fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
703 lines
20 KiB
703 lines
20 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "rocksdb/cache.h"
|
|
|
|
#include <forward_list>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "cache/clock_cache.h"
|
|
#include "cache/lru_cache.h"
|
|
#include "util/coding.h"
|
|
#include "util/string_util.h"
|
|
#include "util/testharness.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
// Conversions between numeric keys/values and the types expected by Cache.
|
|
static std::string EncodeKey(int k) {
|
|
std::string result;
|
|
PutFixed32(&result, k);
|
|
return result;
|
|
}
|
|
static int DecodeKey(const Slice& k) {
|
|
assert(k.size() == 4);
|
|
return DecodeFixed32(k.data());
|
|
}
|
|
static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); }
|
|
static int DecodeValue(void* v) {
|
|
return static_cast<int>(reinterpret_cast<uintptr_t>(v));
|
|
}
|
|
|
|
const std::string kLRU = "lru";
|
|
const std::string kClock = "clock";
|
|
|
|
void dumbDeleter(const Slice& key, void* value) {}
|
|
|
|
void eraseDeleter(const Slice& key, void* value) {
|
|
Cache* cache = reinterpret_cast<Cache*>(value);
|
|
cache->Erase("foo");
|
|
}
|
|
|
|
class CacheTest : public testing::TestWithParam<std::string> {
|
|
public:
|
|
static CacheTest* current_;
|
|
|
|
static void Deleter(const Slice& key, void* v) {
|
|
current_->deleted_keys_.push_back(DecodeKey(key));
|
|
current_->deleted_values_.push_back(DecodeValue(v));
|
|
}
|
|
|
|
static const int kCacheSize = 1000;
|
|
static const int kNumShardBits = 4;
|
|
|
|
static const int kCacheSize2 = 100;
|
|
static const int kNumShardBits2 = 2;
|
|
|
|
std::vector<int> deleted_keys_;
|
|
std::vector<int> deleted_values_;
|
|
shared_ptr<Cache> cache_;
|
|
shared_ptr<Cache> cache2_;
|
|
|
|
CacheTest()
|
|
: cache_(NewCache(kCacheSize, kNumShardBits, false)),
|
|
cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) {
|
|
current_ = this;
|
|
}
|
|
|
|
~CacheTest() {
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewCache(size_t capacity) {
|
|
auto type = GetParam();
|
|
if (type == kLRU) {
|
|
return NewLRUCache(capacity);
|
|
}
|
|
if (type == kClock) {
|
|
return NewClockCache(capacity);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewCache(size_t capacity, int num_shard_bits,
|
|
bool strict_capacity_limit) {
|
|
auto type = GetParam();
|
|
if (type == kLRU) {
|
|
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit);
|
|
}
|
|
if (type == kClock) {
|
|
return NewClockCache(capacity, num_shard_bits, strict_capacity_limit);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
int Lookup(shared_ptr<Cache> cache, int key) {
|
|
Cache::Handle* handle = cache->Lookup(EncodeKey(key));
|
|
const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
|
|
if (handle != nullptr) {
|
|
cache->Release(handle);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void Insert(shared_ptr<Cache> cache, int key, int value, int charge = 1) {
|
|
cache->Insert(EncodeKey(key), EncodeValue(value), charge,
|
|
&CacheTest::Deleter);
|
|
}
|
|
|
|
void Erase(shared_ptr<Cache> cache, int key) {
|
|
cache->Erase(EncodeKey(key));
|
|
}
|
|
|
|
|
|
int Lookup(int key) {
|
|
return Lookup(cache_, key);
|
|
}
|
|
|
|
void Insert(int key, int value, int charge = 1) {
|
|
Insert(cache_, key, value, charge);
|
|
}
|
|
|
|
void Erase(int key) {
|
|
Erase(cache_, key);
|
|
}
|
|
|
|
int Lookup2(int key) {
|
|
return Lookup(cache2_, key);
|
|
}
|
|
|
|
void Insert2(int key, int value, int charge = 1) {
|
|
Insert(cache2_, key, value, charge);
|
|
}
|
|
|
|
void Erase2(int key) {
|
|
Erase(cache2_, key);
|
|
}
|
|
};
|
|
CacheTest* CacheTest::current_;
|
|
|
|
TEST_P(CacheTest, UsageTest) {
|
|
// cache is shared_ptr and will be automatically cleaned up.
