fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
867 lines
28 KiB
867 lines
28 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "util/file_reader_writer.h"
|
|
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
|
|
#include "monitoring/histogram.h"
|
|
#include "monitoring/iostats_context_imp.h"
|
|
#include "port/port.h"
|
|
#include "util/random.h"
|
|
#include "util/rate_limiter.h"
|
|
#include "test_util/sync_point.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
#ifndef NDEBUG
|
|
namespace {
|
|
bool IsFileSectorAligned(const size_t off, size_t sector_size) {
|
|
return off % sector_size == 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
Status SequentialFileReader::Read(size_t n, Slice* result, char* scratch) {
|
|
Status s;
|
|
if (use_direct_io()) {
|
|
#ifndef ROCKSDB_LITE
|
|
size_t offset = offset_.fetch_add(n);
|
|
size_t alignment = file_->GetRequiredBufferAlignment();
|
|
size_t aligned_offset = TruncateToPageBoundary(alignment, offset);
|
|
size_t offset_advance = offset - aligned_offset;
|
|
size_t size = Roundup(offset + n, alignment) - aligned_offset;
|
|
size_t r = 0;
|
|
AlignedBuffer buf;
|
|
buf.Alignment(alignment);
|
|
buf.AllocateNewBuffer(size);
|
|
Slice tmp;
|
|
s = file_->PositionedRead(aligned_offset, size, &tmp, buf.BufferStart());
|
|
if (s.ok() && offset_advance < tmp.size()) {
|
|
buf.Size(tmp.size());
|
|
r = buf.Read(scratch, offset_advance,
|
|
std::min(tmp.size() - offset_advance, n));
|
|
}
|
|
*result = Slice(scratch, r);
|
|
#endif // !ROCKSDB_LITE
|
|
} else {
|
|
s = file_->Read(n, result, scratch);
|
|
}
|
|
IOSTATS_ADD(bytes_read, result->size());
|
|
return s;
|
|
}
|
|
|
|
|
|
Status SequentialFileReader::Skip(uint64_t n) {
|
|
#ifndef ROCKSDB_LITE
|
|
if (use_direct_io()) {
|
|
offset_ += static_cast<size_t>(n);
|
|
return Status::OK();
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
return file_->Skip(n);
|
|
}
|
|
|
|
Status RandomAccessFileReader::Read(uint64_t offset, size_t n, Slice* result,
|
|
char* scratch) const {
|
|
Status s;
|
|
uint64_t elapsed = 0;
|
|
{
|
|
StopWatch sw(env_, stats_, hist_type_,
|
|
(stats_ != nullptr) ? &elapsed : nullptr, true /*overwrite*/,
|
|
true /*delay_enabled*/);
|
|
auto prev_perf_level = GetPerfLevel();
|
|
IOSTATS_TIMER_GUARD(read_nanos);
|
|
if (use_direct_io()) {
|
|
#ifndef ROCKSDB_LITE
|
|
size_t alignment = file_->GetRequiredBufferAlignment();
|
|
size_t aligned_offset = TruncateToPageBoundary(alignment, static_cast<size_t>(offset));
|
|
size_t offset_advance = static_cast<size_t>(offset) - aligned_offset;
|
|
size_t read_size = Roundup(static_cast<size_t>(offset + n), alignment) - aligned_offset;
|
|
AlignedBuffer buf;
|
|
buf.Alignment(alignment);
|
|
buf.AllocateNewBuffer(read_size);
|
|
while (buf.CurrentSize() < read_size) {
|
|
size_t allowed;
|
|
if (for_compaction_ && rate_limiter_ != nullptr) {
|
|
allowed = rate_limiter_->RequestToken(
|
|
buf.Capacity() - buf.CurrentSize(), buf.Alignment(),
|
|
Env::IOPriority::IO_LOW, stats_, RateLimiter::OpType::kRead);
|
|
} else {
|
|
assert(buf.CurrentSize() == 0);
|
|
allowed = read_size;
|
|
}
|
|
Slice tmp;
|
|
|
|
FileOperationInfo::TimePoint start_ts;
|
|
uint64_t orig_offset = 0;
|
|
if (ShouldNotifyListeners()) {
|
|
start_ts = std::chrono::system_clock::now();
|
|
orig_offset = aligned_offset + buf.CurrentSize();
