based on the number of level-0 files according to the
// following formula:
// if n < bottom, return 0;
// if n >= top, return 1000;
// otherwise, let r = (n - bottom) /
// (top - bottom)
// and return r^2 * 1000.
// The goal of this formula is to gradually increase the rate at which writes
// are slowed. We also tried linear delay (r * 1000), but it seemed to do
// slightly worse. There is no other particular reason for choosing quadratic.
uint64_t SlowdownAmount(int n, double bottom, double top) {
uint64_t delay;
if (n >= top) {
delay = 1000;
} else if (n < bottom) {
delay = 0;
} else {
// If we are here, we know that:
// level0_start_slowdown <= n < level0_slowdown
// since the previous two conditions are false.
double how_much = static_cast<double>(n - bottom) / (top - bottom);
delay = std::max(how_much * how_much * 1000, 100.0);
}
assert(delay <= 1000);
return delay;
}
} // namespace
ColumnFamilyHandleImpl::ColumnFamilyHandleImpl(
ColumnFamilyData* column_family_data, DBImpl* db, port::Mutex* mutex)
: cfd_(column_family_data), db_(db), mutex_(mutex) {
if (cfd_ != nullptr) {
cfd_->Ref();
}
}
ColumnFamilyHandleImpl::~ColumnFamilyHandleImpl() {
if (cfd_ != nullptr) {
JobContext job_context;
mutex_->Lock();
if (cfd_->Unref()) {
delete cfd_;
}
db_->FindObsoleteFiles(&job_context, false, true);
mutex_->Unlock();
if (job_context.HaveSomethingToDelete()) {
db_->PurgeObsoleteFiles(job_context);
}
}
}
uint32_t ColumnFamilyHandleImpl::GetID() const { return cfd()->GetID(); }
const std::string& ColumnFamilyHandleImpl::GetName() const {
return cfd()->GetName();
}
const Comparator* ColumnFamilyHandleImpl::user_comparator() const {
return cfd()->user_comparator();
}
ColumnFamilyOptions SanitizeOptions(const InternalKeyComparator* icmp,
const ColumnFamilyOptions& src) {
ColumnFamilyOptions result = src;
result.comparator = icmp;
#ifdef OS_MACOSX
// TODO(icanadi) make write_buffer_size uint64_t instead of size_t
ClipToRange(&result.write_buffer_size, ((size_t)64) << 10, ((size_t)1) << 30);
#else
ClipToRange(&result.write_buffer_size,
((size_t)64) << 10, ((size_t)64) << 30);
#endif
// if user sets arena_block_size, we trust user to use this value. Otherwise,
// calculate a proper value from writer_buffer_size;
if (result.arena_block_size <= 0) {
result.arena_block_size = result.write_buffer_size / 10;
}
result.min_write_buffer_number_to_merge =
std::min(result.min_write_buffer_number_to_merge,
result.max_write_buffer_number - 1);
result.compression_per_level = src.compression_per_level;
if (result.max_mem_compaction_level >= result.num_levels) {
result.max_mem_compaction_level = result.num_levels - 1;
}
if (result.soft_rate_limit > result.hard_rate_limit) {
result.soft_rate_limit = result.hard_rate_limit;
}
if (result.max_write_buffer_number < 2) {
result.max_write_buffer_number = 2;
}
if (!result.prefix_extractor) {
assert(result.memtable_factory);
Slice name = result.memtable_factory->Name();
if (name.compare("HashSkipListRepFactory") == 0 ||
name.compare("HashLinkListRepFactory") == 0) {
result.memtable_factory = std::make_shared<SkipListFactory>();
}
}
// -- Sanitize the table properties collector
// All user defined properties collectors will be wrapped by
// UserKeyTablePropertiesCollector since for them they only have the
// knowledge of the user keys; internal keys are invisible to them.