|
|
const uint64_t kCapacity = 100000;
|
|
auto cache = NewCache(kCapacity, 8, false);
|
|
|
|
size_t usage = 0;
|
|
char value[10] = "abcdef";
|
|
// make sure everything will be cached
|
|
for (int i = 1; i < 100; ++i) {
|
|
std::string key(i, 'a');
|
|
auto kv_size = key.size() + 5;
|
|
cache->Insert(key, reinterpret_cast<void*>(value), kv_size, dumbDeleter);
|
|
usage += kv_size;
|
|
ASSERT_EQ(usage, cache->GetUsage());
|
|
}
|
|
|
|
// make sure the cache will be overloaded
|
|
for (uint64_t i = 1; i < kCapacity; ++i) {
|
|
auto key = ToString(i);
|
|
cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
|
|
dumbDeleter);
|
|
}
|
|
|
|
// the usage should be close to the capacity
|
|
ASSERT_GT(kCapacity, cache->GetUsage());
|
|
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
|
|
}
|
|
|
|
TEST_P(CacheTest, PinnedUsageTest) {
|
|
// cache is shared_ptr and will be automatically cleaned up.
|
|
const uint64_t kCapacity = 100000;
|
|
auto cache = NewCache(kCapacity, 8, false);
|
|
|
|
size_t pinned_usage = 0;
|
|
char value[10] = "abcdef";
|
|
|
|
std::forward_list<Cache::Handle*> unreleased_handles;
|
|
|
|
// Add entries. Unpin some of them after insertion. Then, pin some of them
|
|
// again. Check GetPinnedUsage().
|
|
for (int i = 1; i < 100; ++i) {
|
|
std::string key(i, 'a');
|
|
auto kv_size = key.size() + 5;
|
|
Cache::Handle* handle;
|
|
cache->Insert(key, reinterpret_cast<void*>(value), kv_size, dumbDeleter,
|
|
&handle);
|
|
pinned_usage += kv_size;
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
if (i % 2 == 0) {
|
|
cache->Release(handle);
|
|
pinned_usage -= kv_size;
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
} else {
|
|
unreleased_handles.push_front(handle);
|
|
}
|
|
if (i % 3 == 0) {
|
|
unreleased_handles.push_front(cache->Lookup(key));
|
|
// If i % 2 == 0, then the entry was unpinned before Lookup, so pinned
|
|
// usage increased
|
|
if (i % 2 == 0) {
|
|
pinned_usage += kv_size;
|
|
}
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
}
|
|
}
|
|
|
|
// check that overloading the cache does not change the pinned usage
|
|
for (uint64_t i = 1; i < 2 * kCapacity; ++i) {
|
|
auto key = ToString(i);
|
|
cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
|
|
dumbDeleter);
|
|
}
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
// release handles for pinned entries to prevent memory leaks
|
|
for (auto handle : unreleased_handles) {
|
|
cache->Release(handle);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, HitAndMiss) {
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
Insert(100, 101);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
Insert(200, 201);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
Insert(100, 102);
|
|
ASSERT_EQ(102, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
}
|
|
|
|
TEST_P(CacheTest, InsertSameKey) {
|
|
Insert(1, 1);
|
|
Insert(1, 2);
|
|
ASSERT_EQ(2, Lookup(1));
|
|
}
|
|
|
|
TEST_P(CacheTest, Erase) {
|
|
Erase(200);
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
Insert(100, 101);
|
|
Insert(200, 201);
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(201, Lookup(200));
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
}
|
|
|
|
TEST_P(CacheTest, EntriesArePinned) {
|
|
Insert(100, 101);
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
Insert(100, 102);
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
ASSERT_EQ(2U, cache_->GetUsage());
|
|
|
|
cache_->Release(h1);
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
Erase(100);
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
cache_->Release(h2);
|
|
ASSERT_EQ(2U, deleted_keys_.size());
|
|
ASSERT_EQ(100, deleted_keys_[1]);
|
|
ASSERT_EQ(102, deleted_values_[1]);
|
|
ASSERT_EQ(0U, cache_->GetUsage());
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictionPolicy) {
|
|
Insert(100, 101);
|
|
Insert(200, 201);
|
|
|
|
// Frequently used entry must be kept around
|
|
for (int i = 0; i < kCacheSize + 100; i++) {
|
|
Insert(1000+i, 2000+i);
|
|
ASSERT_EQ(101, Lookup(100));
|
|
}
|
|
ASSERT_EQ(101, Lookup(100));
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
}
|
|
|
|
TEST_P(CacheTest, ExternalRefPinsEntries) {
|
|
Insert(100, 101);
|
|
Cache::Handle* h = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_TRUE(cache_->Ref(h));
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h)));
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (i > 0) {
|
|
// First release (i == 1) corresponds to Ref(), second release (i == 2)
|
|
// corresponds to Lookup(). Then, since all external refs are released,
|
|
// the below insertions should push out the cache entry.