|
|
}
|
|
{
|
|
IOSTATS_CPU_TIMER_GUARD(cpu_read_nanos, env_);
|
|
s = file_->Read(aligned_offset + buf.CurrentSize(), allowed, &tmp,
|
|
buf.Destination());
|
|
}
|
|
if (ShouldNotifyListeners()) {
|
|
auto finish_ts = std::chrono::system_clock::now();
|
|
NotifyOnFileReadFinish(orig_offset, tmp.size(), start_ts, finish_ts,
|
|
s);
|
|
}
|
|
|
|
buf.Size(buf.CurrentSize() + tmp.size());
|
|
if (!s.ok() || tmp.size() < allowed) {
|
|
break;
|
|
}
|
|
}
|
|
size_t res_len = 0;
|
|
if (s.ok() && offset_advance < buf.CurrentSize()) {
|
|
res_len = buf.Read(scratch, offset_advance,
|
|
std::min(buf.CurrentSize() - offset_advance, n));
|
|
}
|
|
*result = Slice(scratch, res_len);
|
|
#endif // !ROCKSDB_LITE
|
|
} else {
|
|
size_t pos = 0;
|
|
const char* res_scratch = nullptr;
|
|
while (pos < n) {
|
|
size_t allowed;
|
|
if (for_compaction_ && rate_limiter_ != nullptr) {
|
|
if (rate_limiter_->IsRateLimited(RateLimiter::OpType::kRead)) {
|
|
sw.DelayStart();
|
|
}
|
|
allowed = rate_limiter_->RequestToken(n - pos, 0 /* alignment */,
|
|
Env::IOPriority::IO_LOW, stats_,
|
|
RateLimiter::OpType::kRead);
|
|
if (rate_limiter_->IsRateLimited(RateLimiter::OpType::kRead)) {
|
|
sw.DelayStop();
|
|
}
|
|
} else {
|
|
allowed = n;
|
|
}
|
|
Slice tmp_result;
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
FileOperationInfo::TimePoint start_ts;
|
|
if (ShouldNotifyListeners()) {
|
|
start_ts = std::chrono::system_clock::now();
|
|
}
|
|
#endif
|
|
{
|
|
IOSTATS_CPU_TIMER_GUARD(cpu_read_nanos, env_);
|
|
s = file_->Read(offset + pos, allowed, &tmp_result, scratch + pos);
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (ShouldNotifyListeners()) {
|
|
auto finish_ts = std::chrono::system_clock::now();
|
|
NotifyOnFileReadFinish(offset + pos, tmp_result.size(), start_ts,
|
|
finish_ts, s);
|
|
}
|
|
#endif
|
|
|
|
if (res_scratch == nullptr) {
|
|
// we can't simply use `scratch` because reads of mmap'd files return
|
|
// data in a different buffer.
|
|
res_scratch = tmp_result.data();
|
|
} else {
|
|
// make sure chunks are inserted contiguously into `res_scratch`.
|
|
assert(tmp_result.data() == res_scratch + pos);
|
|
}
|
|
pos += tmp_result.size();
|
|
if (!s.ok() || tmp_result.size() < allowed) {
|
|
break;
|
|
}
|
|
}
|
|
*result = Slice(res_scratch, s.ok() ? pos : 0);
|
|
}
|
|
IOSTATS_ADD_IF_POSITIVE(bytes_read, result->size());
|
|
SetPerfLevel(prev_perf_level);
|
|
}
|
|
if (stats_ != nullptr && file_read_hist_ != nullptr) {
|
|
file_read_hist_->Add(elapsed);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Status WritableFileWriter::Append(const Slice& data) {
|
|
const char* src = data.data();
|
|
size_t left = data.size();
|
|
Status s;
|
|
pending_sync_ = true;
|
|
|
|
TEST_KILL_RANDOM("WritableFileWriter::Append:0",
|
|
rocksdb_kill_odds * REDUCE_ODDS2);
|
|
|
|
{
|
|
IOSTATS_TIMER_GUARD(prepare_write_nanos);
|
|
TEST_SYNC_POINT("WritableFileWriter::Append:BeforePrepareWrite");
|
|
writable_file_->PrepareWrite(static_cast<size_t>(GetFileSize()), left);
|
|
}
|
|
|
|
// See whether we need to enlarge the buffer to avoid the flush
|
|
if (buf_.Capacity() - buf_.CurrentSize() < left) {
|
|
for (size_t cap = buf_.Capacity();
|
|
cap < max_buffer_size_; // There is still room to increase
|
|
cap *= 2) {
|
|
// See whether the next available size is large enough.