auto& collector_factories = result.table_properties_collector_factories;
for (size_t i = 0; i < result.table_properties_collector_factories.size();
++i) {
assert(collector_factories[i]);
collector_factories[i] =
std::make_shared<UserKeyTablePropertiesCollectorFactory>(
collector_factories[i]);
}
// Add collector to collect internal key statistics
collector_factories.push_back(
std::make_shared<InternalKeyPropertiesCollectorFactory>());
if (result.compaction_style == kCompactionStyleFIFO) {
result.num_levels = 1;
// since we delete level0 files in FIFO compaction when there are too many
// of them, these options don't really mean anything
result.level0_file_num_compaction_trigger = std::numeric_limits<int>::max();
result.level0_slowdown_writes_trigger = std::numeric_limits<int>::max();
result.level0_stop_writes_trigger = std::numeric_limits<int>::max();
}
return result;
}
int SuperVersion::dummy = 0;
void* const SuperVersion::kSVInUse = &SuperVersion::dummy;
void* const SuperVersion::kSVObsolete = nullptr;
SuperVersion::~SuperVersion() {
for (auto td : to_delete) {
delete td;
}
}
SuperVersion* SuperVersion::Ref() {
refs.fetch_add(1, std::memory_order_relaxed);
return this;
}
bool SuperVersion::Unref() {
// fetch_sub returns the previous value of ref
uint32_t previous_refs = refs.fetch_sub(1, std::memory_order_relaxed);
assert(previous_refs > 0);
return previous_refs == 1;
}
void SuperVersion::Cleanup() {
assert(refs.load(std::memory_order_relaxed) == 0);
imm->Unref(&to_delete);
MemTable* m = mem->Unref();
if (m != nullptr) {
to_delete.push_back(m);
}
current->Unref();
}
void SuperVersion::Init(MemTable* new_mem, MemTableListVersion* new_imm,
Version* new_current) {
mem = new_mem;
imm = new_imm;
current = new_current;
mem->Ref();
imm->Ref();
current->Ref();
refs.store(1, std::memory_order_relaxed);
}
namespace {
void SuperVersionUnrefHandle(void* ptr) {
// UnrefHandle is called when a thread exists or a ThreadLocalPtr gets
// destroyed. When former happens, the thread shouldn't see kSVInUse.
// When latter happens, we are in ~ColumnFamilyData(), no get should happen as
// well.
SuperVersion* sv = static_cast<SuperVersion*>(ptr);
if (sv->Unref()) {
sv->db_mutex->Lock();
sv->Cleanup();
sv->db_mutex->Unlock();
delete sv;
}
}
} // anonymous namespace
ColumnFamilyData::ColumnFamilyData(uint32_t id, const std::string& name,
Version* _dummy_versions,
Cache* _table_cache,
const ColumnFamilyOptions& cf_options,
const DBOptions* db_options,
const EnvOptions& env_options,
ColumnFamilySet* column_family_set)
: id_(id),
name_(name),
dummy_versions_(_dummy_versions),
current_(nullptr),
refs_(0),
dropped_(false),
internal_comparator_(cf_options.comparator),
options_(*db_options, SanitizeOptions(&internal_comparator_, cf_options)),
ioptions_(options_),
mutable_cf_options_(options_, ioptions_),
mem_(nullptr),
imm_(options_.min_write_buffer_number_to_merge),
super_version_(nullptr),
super_version_number_(0),
local_sv_(new ThreadLocalPtr(&SuperVersionUnrefHandle)),
next_(nullptr),
prev_(nullptr),
log_number_(0),
column_family_set_(column_family_set) {
Ref();
// if _dummy_versions is nullptr, then this is a dummy column family.
if (_dummy_versions != nullptr) {
internal_stats_.reset(
new InternalStats(ioptions_.num_levels, db_options->env, this));
table_cache_.reset(new TableCache(ioptions_, env_options, _table_cache));
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
compaction_picker_.reset(
new UniversalCompactionPicker(ioptions_, &internal_comparator_));
} else if (ioptions_.compaction_style == kCompactionStyleLevel) {
compaction_picker_.reset(
new LevelCompactionPicker(ioptions_, &internal_comparator_));
} else if (ioptions_.compaction_style == kCompactionStyleFIFO) {
compaction_picker_.reset(
new FIFOCompactionPicker(ioptions_, &internal_comparator_));
} else if (ioptions_.compaction_style == kCompactionStyleNone) {
compaction_picker_.reset(new NullCompactionPicker(
ioptions_, &internal_comparator_));
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"Column family %s does not use any background compaction. "
"Compactions can only be done via CompactFiles\n",
GetName().c_str());
} else {
Log(InfoLogLevel::ERROR_LEVEL, ioptions_.info_log,
"Unable to recognize the specified compaction style %d. "
"Column family %s will use kCompactionStyleLevel.\n",
ioptions_.compaction_style, GetName().c_str());
compaction_picker_.reset(
new LevelCompactionPicker(ioptions_, &internal_comparator_));
}
Log(InfoLogLevel::INFO_LEVEL,
ioptions_.info_log, "Options for column family \"%s\":\n",
name.c_str());
options_.Dump(ioptions_.info_log);
}
RecalculateWriteStallConditions(mutable_cf_options_);
}
// DB mutex held
ColumnFamilyData::~ColumnFamilyData() {
assert(refs_ == 0);
// remove from linked list
auto prev = prev_;
auto next = next_;
prev->next_ = next;
next->prev_ = prev;
// it's nullptr for dummy CFD
if (column_family_set_ != nullptr) {
// remove from column_family_set
column_family_set_->RemoveColumnFamily(this);
}
if (current_ != nullptr) {
current_->Unref();
}
if (super_version_ != nullptr) {
// Release SuperVersion reference kept in ThreadLocalPtr.