|
|
cache_->Release(h);
|
|
}
|
|
// double cache size because the usage bit in block cache prevents 100 from
|
|
// being evicted in the first kCacheSize iterations
|
|
for (int j = 0; j < 2 * kCacheSize + 100; j++) {
|
|
Insert(1000 + j, 2000 + j);
|
|
}
|
|
if (i < 2) {
|
|
ASSERT_EQ(101, Lookup(100));
|
|
}
|
|
}
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictionPolicyRef) {
|
|
Insert(100, 101);
|
|
Insert(101, 102);
|
|
Insert(102, 103);
|
|
Insert(103, 104);
|
|
Insert(200, 101);
|
|
Insert(201, 102);
|
|
Insert(202, 103);
|
|
Insert(203, 104);
|
|
Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
|
|
Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
|
|
Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
|
|
Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
|
|
Insert(300, 101);
|
|
Insert(301, 102);
|
|
Insert(302, 103);
|
|
Insert(303, 104);
|
|
|
|
// Insert entries much more than Cache capacity
|
|
for (int i = 0; i < kCacheSize + 100; i++) {
|
|
Insert(1000 + i, 2000 + i);
|
|
}
|
|
|
|
// Check whether the entries inserted in the beginning
|
|
// are evicted. Ones without extra ref are evicted and
|
|
// those with are not.
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
ASSERT_EQ(-1, Lookup(101));
|
|
ASSERT_EQ(-1, Lookup(102));
|
|
ASSERT_EQ(-1, Lookup(103));
|
|
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
ASSERT_EQ(-1, Lookup(301));
|
|
ASSERT_EQ(-1, Lookup(302));
|
|
ASSERT_EQ(-1, Lookup(303));
|
|
|
|
ASSERT_EQ(101, Lookup(200));
|
|
ASSERT_EQ(102, Lookup(201));
|
|
ASSERT_EQ(103, Lookup(202));
|
|
ASSERT_EQ(104, Lookup(203));
|
|
|
|
// Cleaning up all the handles
|
|
cache_->Release(h201);
|
|
cache_->Release(h202);
|
|
cache_->Release(h203);
|
|
cache_->Release(h204);
|
|
}
|
|
|
|
TEST_P(CacheTest, EvictEmptyCache) {
|
|
// Insert item large than capacity to trigger eviction on empty cache.
|
|
auto cache = NewCache(1, 0, false);
|
|
ASSERT_OK(cache->Insert("foo", nullptr, 10, dumbDeleter));
|
|
}
|
|
|
|
TEST_P(CacheTest, EraseFromDeleter) {
|
|
// Have deleter which will erase item from cache, which will re-enter
|
|
// the cache at that point.
|
|
std::shared_ptr<Cache> cache = NewCache(10, 0, false);
|
|
ASSERT_OK(cache->Insert("foo", nullptr, 1, dumbDeleter));
|
|
ASSERT_OK(cache->Insert("bar", cache.get(), 1, eraseDeleter));
|
|
cache->Erase("bar");
|
|
ASSERT_EQ(nullptr, cache->Lookup("foo"));
|
|
ASSERT_EQ(nullptr, cache->Lookup("bar"));
|
|
}
|
|
|
|
TEST_P(CacheTest, ErasedHandleState) {
|
|
// insert a key and get two handles
|
|
Insert(100, 1000);
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
ASSERT_EQ(h1, h2);
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000);
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000);
|
|
|
|
// delete the key from the cache
|
|
Erase(100);
|
|
// can no longer find in the cache
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
// release one handle
|
|
cache_->Release(h1);
|
|
// still can't find in cache
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
cache_->Release(h2);
|
|
}
|
|
|
|
TEST_P(CacheTest, HeavyEntries) {
|
|
// Add a bunch of light and heavy entries and then count the combined
|
|
// size of items still in the cache, which must be approximately the
|
|
// same as the total capacity.