|
|
// Buffer will never be increased to more than max_buffer_size_.
|
|
size_t desired_capacity = std::min(cap * 2, max_buffer_size_);
|
|
if (desired_capacity - buf_.CurrentSize() >= left ||
|
|
(use_direct_io() && desired_capacity == max_buffer_size_)) {
|
|
buf_.AllocateNewBuffer(desired_capacity, true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Flush only when buffered I/O
|
|
if (!use_direct_io() && (buf_.Capacity() - buf_.CurrentSize()) < left) {
|
|
if (buf_.CurrentSize() > 0) {
|
|
s = Flush();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
assert(buf_.CurrentSize() == 0);
|
|
}
|
|
|
|
// We never write directly to disk with direct I/O on.
|
|
// or we simply use it for its original purpose to accumulate many small
|
|
// chunks
|
|
if (use_direct_io() || (buf_.Capacity() >= left)) {
|
|
while (left > 0) {
|
|
size_t appended = buf_.Append(src, left);
|
|
left -= appended;
|
|
src += appended;
|
|
|
|
if (left > 0) {
|
|
s = Flush();
|
|
if (!s.ok()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Writing directly to file bypassing the buffer
|
|
assert(buf_.CurrentSize() == 0);
|
|
s = WriteBuffered(src, left);
|
|
}
|
|
|
|
TEST_KILL_RANDOM("WritableFileWriter::Append:1", rocksdb_kill_odds);
|
|
if (s.ok()) {
|
|
filesize_ += data.size();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status WritableFileWriter::Pad(const size_t pad_bytes) {
|
|
assert(pad_bytes < kDefaultPageSize);
|
|
size_t left = pad_bytes;
|
|
size_t cap = buf_.Capacity() - buf_.CurrentSize();
|
|
|
|
// Assume pad_bytes is small compared to buf_ capacity. So we always
|
|
// use buf_ rather than write directly to file in certain cases like
|
|
// Append() does.
|
|
while (left) {
|
|
size_t append_bytes = std::min(cap, left);
|
|
buf_.PadWith(append_bytes, 0);
|
|
left -= append_bytes;
|
|
if (left > 0) {
|
|
Status s = Flush();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
cap = buf_.Capacity() - buf_.CurrentSize();
|
|
}
|
|
pending_sync_ = true;
|
|
filesize_ += pad_bytes;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status WritableFileWriter::Close() {
|
|
|
|
// Do not quit immediately on failure the file MUST be closed
|
|
Status s;
|
|
|
|
// Possible to close it twice now as we MUST close
|
|
// in __dtor, simply flushing is not enough
|
|
// Windows when pre-allocating does not fill with zeros
|
|
// also with unbuffered access we also set the end of data.
|
|
if (!writable_file_) {
|
|
return s;
|
|
}
|
|
|
|
s = Flush(); // flush cache to OS
|
|
|
|
Status interim;
|
|
// In direct I/O mode we write whole pages so
|
|
// we need to let the file know where data ends.
|
|
if (use_direct_io()) {
|
|
interim = writable_file_->Truncate(filesize_);
|
|
if (interim.ok()) {
|
|
interim = writable_file_->Fsync();
|
|
}
|
|
if (!interim.ok() && s.ok()) {
|
|
s = interim;
|
|
}
|
|
}
|
|
|
|
TEST_KILL_RANDOM("WritableFileWriter::Close:0", rocksdb_kill_odds);
|
|
interim = writable_file_->Close();
|
|
if (!interim.ok() && s.ok()) {
|
|
s = interim;
|
|
}
|
|
|
|
writable_file_.reset();
|
|
TEST_KILL_RANDOM("WritableFileWriter::Close:1", rocksdb_kill_odds);
|
|
|
|
return s;
|
|
}
|
|
|
|
// write out the cached data to the OS cache or storage if direct I/O
|
|
// enabled
|
|
Status WritableFileWriter::Flush() {
|
|
Status s;
|
|
TEST_KILL_RANDOM("WritableFileWriter::Flush:0",
|
|
rocksdb_kill_odds * REDUCE_ODDS2);
|
|
|
|
if (buf_.CurrentSize() > 0) {
|
|
if (use_direct_io()) {
|
|
#ifndef ROCKSDB_LITE
|
|
if (pending_sync_) {
|
|
s = WriteDirect();
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
} else {
|
|
s = WriteBuffered(buf_.BufferStart(), buf_.CurrentSize());
|
|
}
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
s = writable_file_->Flush();
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
// sync OS cache to disk for every bytes_per_sync_
|
|
// TODO: give log file and sst file different options (log
|
|
// files could be potentially cached in OS for their whole
|
|
// life time, thus we might not want to flush at all).