// This must be done outside of mutex_ since unref handler can lock mutex.
super_version_->db_mutex->Unlock();
local_sv_.reset();
super_version_->db_mutex->Lock();
bool is_last_reference __attribute__((unused));
is_last_reference = super_version_->Unref();
assert(is_last_reference);
super_version_->Cleanup();
delete super_version_;
super_version_ = nullptr;
}
if (dummy_versions_ != nullptr) {
// List must be empty
assert(dummy_versions_->TEST_Next() == dummy_versions_);
bool deleted __attribute__((unused)) = dummy_versions_->Unref();
assert(deleted);
}
if (mem_ != nullptr) {
delete mem_->Unref();
}
autovector<MemTable*> to_delete;
imm_.current()->Unref(&to_delete);
for (MemTable* m : to_delete) {
delete m;
}
}
void ColumnFamilyData::RecalculateWriteStallConditions(
const MutableCFOptions& mutable_cf_options) {
if (current_ != nullptr) {
auto* vstorage = current_->storage_info();
const double score = vstorage->max_compaction_score();
const int max_level = vstorage->max_compaction_score_level();
auto write_controller = column_family_set_->write_controller_;
if (imm()->size() >= mutable_cf_options.max_write_buffer_number) {
write_controller_token_ = write_controller->GetStopToken();
internal_stats_->AddCFStats(InternalStats::MEMTABLE_COMPACTION, 1);
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"[%s] Stopping writes because we have %d immutable memtables "
"(waiting for flush), max_write_buffer_number is set to %d",
name_.c_str(), imm()->size(),
mutable_cf_options.max_write_buffer_number);
} else if (vstorage->NumLevelFiles(0) >=
mutable_cf_options.level0_stop_writes_trigger) {
write_controller_token_ = write_controller->GetStopToken();
internal_stats_->AddCFStats(InternalStats::LEVEL0_NUM_FILES, 1);
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"[%s] Stopping writes because we have %d level-0 files",
name_.c_str(), vstorage->NumLevelFiles(0));
} else if (mutable_cf_options.level0_slowdown_writes_trigger >= 0 &&
vstorage->NumLevelFiles(0) >=
mutable_cf_options.level0_slowdown_writes_trigger) {
uint64_t slowdown =
SlowdownAmount(vstorage->NumLevelFiles(0),
mutable_cf_options.level0_slowdown_writes_trigger,
mutable_cf_options.level0_stop_writes_trigger);
write_controller_token_ = write_controller->GetDelayToken(slowdown);
internal_stats_->AddCFStats(InternalStats::LEVEL0_SLOWDOWN, slowdown);
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"[%s] Stalling writes because we have %d level-0 files (%" PRIu64
"us)",
name_.c_str(), vstorage->NumLevelFiles(0), slowdown);
} else if (mutable_cf_options.hard_rate_limit > 1.0 &&
score > mutable_cf_options.hard_rate_limit) {
uint64_t kHardLimitSlowdown = 1000;
write_controller_token_ =
write_controller->GetDelayToken(kHardLimitSlowdown);
internal_stats_->RecordLevelNSlowdown(max_level, kHardLimitSlowdown,
false);
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"[%s] Stalling writes because we hit hard limit on level %d. "
"(%" PRIu64 "us)",
name_.c_str(), max_level, kHardLimitSlowdown);
} else if (mutable_cf_options.soft_rate_limit > 0.0 &&
score > mutable_cf_options.soft_rate_limit) {
uint64_t slowdown = SlowdownAmount(score,
mutable_cf_options.soft_rate_limit,
mutable_cf_options.hard_rate_limit);
write_controller_token_ = write_controller->GetDelayToken(slowdown);
internal_stats_->RecordLevelNSlowdown(max_level, slowdown, true);
Log(InfoLogLevel::WARN_LEVEL, ioptions_.info_log,
"[%s] Stalling writes because we hit soft limit on level %d (%" PRIu64
"us)",
name_.c_str(), max_level, slowdown);
} else {
write_controller_token_.reset();
}
}
}
const EnvOptions* ColumnFamilyData::soptions() const {
return &(column_family_set_->env_options_);
}
void ColumnFamilyData::SetCurrent(Version* current_version) {
current_ = current_version;