|
|
const int kLight = 1;
|
|
const int kHeavy = 10;
|
|
int added = 0;
|
|
int index = 0;
|
|
while (added < 2*kCacheSize) {
|
|
const int weight = (index & 1) ? kLight : kHeavy;
|
|
Insert(index, 1000+index, weight);
|
|
added += weight;
|
|
index++;
|
|
}
|
|
|
|
int cached_weight = 0;
|
|
for (int i = 0; i < index; i++) {
|
|
const int weight = (i & 1 ? kLight : kHeavy);
|
|
int r = Lookup(i);
|
|
if (r >= 0) {
|
|
cached_weight += weight;
|
|
ASSERT_EQ(1000+i, r);
|
|
}
|
|
}
|
|
ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
|
|
}
|
|
|
|
TEST_P(CacheTest, NewId) {
|
|
uint64_t a = cache_->NewId();
|
|
uint64_t b = cache_->NewId();
|
|
ASSERT_NE(a, b);
|
|
}
|
|
|
|
|
|
class Value {
|
|
public:
|
|
explicit Value(size_t v) : v_(v) { }
|
|
|
|
size_t v_;
|
|
};
|
|
|
|
namespace {
|
|
void deleter(const Slice& key, void* value) {
|
|
delete static_cast<Value *>(value);
|
|
}
|
|
} // namespace
|
|
|
|
TEST_P(CacheTest, ReleaseAndErase) {
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
Cache::Handle* handle;
|
|
Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
|
|
&CacheTest::Deleter, &handle);
|
|
ASSERT_TRUE(s.ok());
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
auto erased = cache->Release(handle, true);
|
|
ASSERT_TRUE(erased);
|
|
// This tests that deleter has been called
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
}
|
|
|
|
TEST_P(CacheTest, ReleaseWithoutErase) {
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
Cache::Handle* handle;
|
|
Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
|
|
&CacheTest::Deleter, &handle);
|
|
ASSERT_TRUE(s.ok());
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
auto erased = cache->Release(handle);
|
|
ASSERT_FALSE(erased);
|
|
// This tests that deleter is not called. When cache has free capacity it is
|
|
// not expected to immediately erase the released items.
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
}
|
|
|
|
TEST_P(CacheTest, SetCapacity) {
|
|
// test1: increase capacity
|
|
// lets create a cache with capacity 5,
|
|
// then, insert 5 elements, then increase capacity
|
|
// to 10, returned capacity should be 10, usage=5
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
std::vector<Cache::Handle*> handles(10);
|
|
// Insert 5 entries, but not releasing.
|
|
for (size_t i = 0; i < 5; i++) {
|
|
std::string key = ToString(i+1);
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
ASSERT_EQ(5U, cache->GetUsage());
|
|
cache->SetCapacity(10);
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
ASSERT_EQ(5U, cache->GetUsage());
|
|
|
|
// test2: decrease capacity
|
|
// insert 5 more elements to cache, then release 5,
|
|
// then decrease capacity to 7, final capacity should be 7
|
|
// and usage should be 7
|
|
for (size_t i = 5; i < 10; i++) {
|
|
std::string key = ToString(i+1);
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
ASSERT_EQ(10U, cache->GetUsage());
|
|
for (size_t i = 0; i < 5; i++) {
|
|
cache->Release(handles[i]);
|
|
}
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
ASSERT_EQ(10U, cache->GetUsage());
|
|
cache->SetCapacity(7);
|
|
ASSERT_EQ(7, cache->GetCapacity());
|
|
ASSERT_EQ(7, cache->GetUsage());
|
|
|
|
// release remaining 5 to keep valgrind happy
|
|
for (size_t i = 5; i < 10; i++) {
|
|
cache->Release(handles[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, SetStrictCapacityLimit) {
|
|
// test1: set the flag to false. Insert more keys than capacity. See if they
|
|
// all go through.
|
|
std::shared_ptr<Cache> cache = NewLRUCache(5, 0, false);
|
|
std::vector<Cache::Handle*> handles(10);
|
|
Status s;
|
|
for (size_t i = 0; i < 10; i++) {
|
|
std::string key = ToString(i + 1);
|
|
s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
ASSERT_OK(s);
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
}
|
|
|
|
// test2: set the flag to true. Insert and check if it fails.
|
|
std::string extra_key = "extra";
|
|
Value* extra_value = new Value(0);
|
|
cache->SetStrictCapacityLimit(true);
|
|
Cache::Handle* handle;
|
|
s = cache->Insert(extra_key, extra_value, 1, &deleter, &handle);
|
|
ASSERT_TRUE(s.IsIncomplete());
|
|
ASSERT_EQ(nullptr, handle);
|
|
|
|
for (size_t i = 0; i < 10; i++) {
|
|
cache->Release(handles[i]);
|
|
}
|
|
|
|
// test3: init with flag being true.
|
|
std::shared_ptr<Cache> cache2 = NewLRUCache(5, 0, true);
|
|
for (size_t i = 0; i < 5; i++) {
|
|
std::string key = ToString(i + 1);
|
|
s = cache2->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
ASSERT_OK(s);
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
}
|
|
s = cache2->Insert(extra_key, extra_value, 1, &deleter, &handle);
|
|
ASSERT_TRUE(s.IsIncomplete());
|
|
ASSERT_EQ(nullptr, handle);
|
|
// test insert without handle
|
|
s = cache2->Insert(extra_key, extra_value, 1, &deleter);
|
|
// AS if the key have been inserted into cache but get evicted immediately.