|
|
|
|
// We try to avoid sync to the last 1MB of data. For two reasons:
|
|
// (1) avoid rewrite the same page that is modified later.
|
|
// (2) for older version of OS, write can block while writing out
|
|
// the page.
|
|
// Xfs does neighbor page flushing outside of the specified ranges. We
|
|
// need to make sure sync range is far from the write offset.
|
|
if (!use_direct_io() && bytes_per_sync_) {
|
|
const uint64_t kBytesNotSyncRange = 1024 * 1024; // recent 1MB is not synced.
|
|
const uint64_t kBytesAlignWhenSync = 4 * 1024; // Align 4KB.
|
|
if (filesize_ > kBytesNotSyncRange) {
|
|
uint64_t offset_sync_to = filesize_ - kBytesNotSyncRange;
|
|
offset_sync_to -= offset_sync_to % kBytesAlignWhenSync;
|
|
assert(offset_sync_to >= last_sync_size_);
|
|
if (offset_sync_to > 0 &&
|
|
offset_sync_to - last_sync_size_ >= bytes_per_sync_) {
|
|
s = RangeSync(last_sync_size_, offset_sync_to - last_sync_size_);
|
|
last_sync_size_ = offset_sync_to;
|
|
}
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Status WritableFileWriter::Sync(bool use_fsync) {
|
|
Status s = Flush();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
TEST_KILL_RANDOM("WritableFileWriter::Sync:0", rocksdb_kill_odds);
|
|
if (!use_direct_io() && pending_sync_) {
|
|
s = SyncInternal(use_fsync);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
TEST_KILL_RANDOM("WritableFileWriter::Sync:1", rocksdb_kill_odds);
|
|
pending_sync_ = false;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status WritableFileWriter::SyncWithoutFlush(bool use_fsync) {
|
|
if (!writable_file_->IsSyncThreadSafe()) {
|
|
return Status::NotSupported(
|
|
"Can't WritableFileWriter::SyncWithoutFlush() because "
|
|
"WritableFile::IsSyncThreadSafe() is false");
|
|
}
|
|
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:1");
|
|
Status s = SyncInternal(use_fsync);
|
|
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:2");
|
|
return s;
|
|
}
|
|
|
|
Status WritableFileWriter::SyncInternal(bool use_fsync) {
|
|
Status s;
|
|
IOSTATS_TIMER_GUARD(fsync_nanos);
|
|
TEST_SYNC_POINT("WritableFileWriter::SyncInternal:0");
|
|
auto prev_perf_level = GetPerfLevel();
|
|
IOSTATS_CPU_TIMER_GUARD(cpu_write_nanos, env_);
|
|
if (use_fsync) {
|
|
s = writable_file_->Fsync();
|
|
} else {
|
|
s = writable_file_->Sync();
|
|
}
|
|
SetPerfLevel(prev_perf_level);
|
|
return s;
|
|
}
|
|
|
|
Status WritableFileWriter::RangeSync(uint64_t offset, uint64_t nbytes) {
|
|
IOSTATS_TIMER_GUARD(range_sync_nanos);
|
|
TEST_SYNC_POINT("WritableFileWriter::RangeSync:0");
|
|
return writable_file_->RangeSync(offset, nbytes);
|
|
}
|
|
|
|
// This method writes to disk the specified data and makes use of the rate
|
|
// limiter if available
|
|
Status WritableFileWriter::WriteBuffered(const char* data, size_t size) {
|
|
Status s;
|
|
assert(!use_direct_io());
|
|
const char* src = data;
|
|
size_t left = size;
|
|
|
|
while (left > 0) {
|
|
size_t allowed;
|
|
if (rate_limiter_ != nullptr) {
|
|
allowed = rate_limiter_->RequestToken(
|
|
left, 0 /* alignment */, writable_file_->GetIOPriority(), stats_,
|
|
RateLimiter::OpType::kWrite);
|
|
} else {
|
|
allowed = left;
|
|
}
|
|
|
|
{
|
|
IOSTATS_TIMER_GUARD(write_nanos);
|
|
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