}
void ColumnFamilyData::CreateNewMemtable(
const MutableCFOptions& mutable_cf_options) {
assert(current_ != nullptr);
if (mem_ != nullptr) {
delete mem_->Unref();
}
mem_ = new MemTable(internal_comparator_, ioptions_, mutable_cf_options);
mem_->Ref();
}
Compaction* ColumnFamilyData::PickCompaction(
const MutableCFOptions& mutable_options, LogBuffer* log_buffer) {
auto* result = compaction_picker_->PickCompaction(
GetName(), mutable_options, current_->storage_info(), log_buffer);
if (result != nullptr) {
result->SetInputVersion(current_);
}
return result;
}
Compaction* ColumnFamilyData::CompactRange(
const MutableCFOptions& mutable_cf_options,
int input_level, int output_level, uint32_t output_path_id,
const InternalKey* begin, const InternalKey* end,
InternalKey** compaction_end) {
auto* result = compaction_picker_->CompactRange(
GetName(), mutable_cf_options, current_->storage_info(), input_level,
output_level, output_path_id, begin, end, compaction_end);
if (result != nullptr) {
result->SetInputVersion(current_);
}
return result;
}
SuperVersion* ColumnFamilyData::GetReferencedSuperVersion(
port::Mutex* db_mutex) {
SuperVersion* sv = nullptr;
sv = GetThreadLocalSuperVersion(db_mutex);
sv->Ref();
if (!ReturnThreadLocalSuperVersion(sv)) {
sv->Unref();
}
return sv;
}
SuperVersion* ColumnFamilyData::GetThreadLocalSuperVersion(
port::Mutex* db_mutex) {
SuperVersion* sv = nullptr;
// The SuperVersion is cached in thread local storage to avoid acquiring
// mutex when SuperVersion does not change since the last use. When a new
// SuperVersion is installed, the compaction or flush thread cleans up
// cached SuperVersion in all existing thread local storage. To avoid
// acquiring mutex for this operation, we use atomic Swap() on the thread
// local pointer to guarantee exclusive access. If the thread local pointer
// is being used while a new SuperVersion is installed, the cached
// SuperVersion can become stale. In that case, the background thread would
// have swapped in kSVObsolete. We re-check the value at when returning
// SuperVersion back to thread local, with an atomic compare and swap.
// The superversion will need to be released if detected to be stale.
void* ptr = local_sv_->Swap(SuperVersion::kSVInUse);
// Invariant:
// (1) Scrape (always) installs kSVObsolete in ThreadLocal storage
// (2) the Swap above (always) installs kSVInUse, ThreadLocal storage
// should only keep kSVInUse before ReturnThreadLocalSuperVersion call
// (if no Scrape happens).
assert(ptr != SuperVersion::kSVInUse);
sv = static_cast<SuperVersion*>(ptr);
if (sv == SuperVersion::kSVObsolete ||
sv->version_number != super_version_number_.load()) {
RecordTick(ioptions_.statistics, NUMBER_SUPERVERSION_ACQUIRES);
SuperVersion* sv_to_delete = nullptr;
if (sv && sv->Unref()) {
RecordTick(ioptions_.statistics, NUMBER_SUPERVERSION_CLEANUPS);
db_mutex->Lock();
// NOTE: underlying resources held by superversion (sst files) might
// not be released until the next background job.
sv->Cleanup();
sv_to_delete = sv;
} else {
db_mutex->Lock();
}
sv = super_version_->Ref();
db_mutex->Unlock();
delete sv_to_delete;
}
assert(sv != nullptr);
return sv;
}
bool ColumnFamilyData::ReturnThreadLocalSuperVersion(SuperVersion* sv) {
assert(sv != nullptr);
// Put the SuperVersion back
void* expected = SuperVersion::kSVInUse;
if (local_sv_->CompareAndSwap(static_cast<void*>(sv), expected)) {
// When we see kSVInUse in the ThreadLocal, we are sure ThreadLocal
// storage has not been altered and no Scrape has happend. The
// SuperVersion is still current.
return true;
} else {
// ThreadLocal scrape happened in the process of this GetImpl call (after
// thread local Swap() at the beginning and before CompareAndSwap()).