|
|
ASSERT_OK(s);
|
|
ASSERT_EQ(5, cache->GetUsage());
|
|
ASSERT_EQ(nullptr, cache2->Lookup(extra_key));
|
|
|
|
for (size_t i = 0; i < 5; i++) {
|
|
cache2->Release(handles[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(CacheTest, OverCapacity) {
|
|
size_t n = 10;
|
|
|
|
// a LRUCache with n entries and one shard only
|
|
std::shared_ptr<Cache> cache = NewCache(n, 0, false);
|
|
|
|
std::vector<Cache::Handle*> handles(n+1);
|
|
|
|
// Insert n+1 entries, but not releasing.
|
|
for (size_t i = 0; i < n + 1; i++) {
|
|
std::string key = ToString(i+1);
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
ASSERT_TRUE(s.ok());
|
|
}
|
|
|
|
// Guess what's in the cache now?
|
|
for (size_t i = 0; i < n + 1; i++) {
|
|
std::string key = ToString(i+1);
|
|
auto h = cache->Lookup(key);
|
|
ASSERT_TRUE(h != nullptr);
|
|
if (h) cache->Release(h);
|
|
}
|
|
|
|
// the cache is over capacity since nothing could be evicted
|
|
ASSERT_EQ(n + 1U, cache->GetUsage());
|
|
for (size_t i = 0; i < n + 1; i++) {
|
|
cache->Release(handles[i]);
|
|
}
|
|
// Make sure eviction is triggered.
|
|
cache->SetCapacity(n);
|
|
|
|
// cache is under capacity now since elements were released
|
|
ASSERT_EQ(n, cache->GetUsage());
|
|
|
|
// element 0 is evicted and the rest is there
|
|
// This is consistent with the LRU policy since the element 0
|
|
// was released first
|
|
for (size_t i = 0; i < n + 1; i++) {
|
|
std::string key = ToString(i+1);
|
|
auto h = cache->Lookup(key);
|
|
if (h) {
|
|
ASSERT_NE(i, 0U);
|
|
cache->Release(h);
|
|
} else {
|
|
ASSERT_EQ(i, 0U);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
std::vector<std::pair<int, int>> callback_state;
|
|
void callback(void* entry, size_t charge) {
|
|
callback_state.push_back({DecodeValue(entry), static_cast<int>(charge)});
|
|
}
|
|
};
|
|
|
|
TEST_P(CacheTest, ApplyToAllCacheEntiresTest) {
|
|
std::vector<std::pair<int, int>> inserted;
|
|
callback_state.clear();
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Insert(i, i * 2, i + 1);
|
|
inserted.push_back({i * 2, i + 1});
|
|
}
|
|
cache_->ApplyToAllCacheEntries(callback, true);
|
|
|
|
std::sort(inserted.begin(), inserted.end());
|
|
std::sort(callback_state.begin(), callback_state.end());
|
|
ASSERT_TRUE(inserted == callback_state);
|
|
}
|
|
|
|
TEST_P(CacheTest, DefaultShardBits) {
|
|
// test1: set the flag to false. Insert more keys than capacity. See if they
|
|
// all go through.
|
|
std::shared_ptr<Cache> cache = NewCache(16 * 1024L * 1024L);
|
|
ShardedCache* sc = dynamic_cast<ShardedCache*>(cache.get());
|
|
ASSERT_EQ(5, sc->GetNumShardBits());
|
|
|
|
cache = NewLRUCache(511 * 1024L, -1, true);
|
|
sc = dynamic_cast<ShardedCache*>(cache.get());
|
|
ASSERT_EQ(0, sc->GetNumShardBits());
|
|
|
|
cache = NewLRUCache(1024L * 1024L * 1024L, -1, true);
|
|
sc = dynamic_cast<ShardedCache*>(cache.get());
|
|
ASSERT_EQ(6, sc->GetNumShardBits());
|
|
}
|
|
|
|
#ifdef SUPPORT_CLOCK_CACHE
|
|
shared_ptr<Cache> (*new_clock_cache_func)(size_t, int, bool) = NewClockCache;
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest,
|
|
testing::Values(kLRU, kClock));
|
|
#else
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest, testing::Values(kLRU));
|
|
#endif // SUPPORT_CLOCK_CACHE
|
|
|
|
} // namespace rocksdb
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|