FileOperationInfo::TimePoint start_ts;
|
|
uint64_t old_size = writable_file_->GetFileSize();
|
|
if (ShouldNotifyListeners()) {
|
|
start_ts = std::chrono::system_clock::now();
|
|
old_size = next_write_offset_;
|
|
}
|
|
#endif
|
|
{
|
|
auto prev_perf_level = GetPerfLevel();
|
|
IOSTATS_CPU_TIMER_GUARD(cpu_write_nanos, env_);
|
|
s = writable_file_->Append(Slice(src, allowed));
|
|
SetPerfLevel(prev_perf_level);
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (ShouldNotifyListeners()) {
|
|
auto finish_ts = std::chrono::system_clock::now();
|
|
NotifyOnFileWriteFinish(old_size, allowed, start_ts, finish_ts, s);
|
|
}
|
|
#endif
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
IOSTATS_ADD(bytes_written, allowed);
|
|
TEST_KILL_RANDOM("WritableFileWriter::WriteBuffered:0", rocksdb_kill_odds);
|
|
|
|
left -= allowed;
|
|
src += allowed;
|
|
}
|
|
buf_.Size(0);
|
|
return s;
|
|
}
|
|
|
|
|
|
// This flushes the accumulated data in the buffer. We pad data with zeros if
|
|
// necessary to the whole page.
|
|
// However, during automatic flushes padding would not be necessary.
|
|
// We always use RateLimiter if available. We move (Refit) any buffer bytes
|
|
// that are left over the
|
|
// whole number of pages to be written again on the next flush because we can
|
|
// only write on aligned
|
|
// offsets.
|
|
#ifndef ROCKSDB_LITE
|
|
Status WritableFileWriter::WriteDirect() {
|
|
assert(use_direct_io());
|
|
Status s;
|
|
const size_t alignment = buf_.Alignment();
|
|
assert((next_write_offset_ % alignment) == 0);
|
|
|
|
// Calculate whole page final file advance if all writes succeed
|
|
size_t file_advance =
|
|
TruncateToPageBoundary(alignment, buf_.CurrentSize());
|
|
|
|
// Calculate the leftover tail, we write it here padded with zeros BUT we
|
|
// will write
|
|
// it again in the future either on Close() OR when the current whole page
|
|
// fills out
|
|
size_t leftover_tail = buf_.CurrentSize() - file_advance;
|
|
|
|
// Round up and pad
|
|
buf_.PadToAlignmentWith(0);
|
|
|
|
const char* src = buf_.BufferStart();
|
|
uint64_t write_offset = next_write_offset_;
|
|
size_t left = buf_.CurrentSize();
|
|
|
|
while (left > 0) {
|
|
// Check how much is allowed
|
|
size_t size;
|
|
if (rate_limiter_ != nullptr) {
|
|
size = rate_limiter_->RequestToken(left, buf_.Alignment(),
|
|
writable_file_->GetIOPriority(),
|
|
stats_, RateLimiter::OpType::kWrite);
|
|
} else {
|
|
size = left;
|
|
}
|
|
|
|
{
|
|
IOSTATS_TIMER_GUARD(write_nanos);
|
|
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
|
|
FileOperationInfo::TimePoint start_ts;
|
|
if (ShouldNotifyListeners()) {
|
|
start_ts = std::chrono::system_clock::now();
|
|
}
|
|
// direct writes must be positional
|
|
s = writable_file_->PositionedAppend(Slice(src, size), write_offset);
|
|
if (ShouldNotifyListeners()) {
|
|
auto finish_ts = std::chrono::system_clock::now();
|
|
NotifyOnFileWriteFinish(write_offset, size, start_ts, finish_ts, s);
|
|
}
|
|
if (!s.ok()) {
|
|
buf_.Size(file_advance + leftover_tail);
|
|
return s;
|
|
}
|
|
}
|
|
|
|
IOSTATS_ADD(bytes_written, size);
|
|
left -= size;
|
|
src += size;
|
|
write_offset += size;
|
|
assert((next_write_offset_ % alignment) == 0);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
// Move the tail to the beginning of the buffer