// This means the SuperVersion it holds is obsolete.
assert(expected == SuperVersion::kSVObsolete);
}
return false;
}
void ColumnFamilyData::NotifyOnFlushCompleted(
DB* db, const std::string& file_path,
bool triggered_flush_slowdown,
bool triggered_flush_stop) {
auto listeners = ioptions()->listeners;
for (auto listener : listeners) {
listener->OnFlushCompleted(
db, GetName(), file_path,
// Use path 0 as fulled memtables are first flushed into path 0.
triggered_flush_slowdown, triggered_flush_stop);
}
}
SuperVersion* ColumnFamilyData::InstallSuperVersion(
SuperVersion* new_superversion, port::Mutex* db_mutex) {
db_mutex->AssertHeld();
return InstallSuperVersion(new_superversion, db_mutex, mutable_cf_options_);
}
SuperVersion* ColumnFamilyData::InstallSuperVersion(
SuperVersion* new_superversion, port::Mutex* db_mutex,
const MutableCFOptions& mutable_cf_options) {
new_superversion->db_mutex = db_mutex;
new_superversion->mutable_cf_options = mutable_cf_options;
new_superversion->Init(mem_, imm_.current(), current_);
SuperVersion* old_superversion = super_version_;
super_version_ = new_superversion;
++super_version_number_;
super_version_->version_number = super_version_number_;
// Reset SuperVersions cached in thread local storage
ResetThreadLocalSuperVersions();
RecalculateWriteStallConditions(mutable_cf_options);
if (old_superversion != nullptr && old_superversion->Unref()) {
old_superversion->Cleanup();
return old_superversion; // will let caller delete outside of mutex
}
return nullptr;
}
void ColumnFamilyData::ResetThreadLocalSuperVersions() {
autovector<void*> sv_ptrs;
local_sv_->Scrape(&sv_ptrs, SuperVersion::kSVObsolete);
for (auto ptr : sv_ptrs) {
assert(ptr);
if (ptr == SuperVersion::kSVInUse) {
continue;
}
auto sv = static_cast<SuperVersion*>(ptr);
if (sv->Unref()) {
sv->Cleanup();
delete sv;
}
}
}
Status ColumnFamilyData::SetOptions(
const std::unordered_map<std::string, std::string>& options_map) {
MutableCFOptions new_mutable_cf_options;
Status s = GetMutableOptionsFromStrings(mutable_cf_options_, options_map,
&new_mutable_cf_options);
if (s.ok()) {
mutable_cf_options_ = new_mutable_cf_options;
mutable_cf_options_.RefreshDerivedOptions(ioptions_);
}
return s;
}
ColumnFamilySet::ColumnFamilySet(const std::string& dbname,
const DBOptions* db_options,
const EnvOptions& env_options,
Cache* table_cache,
WriteController* write_controller)
: max_column_family_(0),
dummy_cfd_(new ColumnFamilyData(0, "", nullptr, nullptr,
ColumnFamilyOptions(), db_options,
env_options, nullptr)),
default_cfd_cache_(nullptr),
db_name_(dbname),
db_options_(db_options),
env_options_(env_options),
table_cache_(table_cache),
write_controller_(write_controller),
spin_lock_(ATOMIC_FLAG_INIT) {
// initialize linked list
dummy_cfd_->prev_ = dummy_cfd_;
dummy_cfd_->next_ = dummy_cfd_;
}
ColumnFamilySet::~ColumnFamilySet() {
while (column_family_data_.size() > 0) {
// cfd destructor will delete itself from column_family_data_
auto cfd = column_family_data_.begin()->second;
cfd->Unref();
delete cfd;
}
dummy_cfd_->Unref();
delete dummy_cfd_;
}
ColumnFamilyData* ColumnFamilySet::GetDefault() const {
assert(default_cfd_cache_ != nullptr);
return default_cfd_cache_;
}
ColumnFamilyData* ColumnFamilySet::GetColumnFamily(uint32_t id) const {
auto cfd_iter = column_family_data_.find(id);
if (cfd_iter != column_family_data_.end()) {
return cfd_iter->second;
} else {
return nullptr;
}
}
ColumnFamilyData* ColumnFamilySet::GetColumnFamily(const std::string& name)
const {
auto cfd_iter = column_families_.find(name);
if (cfd_iter != column_families_.end()) {
auto cfd = GetColumnFamily(cfd_iter->second);
assert(cfd != nullptr);
return cfd;
} else {
return nullptr;
}
}