|
|
// This never happens during normal Append but rather during
|
|
// explicit call to Flush()/Sync() or Close()
|
|
buf_.RefitTail(file_advance, leftover_tail);
|
|
// This is where we start writing next time which may or not be
|
|
// the actual file size on disk. They match if the buffer size
|
|
// is a multiple of whole pages otherwise filesize_ is leftover_tail
|
|
// behind
|
|
next_write_offset_ += file_advance;
|
|
}
|
|
return s;
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
|
|
namespace {
|
|
class ReadaheadRandomAccessFile : public RandomAccessFile {
|
|
public:
|
|
ReadaheadRandomAccessFile(std::unique_ptr<RandomAccessFile>&& file,
|
|
size_t readahead_size)
|
|
: file_(std::move(file)),
|
|
alignment_(file_->GetRequiredBufferAlignment()),
|
|
readahead_size_(Roundup(readahead_size, alignment_)),
|
|
buffer_(),
|
|
buffer_offset_(0) {
|
|
buffer_.Alignment(alignment_);
|
|
buffer_.AllocateNewBuffer(readahead_size_);
|
|
}
|
|
|
|
ReadaheadRandomAccessFile(const ReadaheadRandomAccessFile&) = delete;
|
|
|
|
ReadaheadRandomAccessFile& operator=(const ReadaheadRandomAccessFile&) = delete;
|
|
|
|
Status Read(uint64_t offset, size_t n, Slice* result,
|
|
char* scratch) const override {
|
|
if (n + alignment_ >= readahead_size_) {
|
|
return file_->Read(offset, n, result, scratch);
|
|
}
|
|
|
|
std::unique_lock<std::mutex> lk(lock_);
|
|
|
|
size_t cached_len = 0;
|
|
// Check if there is a cache hit, means that [offset, offset + n) is either
|
|
// completely or partially in the buffer
|
|
// If it's completely cached, including end of file case when offset + n is
|
|
// greater than EOF, return
|
|
if (TryReadFromCache(offset, n, &cached_len, scratch) &&
|
|
(cached_len == n ||
|
|
// End of file
|
|
buffer_.CurrentSize() < readahead_size_)) {
|
|
*result = Slice(scratch, cached_len);
|
|
return Status::OK();
|
|
}
|
|
size_t advanced_offset = static_cast<size_t>(offset + cached_len);
|
|
// In the case of cache hit advanced_offset is already aligned, means that
|
|
// chunk_offset equals to advanced_offset
|
|
size_t chunk_offset = TruncateToPageBoundary(alignment_, advanced_offset);
|
|
Slice readahead_result;
|
|
|
|
Status s = ReadIntoBuffer(chunk_offset, readahead_size_);
|
|
if (s.ok()) {
|
|
// In the case of cache miss, i.e. when cached_len equals 0, an offset can
|
|
// exceed the file end position, so the following check is required
|
|
if (advanced_offset < chunk_offset + buffer_.CurrentSize()) {
|
|
// In the case of cache miss, the first chunk_padding bytes in buffer_
|
|
// are
|
|
// stored for alignment only and must be skipped
|
|
size_t chunk_padding = advanced_offset - chunk_offset;
|
|
auto remaining_len =
|
|
std::min(buffer_.CurrentSize() - chunk_padding, n - cached_len);
|
|
memcpy(scratch + cached_len, buffer_.BufferStart() + chunk_padding,
|
|
remaining_len);
|
|
*result = Slice(scratch, cached_len + remaining_len);
|
|
} else {
|
|
*result = Slice(scratch, cached_len);
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status Prefetch(uint64_t offset, size_t n) override {
|
|
if (n < readahead_size_) {
|
|
// Don't allow smaller prefetches than the configured `readahead_size_`.
|
|
// `Read()` assumes a smaller prefetch buffer indicates EOF was reached.
|
|
return Status::OK();
|
|
}
|
|
size_t offset_ = static_cast<size_t>(offset);
|
|
size_t prefetch_offset = TruncateToPageBoundary(alignment_, offset_);
|
|
if (prefetch_offset == buffer_offset_) {
|
|
return Status::OK();
|
|
}
|
|
return ReadIntoBuffer(prefetch_offset,
|
|
Roundup(offset_ + n, alignment_) - prefetch_offset);
|
|
}
|
|
|
|
size_t GetUniqueId(char* id, size_t max_size) const override {
|
|
return file_->GetUniqueId(id, max_size);
|
|
}
|
|
|
|
void Hint(AccessPattern pattern) override { file_->Hint(pattern); }
|
|
|
|
Status InvalidateCache(size_t offset, size_t length) override {
|
|
return file_->InvalidateCache(offset, length);
|
|
}
|
|
|
|
bool use_direct_io() const override { return file_->use_direct_io(); }
|
|
|
|
private:
|
|
bool TryReadFromCache(uint64_t offset, size_t n, size_t* cached_len,
|
|
char* scratch) const {
|
|
if (offset < buffer_offset_ ||
|
|
offset >= buffer_offset_ + buffer_.CurrentSize()) {
|
|
*cached_len = 0;
|
|
return false;
|
|
}
|
|
uint64_t offset_in_buffer = offset - buffer_offset_;
|
|
*cached_len = std::min(
|
|
buffer_.CurrentSize() - static_cast<size_t>(offset_in_buffer), n);
|
|
memcpy(scratch, buffer_.BufferStart() + offset_in_buffer, *cached_len);
|
|
return true;
|
|
}
|
|
|
|
Status ReadIntoBuffer(uint64_t offset, size_t n) const {
|
|
if (n > buffer_.Capacity()) {
|
|
n = buffer_.Capacity();
|
|
}
|
|
assert(IsFileSectorAligned(offset, alignment_));
|
|
assert(IsFileSectorAligned(n, alignment_));
|
|
Slice result;
|
|
Status s = file_->Read(offset, n, &result, buffer_.BufferStart());
|
|
if (s.ok()) {
|
|
buffer_offset_ = offset;
|
|
buffer_.Size(result.size());
|
|
assert(buffer_.BufferStart() == result.data());
|
|
}
|
|
return s;
|
|
}
|
|
|
|
std::unique_ptr<RandomAccessFile> file_;
|
|
const size_t alignment_;
|
|
size_t readahead_size_;
|
|
|
|
mutable std::mutex lock_;
|
|
mutable AlignedBuffer buffer_;
|
|
mutable uint64_t buffer_offset_;
|
|
};
|
|
} // namespace
|
|
|
|
Status FilePrefetchBuffer::Prefetch(RandomAccessFileReader* reader,
|
|
uint64_t offset, size_t n) {
|
|
size_t alignment = reader->file()->GetRequiredBufferAlignment();
|
|
size_t offset_ = static_cast<size_t>(offset);
|
|
uint64_t rounddown_offset = Rounddown(offset_, alignment);
|
|
uint64_t roundup_end = Roundup(offset_ + n, alignment);
|
|
uint64_t roundup_len = roundup_end - rounddown_offset;
|
|
assert(roundup_len >= alignment);
|
|
assert(roundup_len % alignment == 0);
|
|
|
|
// Check if requested bytes are in the existing buffer_.
|
|
// If all bytes exist -- return.
|
|
// If only a few bytes exist -- reuse them & read only what is really needed.
|
|
// This is typically the case of incremental reading of data.
|
|
// If no bytes exist in buffer -- full pread.
|
|
|
|
Status s;
|
|
uint64_t chunk_offset_in_buffer = 0;
|
|
uint64_t chunk_len = 0;
|
|
bool copy_data_to_new_buffer = false;
|
|
if (buffer_.CurrentSize() > 0 && offset >= buffer_offset_ &&
|
|
offset <= buffer_offset_ + buffer_.CurrentSize()) {
|
|
if (offset + n <= buffer_offset_ + buffer_.CurrentSize()) {
|
|
// All requested bytes are already in the buffer. So no need to Read
|
|
// again.
|
|
return s;
|
|
} else {
|
|
// Only a few requested bytes are in the buffer. memmove those chunk of
|
|
// bytes to the beginning, and memcpy them back into the new buffer if a
|
|
// new buffer is created.
|
|
chunk_offset_in_buffer = Rounddown(static_cast<size_t>(offset - buffer_offset_), alignment);
|
|
chunk_len = buffer_.CurrentSize() - chunk_offset_in_buffer;
|
|
assert(chunk_offset_in_buffer % alignment == 0);
|
|
assert(chunk_len % alignment == 0);
|
|
assert(chunk_offset_in_buffer + chunk_len <=
|
|
buffer_offset_ + buffer_.CurrentSize());
|
|
if (chunk_len > 0) {
|
|
copy_data_to_new_buffer = true;
|
|
} else {
|
|
// this reset is not necessary, but just to be safe.
|
|
chunk_offset_in_buffer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a new buffer only if current capacity is not sufficient, and memcopy
|
|
// bytes from old buffer if needed (i.e., if chunk_len is greater than 0).