uint32_t ColumnFamilySet::GetNextColumnFamilyID() {
return ++max_column_family_;
}
uint32_t ColumnFamilySet::GetMaxColumnFamily() { return max_column_family_; }
void ColumnFamilySet::UpdateMaxColumnFamily(uint32_t new_max_column_family) {
max_column_family_ = std::max(new_max_column_family, max_column_family_);
}
size_t ColumnFamilySet::NumberOfColumnFamilies() const {
return column_families_.size();
}
// under a DB mutex
ColumnFamilyData* ColumnFamilySet::CreateColumnFamily(
const std::string& name, uint32_t id, Version* dummy_versions,
const ColumnFamilyOptions& options) {
assert(column_families_.find(name) == column_families_.end());
ColumnFamilyData* new_cfd =
new ColumnFamilyData(id, name, dummy_versions, table_cache_, options,
db_options_, env_options_, this);
Lock();
column_families_.insert({name, id});
column_family_data_.insert({id, new_cfd});
Unlock();
max_column_family_ = std::max(max_column_family_, id);
// add to linked list
new_cfd->next_ = dummy_cfd_;
auto prev = dummy_cfd_->prev_;
new_cfd->prev_ = prev;
prev->next_ = new_cfd;
dummy_cfd_->prev_ = new_cfd;
if (id == 0) {
default_cfd_cache_ = new_cfd;
}
return new_cfd;
}
void ColumnFamilySet::Lock() {
// spin lock
while (spin_lock_.test_and_set(std::memory_order_acquire)) {
}
}
void ColumnFamilySet::Unlock() { spin_lock_.clear(std::memory_order_release); }
// REQUIRES: DB mutex held
void ColumnFamilySet::FreeDeadColumnFamilies() {
autovector<ColumnFamilyData*> to_delete;
for (auto cfd = dummy_cfd_->next_; cfd != dummy_cfd_; cfd = cfd->next_) {
if (cfd->refs_ == 0) {
to_delete.push_back(cfd);
}
}
for (auto cfd : to_delete) {
// this is very rare, so it's not a problem that we do it under a mutex
delete cfd;
}
}
// under a DB mutex
void ColumnFamilySet::RemoveColumnFamily(ColumnFamilyData* cfd) {
auto cfd_iter = column_family_data_.find(cfd->GetID());
assert(cfd_iter != column_family_data_.end());
Lock();
column_family_data_.erase(cfd_iter);
column_families_.erase(cfd->GetName());
Unlock();
}
bool ColumnFamilyMemTablesImpl::Seek(uint32_t column_family_id) {
if (column_family_id == 0) {
// optimization for common case
current_ = column_family_set_->GetDefault();
} else {
// maybe outside of db mutex, should lock
column_family_set_->Lock();
current_ = column_family_set_->GetColumnFamily(column_family_id);
column_family_set_->Unlock();
// TODO(icanadi) Maybe remove column family from the hash table when it's
// dropped?
if (current_ != nullptr && current_->IsDropped()) {
current_ = nullptr;
}
}
handle_.SetCFD(current_);
return current_ != nullptr;
}
uint64_t ColumnFamilyMemTablesImpl::GetLogNumber() const {
assert(current_ != nullptr);
return current_->GetLogNumber();
}
MemTable* ColumnFamilyMemTablesImpl::GetMemTable() const {
assert(current_ != nullptr);
return current_->mem();
}
const Options* ColumnFamilyMemTablesImpl::GetOptions() const {
assert(current_ != nullptr);
return current_->options();
}
ColumnFamilyHandle* ColumnFamilyMemTablesImpl::GetColumnFamilyHandle() {
assert(current_ != nullptr);
return &handle_;
}
void ColumnFamilyMemTablesImpl::CheckMemtableFull() {
if (current_ != nullptr && current_->mem()->ShouldScheduleFlush()) {
flush_scheduler_->ScheduleFlush(current_);
current_->mem()->MarkFlushScheduled();
}
}
uint32_t GetColumnFamilyID(ColumnFamilyHandle* column_family) {
uint32_t column_family_id = 0;
if (column_family != nullptr) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
column_family_id = cfh->GetID();
}
return column_family_id;
}
const Comparator* GetColumnFamilyUserComparator(
ColumnFamilyHandle* column_family) {
if (column_family != nullptr) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
return cfh->user_comparator();
}
return nullptr;
}
} // namespace rocksdb