|
|
if (buffer_.Capacity() < roundup_len) {
|
|
buffer_.Alignment(alignment);
|
|
buffer_.AllocateNewBuffer(static_cast<size_t>(roundup_len),
|
|
copy_data_to_new_buffer, chunk_offset_in_buffer,
|
|
static_cast<size_t>(chunk_len));
|
|
} else if (chunk_len > 0) {
|
|
// New buffer not needed. But memmove bytes from tail to the beginning since
|
|
// chunk_len is greater than 0.
|
|
buffer_.RefitTail(static_cast<size_t>(chunk_offset_in_buffer), static_cast<size_t>(chunk_len));
|
|
}
|
|
|
|
Slice result;
|
|
s = reader->Read(rounddown_offset + chunk_len,
|
|
static_cast<size_t>(roundup_len - chunk_len), &result,
|
|
buffer_.BufferStart() + chunk_len);
|
|
if (s.ok()) {
|
|
buffer_offset_ = rounddown_offset;
|
|
buffer_.Size(static_cast<size_t>(chunk_len) + result.size());
|
|
}
|
|
return s;
|
|
}
|
|
|
|
bool FilePrefetchBuffer::TryReadFromCache(uint64_t offset, size_t n,
|
|
Slice* result) {
|
|
if (track_min_offset_ && offset < min_offset_read_) {
|
|
min_offset_read_ = static_cast<size_t>(offset);
|
|
}
|
|
if (!enable_ || offset < buffer_offset_) {
|
|
return false;
|
|
}
|
|
|
|
// If the buffer contains only a few of the requested bytes:
|
|
// If readahead is enabled: prefetch the remaining bytes + readadhead bytes
|
|
// and satisfy the request.
|
|
// If readahead is not enabled: return false.
|
|
if (offset + n > buffer_offset_ + buffer_.CurrentSize()) {
|
|
if (readahead_size_ > 0) {
|
|
assert(file_reader_ != nullptr);
|
|
assert(max_readahead_size_ >= readahead_size_);
|
|
|
|
Status s = Prefetch(file_reader_, offset, n + readahead_size_);
|
|
if (!s.ok()) {
|
|
return false;
|
|
}
|
|
readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint64_t offset_in_buffer = offset - buffer_offset_;
|
|
*result = Slice(buffer_.BufferStart() + offset_in_buffer, n);
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<RandomAccessFile> NewReadaheadRandomAccessFile(
|
|
std::unique_ptr<RandomAccessFile>&& file, size_t readahead_size) {
|
|
std::unique_ptr<RandomAccessFile> result(
|
|
new ReadaheadRandomAccessFile(std::move(file), readahead_size));
|
|
return result;
|
|
}
|
|
|
|
Status NewWritableFile(Env* env, const std::string& fname,
|
|
std::unique_ptr<WritableFile>* result,
|
|
const EnvOptions& options) {
|
|
Status s = env->NewWritableFile(fname, result, options);
|
|
TEST_KILL_RANDOM("NewWritableFile:0", rocksdb_kill_odds * REDUCE_ODDS2);
|
|
return s;
|
|
}
|
|
|
|
bool ReadOneLine(std::istringstream* iss, SequentialFile* seq_file,
|
|
std::string* output, bool* has_data, Status* result) {
|
|
const int kBufferSize = 8192;
|
|
char buffer[kBufferSize + 1];
|
|
Slice input_slice;
|
|
|
|
std::string line;
|
|
bool has_complete_line = false;
|
|
while (!has_complete_line) {
|
|
if (std::getline(*iss, line)) {
|
|
has_complete_line = !iss->eof();
|
|
} else {
|
|
has_complete_line = false;
|
|
}
|
|
if (!has_complete_line) {
|
|
// if we're not sure whether we have a complete line,
|
|
// further read from the file.
|
|
if (*has_data) {
|
|
*result = seq_file->Read(kBufferSize, &input_slice, buffer);
|
|
}
|
|
if (input_slice.size() == 0) {
|
|
// meaning we have read all the data
|
|
*has_data = false;
|
|
break;
|
|
} else {
|
|
iss->str(line + input_slice.ToString());
|
|
// reset the internal state of iss so that we can keep reading it.
|
|
iss->clear();
|
|
*has_data = (input_slice.size() == kBufferSize);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
*output = line;
|
|
return *has_data || has_complete_line;
|
|
}
|
|
|
|
} // namespace rocksdb
|
|
|